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Abstract: Cancer genomic data contain views from different sources that provide complementary
information about genetic activity. This provides a new way for cancer research. Feature selection and
multi-view clustering are hot topics in bioinformatics, and they can make full use of complementary
information to improve the effect. In this paper, a novel integrated model called Multi-view
Non-negative Matrix Factorization (MvNMF) is proposed for the selection of common differential
genes (co-differential genes) and multi-view clustering. In order to encode the geometric information
in the multi-view genomic data, graph regularized MvNMF (GMvNMF) is further proposed by
applying the graph regularization constraint in the objective function. GMvNMF can not only
obtain the potential shared feature structure and shared cluster group structure, but also capture the
manifold structure of multi-view data. The validity of the proposed GMvNMF method was tested in
four multi-view genomic data. Experimental results showed that the GMvNMF method has better
performance than other representative methods.

Keywords: non-negative matrix factorization; integrated model; graph regularization; common
differential gene selection; multi-view clustering

1. Introduction

With the rapid development of gene sequencing technology, a large number of multi-view data
have been generated. In essence, multi-view data are insightful and have multiple levels of genetic
activity information. Exploring this information will provide us with an unprecedented opportunity
to discover the molecular mechanisms of cancer [1]. The Cancer Genome Atlas (TCGA) is the largest
genome-based platform. And it provides a large number of different types of omics data. In this
paper, we use gene expression (GE), copy number variation (CNV), and methylation (ME) data of four
cancers in the TCGA database. They are mutually dependent on each other [2].

In the field of bioinformatics, feature selection and clustering are two important ways to explore
genomic data [3,4]. To some extent, feature selection can reduce computational complexity and also
find differentially expressed genes associated with cancer. It promotes cancer research at the molecular
level of genes. Multi-view clustering is the division of samples or genes in a multi-view dataset into
several subsets based on their potential group structure; the samples or genes in the same subset
have similarities.

With the advent of the big data era, data are no longer single-view but multi-view data composed
of different sources. The information of multiple views in multi-view data is complementary, and it
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is of great significance to conduct in-depth research on this information [5]. Therefore, a multi-view
model that specializes in multi-view data has emerged. By learning a multi-view model, we can mine
multiple views to achieve better performance than relying on a single view.

Since non-negative matrix factorization (NMF) is an effective matrix decomