
genes
G C A T

T A C G

G C A T

Article

Blood-Based Biomarkers for Predicting the Risk for
Five-Year Incident Coronary Heart Disease in the
Framingham Heart Study via Machine Learning

Meeshanthini V. Dogan 1,2,3,*, Steven R. H. Beach 4, Ronald L. Simons 5, Amaury Lendasse 6,7,
Brandan Penaluna 8 and Robert A. Philibert 1,2,3,8

1 Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
robert-philibert@uiowa.edu

2 Cardio Diagnostics LLC, 2500 Crosspark Road, Coralville, IA 52241, USA
3 Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
4 Department of Psychology, University of Georgia, Athens, GA 30602, USA; srhbeach@uga.edu
5 Department of Sociology, University of Georgia, Athens, GA 30606, USA; rsimons@uga.edu
6 Information and Logistics Technology Department, University of Houston, Houston, TX 77004, USA;

alendass@central.uh.edu
7 Department of Business Management and Analytics, Arcada University of Applied Sciences, 00560 Helsinki, Finland
8 Behavioral Diagnostics LLC, 2500 Crosspark Road, Coralville, IA 52241, USA;

brandan-penaluna@uiowa.edu
* Correspondence: meeshanthini-vijayendran@uiowa.edu; Tel.: +1-319-353-4986

Received: 15 November 2018; Accepted: 12 December 2018; Published: 18 December 2018 ����������
�������

Abstract: An improved approach for predicting the risk for incident coronary heart disease (CHD)
could lead to substantial improvements in cardiovascular health. Previously, we have shown that
genetic and epigenetic loci could predict CHD status more sensitively than conventional risk factors.
Herein, we examine whether similar machine learning approaches could be used to develop a similar
panel for predicting incident CHD. Training and test sets consisted of 1180 and 524 individuals,
respectively. Data mining techniques were employed to mine for predictive biosignatures in the
training set. An ensemble of Random Forest models consisting of four genetic and four epigenetic loci
was trained on the training set and subsequently evaluated on the test set. The test sensitivity and
specificity were 0.70 and 0.74, respectively. In contrast, the Framingham risk score and atherosclerotic
cardiovascular disease (ASCVD) risk estimator performed with test sensitivities of 0.20 and 0.38,
respectively. Notably, the integrated genetic-epigenetic model predicted risk better for both genders
and very well in the three-year risk prediction window. We describe a novel DNA-based precision
medicine tool capable of capturing the complex genetic and environmental relationships that
contribute to the risk of CHD, and being mapped to actionable risk factors that may be leveraged to
guide risk modification efforts.

Keywords: coronary heart disease; risk prediction; machine learning; epigenetics; genetics;
biomarkers; risk factors

1. Introduction

Heart disease is responsible for one in every four deaths in the United States [1]. Coronary heart
disease (CHD), which is the most common type of heart disease, results in over 350,000 deaths
annually. Fortunately, CHD is largely preventable and its associated morbidity and mortality can
be reduced if those at high risk can be identified well in advance of an adverse coronary event.
Currently, several methods are employed to screen for the risk of incident CHD. The most common
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approach involves the aggregation of multiple conventional risk factors that are either measured
(e.g., cholesterol, diabetes) or self-reported by individuals to their clinicians (e.g., smoking status).
Even though there are several multivariate risk calculators, such as the Framingham risk score (FRS) [2]
and atherosclerotic cardiovascular disease (ASCVD) risk estimator [3], that combine these factors to
assist clinicians in informing the next steps, several studies have reported limitations in the performance
and generalizability of these methods [4,5]. Although the reasons for these limitations are multifactorial,
in part, the use of unreliable self-report data such as smoking status [6] could affect the performance of
these approaches and the downstream decision making process.

Often, as a part of cardiac risk assessment, the initial clinical consultation is followed by
more costly and invasive procedures, such as stress testing and even cardiac angiography [7–9].
There are several concerning aspects of these follow-up procedures. First, in particular for cardiac
angiography, are the possible complications associated with the invasive nature of the test [10].
Second, even when completed without complications, studies have reported the lack in sensitivity
of angiography in identifying at risk individuals with multiple risk factors [11]. Finally, by the
time several if not all of these and other tests are completed, an individual would have spent days,
if not weeks, undergoing tests prior to obtaining insight into their risk and any guidance on risk
modification interventions.

As a result of these and other challenges, the risk assessment and prevention paradigm for many
diseases including heart disease has shifted from more traditional approaches to next-generation
“omics” and artificial intelligence based big data approaches that may potentially reduce the cost and
time necessary to generate a risk profile. It has become increasingly difficult to ignore the promise
these approaches hold in revolutionizing clinical practice, especially with respect to early detection
and prevention [12]. To that end, building on the premise that diseases such as CHD stem from the
complex interplay between genetic and environmental risk factors, we recently developed an integrated
genetic-epigenetic machine learning based framework for assessing the presence of CHD [13].
The incorporation of both genetic and epigenetic biomarkers allow complimentary risk information to
be captured simultaneously, especially the confounding effects through gene–environment interactions.
In this communication, we adapt and extend this framework to predict the incidence of CHD within
five years.

2. Materials and Methods

A detailed description of the Framingham Heart Study (FHS) (dbGAP study accession: phs000007)
has been provided elsewhere [14,15]. In this study, we used the demographics, and clinical, genetic,
and epigenetic data, from the Offspring cohort. Specifically, it included participants who provided
a blood sample during the eighth examination cycle, which was conducted between 2005 and 2008,
and provided consent to FHS clinical staff to participate in genetics research. The cardiovascular health
related outcomes of these individuals were assessed in subsequent examination cycles, resulting in the
collection of information on incident CHD status. Data from the Offspring cohort was obtained in a fully
anonymized form through dbGAP (https://dbgap.ncbi.nlm.nih.gov). The University of Iowa Institutional
Review Board (IRB) approved all analyses described in this study (IRB approval number: 201503802).

Genome-wide DNA methylation (DNAm) data from the Illumina Infinium HumanMethylation450
BeadChip (San Diego, CA, USA) [16] was available for 2567 individuals. Sample and probe level
quality control was performed as detailed elsewhere [17], reducing the number of samples to 2560.
Of those who passed DNAm quality control, 2406 also had genome-wide genotype data profiled
using the Affymetrix GeneChip HumanMapping 500K (Santa Clara, CA, USA) array. Standard quality
control on samples and probes was performed in PLINK, as previously described in detail [17].
As a result, data from an additional 111 samples were removed from the dataset. In total, data from
2295 individuals passed both DNAm and genotype quality control. In order to ensure related
individuals (i.e., similar genetic makeup) do not influence the training of the prediction model,
identity by descent (IBD) of >0.1875 (halfway in between second and third-degree relatives) was used
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to subset out 696 individuals due to relatedness. This created a natural split for the training and test
sets, where those not removed based on IBD (n = 1599) made up the training set, while those removed
based on IBD (n = 696) made up the test set. All DNAm beta values were converted to M-values and
scaled to have a zero mean and unit variance.

For all 2295 individuals whose data passed quality control steps, their conventional risk factors
for CHD (age, gender, systolic blood pressure (SBP), high-density lipoprotein (HDL) cholesterol level,
total cholesterol level, diabetes status, and self-reported smoking status) at the eighth examination cycle
(biomaterial was collected during this cycle) were extracted. Additionally, to determine incident CHD
status within five years, the CHD status date was also extracted. Incident CHD was considered present
if an individual developed CHD within five years of the eighth examination cycle, while incident
CHD was considered absent if an individual was not diagnosed with CHD within five years of the
eighth examination cycle. The CHD designation was determined upon review by a panel of three
investigators on the Framingham Endpoint Review Committee. Based on this, the final training and
test sets included 1180 (19/695 females and 23/485 males diagnosed with clinical CHD within five
years) and 524 individuals (8/293 females and 12/231 males diagnosed with clinical CHD within five
years), respectively. The conventional risk factors of these individuals are summarized in Table 1.

Table 1. Summary of demographics and conventional coronary heart disease (CHD) risk factors at the
eighth examination cycle for the 1180 and 524 individuals in the training and test sets, respectively.

Training (n = 1180) Test (n = 524)

CHD 1 No CHD 2 CHD 1 No CHD 2

Gender (count)
Male 23 462 12 219

Female 19 676 8 285

Age (years)
Male 70.8 ± 9.7 65.2 ± 8.1 66.8 ± 7.5 61.6 ± 8.6

Female 68.5 ± 9.0 65.6 ± 8.2 70.3 ± 10.7 63.8 ± 9.1

Total Cholesterol (mg/dL)
Male 166 ± 50 178 ± 32 173 ± 34 185 ± 32

Female 204 ± 50 201 ± 36 181 ± 38 196 ± 33

HDL Cholesterol (mg/dL)
Male 48 ± 15 50 ± 14 49 ± 17 51 ± 15

Female 53 ± 16 66 ± 19 60 ± 19 66 ± 19

HbA1c (%)
Male 5.8 ± 0.4 5.7 ± 0.8 5.7 ± 0.7 5.6 ± 0.5

Female 5.9 ± 0.8 5.7 ± 0.5 5.6 ± 0.4 5.6 ± 0.5

SBP (mmHg)
Male 134 ± 17 130 ± 17 138 ± 25 128 ± 16

Female 137 ± 19 128 ± 18 135 ± 24 125 ± 17

DBP (mmHg)
Male 73 ± 11 77 ± 10 75 ± 8 78 ± 9

Female 77 ± 9 73 ± 10 66 ± 10 73 ± 10

Smoker (count)
Male 1 (4%) 29 (6%) 3 (25%) 12 (5%)

Female 2 (11%) 49 (7%) 0 (0%) 28 (10%)

Blood Pressure Treatment
(count)

Male 16 (70%) 223 (48%) 7 (58%) 86 (39%)
Female 10 (53%) 250 (37%) 4 (50%) 114 (40%)

1 Those who developed symptomatic coronary heart disease (CHD) within five years of contributing biomaterial
during the Offspring cohort eighth examination cycle. 2 Those who did not develop symptomatic CHD within
five years of contributing biomaterial during the Offspring cohort eighth examination cycle. HDL: high-density
lipoprotein, SBP: systolic blood pressure, DBP: diastolic blood pressure.

As expected, in the training set of 1180 individuals, the number of individuals who were not
clinically diagnosed with CHD (1138 individuals) greatly exceeded the number of those who developed
CHD within five years (42 individuals). That is approximately a ratio of 1:27. To address this
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class imbalance and ensure biomarkers are predictive of both the majority and minority classes,
we randomly undersampled the majority class to create 27 data subsets. Each data subset consisted
of the 42 individuals who were clinically diagnosed with CHD within five years (minority class),
and 42 individuals chosen randomly without replacement from the pool of 1138 individuals who
were not clinically diagnosed with CHD within five years (majority class). Random undersampling is
a common method for handling imbalanced datasets [18]. This made the ratio between the majority
and minority classes across all 27 data subsets 1:1.

All variable reduction, variable selection, and modeling steps were only performed on the training
set in the form of the 27 data subsets described above. A total of 876,014 loci (403,192 and 472,822 genetic
and epigenetic loci, respectively) survived all quality control steps. Our goal in this step of the
analysis pipeline was to mine integrated genetic-epigenetic biosignatures that together, are capable
of identifying those at high risk for developing symptomatic CHD within five years. To achieve
this, we implemented a proprietary integrated genetic-epigenetic biomarker mining algorithm in
Python that applies data mining techniques [19] to uncover highly predictive biosignatures from the
large number of genetic and epigenetic variables, including non-linear genetic-epigenetic interactions.
This included implementing parallelized random sampling of the large number of variables and
taking advantage of the capabilities of the Random Forest (RF) algorithm [20], including non-linear
interactions between the genetic and epigenetic loci, and bootstrapping to uncover highly predictive
biosignatures. Only biosignatures that performed well with respect to metrics such as sensitivity and
specificity across all 27 data subsets were retained. As a result, we identified a total of 17 candidate loci
(11 single nucleotide polymorphisms (SNPs) and 6 DNAm) that performed with high sensitivity and
specificity across all 27 data subsets.

To determine if we could further reduce and optimize this set of candidate loci while still
maintaining the performance across all 27 data subsets, we once again implemented the RF algorithm
with different combinations of the 17 candidate loci based on the non-linear interactions between
DNAm and SNP pairs. Each combination consisted of at least two SNPs and two DNAm loci, and was
evaluated based on the RF sensitivity and specificity across all 27 data subsets. This resulted in a final
set of eight loci (4 SNPs and 4 DNAm) that performed well across all 27 data subsets. Once this final
variable set was determined, a final RF model consisting of the identified eight loci was fitted for each
training data subset, resulting in 27 RF models for five-year CHD risk prediction. Then, the prediction
probability cutoff value was tuned in each data subset to maximize both sensitivity and specificity of
risk prediction. The final tuned model consisted of 500 trees (ntree) and two variables were randomly
sampled as candidates at each split (mtry).

At the end of the training step, we had 27 trained RF models, all of which consisted of the same
eight loci and their respective tuned probability cutoff value for maximizing sensitivity and specificity.
All 27 of these models were saved for testing on the test dataset. To determine the classification of
each individual in the test dataset, majority voting of the ensemble of 27 models was implemented.
Therefore, if at least 14 of the 27 models voted in favor of high risk of symptomatic CHD within
five years, then the individual was classified as positive for symptomatic CHD within five years,
and vice versa. This binary classification in the test dataset was evaluated using sensitivity, specificity,
and F1 score.

To compare the performance of our integrated genetic-epigenetic model to existing CHD risk
prediction models, we evaluated the predictive performance of the Framingham risk score [2] and
ASCVD risk estimator [3] to identify individuals at high risk for incident CHD (≥20%) on the
test dataset. To implement these models, data from the eighth examination cycle was also used.
Variables considered by these models include age, gender, total cholesterol, HDL, SBP, diastolic blood
pressure (DBP), diabetes status, smoking status, and whether individuals are undergoing blood
pressure treatment.

To better understand the association between the genetic and DNAm loci in the integrated
genetic-epigenetic model and the conventional CHD risk factors, we regressed these loci against each
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of the risk factors. This analysis was performed on the training and test sets, combined. A generic
version of the regressed equation is provided in Equation (1), where the main and interaction effects are
considered. In this equation, the risk factors that were considered include age, gender, total cholesterol,
HDL cholesterol, SBP, DBP, hemoglobin A1c, and smoking status. Each of the risk factors (ith) was
regressed against the main effects of the genetic and epigenetic loci and the interactions between them,
where j and k represent the number of genetic and epigenetic loci, respectively. For example, if the risk
factor being considered is total cholesterol, and the integrated genetic-epigenetic model contains four
SNPs and four DNAm loci, the specific form of this equation is shown in Equation (2).

Risk Factori~SNP1 + . . . + SNPj + DNAm1 + . . . + DNAmk + SNP1 * DNAm1 + SNPj * DNAmk (1)

Total Cholesterol~SNP1 + SNP2 + SNP3 + SNP4 + DNAm1 + DNAm2 + DNAm3 + DNAm4 + SNP1 * DNAm1

+ SNP1 * DNAm2 + SNP1 * DNAm3 + SNP1 * DNAm4 + SNP2 * DNAm1 + SNP2 * DNAm2 + SNP2 * DNAm3

+ SNP2 * DNAm4 + SNP3 * DNAm1 + SNP3 * DNAm2 + SNP3 * DNAm3 + SNP3 * DNAm4 + SNP4 * DNAm1

+ SNP4 * DNAm2 + SNP4 * DNAm3 + SNP4 * DNAm4

(2)

3. Results

We developed a tool that integrates and aggregates the genetic, lifestyle, and environmental risk
factors using whole blood DNA-based biosignatures from 1180 individuals from the FHS Offspring
cohort to assess the five-year risk of developing symptomatic CHD. The performance of this developed
tool was tested on 524 individuals from the FHS Offspring cohort. The demographics and conventional
CHD risk factors of these individuals at the eighth examination cycle are summarized in Table 1.
Individuals in the Offspring cohort were of European ancestry. Both the training and test sets consisted
of more females than males (~59% and ~56% of females in the training and test sets, respectively).
However, more males than females were clinically diagnosed with symptomatic CHD within five years
of contributing biomaterial during the eighth examination cycle for the offspring cohort. Males and
females clinically diagnosed with symptomatic CHD within five years in the training and test sets
were on average older than those not clinically diagnosed with symptomatic CHD within five years.
However, in the training set, males diagnosed with symptomatic CHD within five years of the eighth
examination cycle, were on average older than females, but vice versa in the test set.

HbA1c and systolic blood pressure (SBP) values were similar for both genders in the training
and test sets. However, there were differences in the distribution of other conventional risk factors
between males and females, and between those who did and did not develop CHD within five years.
For instance, in males total cholesterol was higher in the test set compared to the training set by CHD
incidence status, but vice versa in females. As for high density lipoprotein (HDL) cholesterol and
diastolic blood pressure (DBP), the average values between the training and test sets were only less
similar among the females who developed CHD within five years. Finally, the percent of individuals
undergoing treatment for blood pressure at the time of biomaterial collection was greater among those
who developed CHD within five years for both males and females.

3.1. Integrated Genetic-Epigenetic Prediction Model

We developed a model by integrating single nucleotide polymorphism (SNP) and DNAm data
from the 1180 individuals in the training set to predict the risk for symptomatic CHD within five
years. This final model is an ensemble of 27 Random Forest (RF) models that were trained and tuned
on 27 data subsets, as described in the methods section. The variables contained within each of the
27 models were the eight loci, four SNPs, and four DNAm loci, that were identified using a non-linear
data mining algorithm based on their sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC) metrics across all 27 data subsets.

The four DNAm loci included in the model are cg00524912, cg08224787, cg24221633,
and cg26119740. The four SNPs retained for prediction are rs2599737, rs6797484, rs7250088,
and rs898550. The RF model training performance across all 27 data subsets is summarized in
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Table 2. The average out-of-bag (OOB) error rate, AUC, sensitivity, and specificity across the 27 models
are 0.18 ± 0.04, 0.82 ± 0.04, 0.75 ± 0.06, and 0.73 ± 0.06, respectively.

Table 2. Integrated genetic-epigenetic Random Forest model prediction performance in the training set.

Model OOB Error Rate AUC Sensitivity Specificity

1 0.24 0.76 0.71 0.67
2 0.22 0.78 0.67 0.68
3 0.19 0.81 0.71 0.71
4 0.20 0.80 0.76 0.74
5 0.13 0.87 0.88 0.74
6 0.22 0.78 0.69 0.67
7 0.17 0.83 0.74 0.72
8 0.10 0.90 0.81 0.86
9 0.15 0.85 0.76 0.74
10 0.11 0.89 0.88 0.76
11 0.14 0.86 0.81 0.74
12 0.14 0.86 0.74 0.80
13 0.13 0.87 0.79 0.77
14 0.20 0.80 0.74 0.74
15 0.18 0.82 0.71 0.77
16 0.22 0.78 0.71 0.70
17 0.20 0.80 0.71 0.76
18 0.24 0.76 0.67 0.63
19 0.19 0.81 0.74 0.76
20 0.23 0.77 0.74 0.56
21 0.20 0.80 0.76 0.70
22 0.18 0.82 0.79 0.79
23 0.27 0.73 0.67 0.72
24 0.10 0.90 0.86 0.81
25 0.18 0.82 0.81 0.67
26 0.17 0.83 0.79 0.72
27 0.19 0.81 0.69 0.74

OOB: out-of-bag; AUC: area under the receiver operating characteristic curve

To determine the performance of the prediction ensemble model on the test dataset, all 27 models
were applied on the test dataset of 524 individuals. An individual was considered to be at high risk for
developing symptomatic CHD within five years if a majority of the 27 models (i.e., at least 14 of the
27 models) were to vote in favor of it. Of the 524 individuals (20 developed and 504 did not develop
symptomatic CHD within five years) in the test dataset, the ensemble model accurately identified
the five year risk of 386 (~74%) of the 524 individuals. Among the 20 individuals who were at risk,
14 were identified correctly. Similarly, among the 504 individuals who were not at risk within five years,
372 were identified correctly by the ensemble model. Based on that, the test sensitivity, specificity,
and F1 score were 0.70, 0.74, and 0.18, respectively. The performance of the ensemble model in the test
dataset was very comparable to its performance in the training set. The confusion matrix for the test
set is provided in Table 3.

Table 3. The confusion matrix of the integrated genetic-epigenetic ensemble of 27 models on the test
dataset consisting of 524 individuals for predicting the five-year risk of developing symptomatic CHD.

Predicted

True Not at High Risk At High Risk

Did not develop symptomatic CHD within 5 years 372 132
Developed symptomatic CHD within 5 years 6 14

To better understand the ability of the integrated genetic-epigenetic tool to identify those who were
at high risk of symptomatic CHD within five years, we visualized the predictions in the test set with
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respect to age, gender, and days to symptomatic CHD event, as shown in Figure 1. The average time
to event among the 20 individuals in the test set who developed symptomatic CHD within five years
is 1016 ± 541 days or 2.78 ± 1.48 years. As seen in Figure 1, the accuracy of the predictions does not
appear to be biased by age or gender. Additionally, the tool appears to perform very well (seven out of
eight individuals) at identifying those who are at high risk within three years of biomaterial collection.

Figure 1. The performance of the integrated genetic-epigenetic tool when identifying those at high risk
of symptomatic CHD within five years by age, gender, and days to event.

3.2. Association of Loci to Conventional Coronary Heart Disease Risk Factors

We performed regression analysis of each conventional coronary heart disease (CHD) risk factor
on the eight genetic and DNAm loci in the integrated genetic-epigenetic model to better understand
the risk factors being captured by these loci. The nominal p-value associated with each main and
interaction term to each risk factor is summarized in Table 4. Nominal values that were significant at
the 0.05 level are shown in bold. Of the total 16 significant associations, only half of those were main
effects. Among the eight biosignatures in our final model, no significant main effects were identified
for total cholesterol, HDL cholesterol, and HbA1c, whereas no interaction effects were identified for
SBP and gender. On the flip side, the main effects of cg26119740 (PPME1) and cg24221633 (KCNQ2)
were significantly associated with more than one risk factor. The only interaction term significantly
associated with more than one risk factor is the interaction between rs2599737 (NUP98) and cg24221633
(KCNQ2). The most significant main effect (nominal p-value = 0.003) was between cg26119740 (PPME1)
and DBP, whereas the most significant interaction (nominal p-value = 0.002) was between the rs2599737
(NUP98) and cg24221633 (KCNQ2) interaction, and DBP as well.
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Table 4. The nominal p-value of the main and interaction terms of genetic and epigenetic biosignatures
to conventional CHD risk factors.

Locus Total
Cholesterol

HDL
Cholesterol HbA1c Smoking

Status SBP DBP Age Gender

rs2599737 0.94 0.81 0.55 0.59 0.29 0.95 0.28 0.28
rs6797484 0.27 0.86 0.59 0.15 0.006 0.21 0.06 0.62
cg26119740 0.68 0.74 0.20 0.98 0.47 0.003 0.007 0.02
cg00524912 0.67 0.91 0.91 0.88 0.82 0.33 0.06 0.05
rs898550 0.40 0.17 0.27 0.80 0.05 0.75 0.79 0.25
cg24221633 0.47 0.56 0.07 0.03 0.12 0.007 0.45 0.20
cg08224787 0.18 0.12 0.71 0.61 0.85 0.53 0.66 0.40
rs7250088 0.80 0.67 0.36 0.02 0.64 0.83 0.44 0.18
rs2599737:
cg26119740 0.04 0.67 0.55 0.15 0.41 0.20 0.59 0.29

rs2599737:
cg00524912 0.25 0.03 0.94 0.67 0.49 0.07 0.88 0.34

rs2599737:
cg24221633 0.94 0.32 0.38 0.06 0.65 0.002 0.01 0.09

rs2599737:
cg08224787 0.68 0.08 0.82 0.78 0.50 0.53 0.36 0.54

rs6797484:
cg26119740 0.41 0.36 0.01 0.57 0.68 0.09 0.12 0.37

rs6797484:
cg00524912 0.04 0.54 0.10 0.16 0.97 0.96 0.29 0.97

rs6797484:
cg24221633 0.41 0.50 0.84 0.05 0.11 0.56 0.21 0.97

rs6797484:
cg08224787 0.63 0.49 0.17 0.19 0.95 0.74 0.35 0.27

rs898550:
cg26119740 0.06 0.99 0.003 0.59 0.72 0.85 0.36 0.97

rs898550:
cg00524912 0.66 0.13 0.55 0.88 0.39 0.59 0.32 0.32

rs898550:
cg24221633 0.45 0.09 0.09 0.26 0.55 0.49 0.86 0.15

rs898550:
cg08224787 0.08 0.14 0.87 0.55 1.00 0.48 0.72 0.26

rs7250088:
cg26119740 0.35 0.92 0.71 0.89 0.13 0.26 0.98 0.31

rs7250088:
cg00524912 0.81 0.44 0.88 0.98 0.79 0.79 0.61 0.48

rs7250088:
cg24221633 0.46 0.05 0.68 0.35 0.22 0.63 0.71 0.20

rs7250088:
cg08224787 0.81 0.22 0.84 0.89 0.40 0.95 0.43 0.59

3.3. Comparison with Existing Prediction Models

We compared the performance of our five year risk prediction tool to that of two commonly
implemented multivariate approaches, the Framingham risk score (FRS) and the ASCVD risk estimator.
Both risk models aggregate several conventional CHD risk factors to infer the risk for developing
CHD. Most conventional factors overlap in these two models, with the exception of diastolic blood
pressure in the FRS model and the use of blood pressure treatment in the ASCVD Risk Estimator
model. The confusion matrices for the FRS and ASCVD risk estimator when implemented on the test
dataset are shown in Tables 5 and 6, respectively. The total number of individuals in these tables is
less than the number of individuals in the test set due to missing values and restrictions, such as age
needing to be between 40 and 79 years for the ASCVD risk estimator.
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Table 5. The confusion matrix of the Framingham risk score on the test dataset for predicting a high
risk of developing symptomatic CHD within five years.

Predicted

True Not at High Risk At High Risk

Did not develop symptomatic CHD within 5 years 423 20
Developed symptomatic CHD within 5 years 12 3

Table 6. The confusion matrix of the ASCVD risk estimator on the test dataset for predicting a high
risk of developing symptomatic CHD within five years.

Predicted

True Not at High Risk At High Risk

Did not develop symptomatic CHD within 5 years 382 69
Developed symptomatic CHD within 5 years 10 6

The sensitivity, specificity, and F1 score of prediction in the test set by the FRS model were
0.20, 0.95, and 0.16, respectively. For the ASCVD risk estimator, the test set prediction sensitivity,
specificity, and F1 score were 0.38, 0.85, and 0.13, respectively. Clearly, the specificity of these two
models outperforms that of the integrated genetic-epigenetic model. In the case of the FRS model,
this is because the model is pretty much suggesting that a majority of individuals are not at high risk of
developing symptomatic CHD within five years. However, both models drastically underperformed
(by 50% for the FRS and 32% for the ASCVD risk estimator) with respect to the more important
performance metric, sensitivity, which measures the ability of the model to identify those who actually
developed symptomatic CHD within five years.

Similar to our genetic-epigenetic tool, we visualized the prediction capability of these two existing
models on the validation set by age, gender, and days to event. Figures 2 and 3 depict the performance
for the FRS and ASCVD risk estimator models, respectively. Unfortunately, as shown in Figure 2,
since the FRS model was only able to predict the risk of three individuals (two males and one female)
correctly, we are unable to draw much insight on whether the performance of the model is biased
by gender. All three individuals predicted correctly by the FRS model were between the ages of
60 and 70, and two of those three individuals developed CHD within the 3–5 year window since
biomaterial collection. However, for the ASCVD risk estimator, as shown in Figure 3, this model
tended to perform better among older individuals and for males. Risk prediction for all females
was inaccurate. Nevertheless, among the six individuals inaccurately predicted by the integrated
genetic-epigenetic model, one of them was correctly identified by the ASCVD risk estimator.

To further compare the performance amongst the three models, we examined the performance
in the 0–3 year window and the 3–5 year window. In the 0–3 year window, the integrated
genetic-epigenetic, FRS, and ASCVD risk estimator models accurately predicted the high risk status of
seven of eight individuals (87.5%), one of six individuals (16.7%), and three of seven individuals (42.9%),
respectively. Similarly, in the 3–5 year window, the integrated genetic-epigenetic, FRS, and ASCVD
risk estimator models accurately predicted the high risk status of seven of 12 individuals (58.3%),
two of nine individuals (22.2%), and three of nine individuals (33.3%), respectively. The integrated
genetic-epigenetic tool and the ASCVD risk estimator performed better in the 0–3 year prediction
window, whereas the FRS model did better in the 3–5 year window. However, the integrated
genetic-epigenetic model outperformed both conventional risk factor models in both prediction
windows. Additionally, the ASCVD risk estimator performed better than the FRS model in both
prediction windows.
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Figure 2. The performance of the Framingham risk score model when identifying those at high risk of
symptomatic CHD within five years by age, gender, and days to event.

Figure 3. The performance of the ASCVD risk estimator when identifying those at high risk of
symptomatic CHD within five years by age, gender, and days to event.
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4. Discussion

The results from our study indicate that a DNA-based tool that combines genetic and epigenetic
(environmental and lifestyle) risks for CHD can more sensitively assess the risk of developing
symptomatic CHD within five years than currently available conventional risk factor based
multivariate risk models. This suggests that, instead of performing and aggregating multiple tests
(e.g., lipid panel, HbA1c lab test, blood pressure assessments), our single integrated genetic-epigenetic
tool, which requires DNA from only a small amount of blood, can be used directly to predict risk
for CHD. Another drawback of using conventional risk factors data is the lack of consistency due to
observed variation in some of these assessments throughout the day [21].

As previous studies have reported, there are limitations associated with the FRS and ASCVD
risk estimator [22,23]. Some limitations of these methods in our study were the low sensitivity
observed using the FRS and the lack in performance by the ASCVD risk estimator in females.
In contrast, the integrated genetic-epigenetic tool was better at capturing risk in both males and
females. However, the use of the FHS Offspring cohort of European ancestry limits our ability to
compare and contrast the performance of our tool to that of existing approaches in different ethnic
groups. Nevertheless, we are currently working to ensure that our tool is generalizable to all members
of our society, and expect to capture ethnic specific genetic and environmental risks for CHD.

While the ability to identify those at risk for CHD well in advance of its manifestation is crucial for
prevention, it is just as important for clinicians, once risk is recognized, to guide necessary treatments
and interventions in a personalized manner to mitigate risk. As our results demonstrate, encouragingly
the integrated genetic-epigenetic biosignatures in the final model map to known genes associated with
CHD, and capture variance associated with modifiable risk factors, such as cholesterol and diabetes.
Three of the four SNPs and three of the four DNAm sites in the final model map to genes; rs2599737 to
Nucleoporin 98 (NUP98), rs6797484 to PDZ Domain Containing Ring Finger 3 (PDZRN3), rs898550 to
Long Intergenic Non-Protein Coding RNA 841 (LINC00841), cg26119740 to Protein Phosphatase
Methylesterase 1 (PPME1), cg00524912 to Intraflagellar Transport 27 (IFT27), and cg24221633 to
Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2). The other SNP in the final model,
rs7250088, is located on chromosome 19, between the Phosphatidylinositol-4-Phosphate 5-Kinase Type
1 Gamma (PIP5K1C) gene approximately 5000 base pairs upstream of this SNP, and the Tight Junction
Protein 3 (TJP3) gene approximately 3000 base pairs downstream of this SNP. Finally, the fourth DNAm
site, cg08224787, is located on a chromosome 11 CpG island, between the Olfactory Receptor Family 4
Subfamily C Member 12 (OR4C12) and Septin 7 Pseudogene (LOC441601) genes.

The roles of some of these biosignatures or their genes in cardiovascular disease in general, or CHD
specifically, have been reported in prior studies. For instance, several studies have demonstrated the
association of variants in the LINC00841 gene to myocardial infarction and CHD [24,25]. Shendre and
colleagues report that the LINC00841 gene region, which is associated with myocardial infarction in
those of European ancestry, was also significant at the 0.05 level in African Americans [25]. This may
suggest that the LINC00841 gene plays a role in conferring risk for CHD associated myocardial
infarction across ethnic groups. Another SNP in our model, rs7250088, was identified as one of the top
150 SNPs associated with CHD using a Random Forest model [26]. A DNAm biosignature gene in our
model, PPME1, is known to affect the activity of the Protein Phosphatase 2A (PP2A) gene, which is
a gene that codes for a key phosphatase with multiple cardiac regulatory roles [27,28].

Though some of the loci included in the final model may not necessarily be directly associated
with CHD, our results suggest that they could be linked to factors that contribute to risk for CHD.
The understanding of this mapping of biosignatures to conventional risk factors allows for better
targeting of modifiable risk factors that can be leveraged to inform personalized prevention treatments
and interventions. This is especially attractive with respect to DNAm signatures, as their dynamic
nature can aid in advancing our understanding of the relative changes given an intervention, and in
turn to better tailor these interventions and then subsequently monitor change in risk over time.
Based on our mapping results (Table 4), we show that both main and interaction effects are significantly
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associated at the 0.05 nominal level with commonly interrogated risk factors, all of which, besides age
and gender, are potentially modifiable.

It is not surprising that some of the strongest associations for many of these factors were
interactions between a SNP and DNAm site. Indeed, it is widely accepted that risk factors for CHD,
such as cholesterol, diabetes, and CHD itself, are functions of our genetic variations, environment,
and the complex interplay [29–31]. For example, one of the stronger associations was observed for
the interaction of cg24221633 (KCNQ2 gene) with rs2599737 (NUP98 gene) in the prediction of DBP.
Prior studies have shown that potassium channels not only have a central role in cardiac and brain
excitability, but could also play a role in the development of CHD risk factors, such as hypertension
and diabetes, as well as cardiovascular disease itself [32,33]. The KCNQ2 gene encodes for one of
the five alpha subunits of the voltage-dependent potassium channels (Kv), specifically the Kv7.2
subunit [32]. The NUP98 gene in the form of the NUP98-HOXA9 fusion protein has been shown to
strongly upregulate renin, which is a well-known regulator of blood pressure [34]. Our results suggest
that, in addition to a strong association between the main effect of the KCNQ2 gene to DBP, the KCNQ2
gene interacting with the NUP98 gene is also highly associated with DBP. Insights such as these are
made possible by non-linear techniques, such as the ones employed in our study for data mining and
modeling, which are essential for uncovering highly predictive and novel signatures.

We are aware that our study has some limitations. While our overall sample size is not too small,
the number of incident cases is small, and the individuals in the cohort are only of European ancestry.
To address this shortcoming, additional validation studies that have more incident cases and that
include participants of diverse ethnic backgrounds are needed. While our integrated genetic-epigenetic
tool performed with superior sensitivity (50% and 32% more sensitive than the FRS and ASCVD
risk estimator, respectively) to identify those at high risk for incident CHD, it did lack specificity
compared to the two multivariate models (21% and 11% less specific than the FRS and ASCVD risk
estimator, respectively). Additionally, the integrated genetic-epigenetic model was more sensitive at
predicting high risk for CHD in both the 0–3 and 3–5-year windows compared to the other methods.
Though it is important for risk assessment tools to perform with high sensitivity and specificity,
we believe that given the adverse effect of a false negative, the more important metric is sensitivity.
Nevertheless, our goal is to further optimize our model in larger, more diverse cohorts, to improve the
specificity and even the sensitivity.

However, there are several advantages of our integrated genetic-epigenetic tool for assessing the
risk of CHD. Firstly, it is a single blood-based test, and therefore does not require the aggregation of
several assessments. Our study indicates that this tool is more sensitive than conventional risk-factor
based approaches, and performs well in both males and females. The biosignatures are capable
of capturing the complex genetic and lifestyle relationships that contribute to the risk for CHD.
In addition to elucidating novel gene–environment relationships that can be leveraged to assess the
risk for CHD, the mapping of the environmental component to modifiable risk factors could aid in
informing personalized prevention interventions and monitoring changes in risk over time.

5. Patents
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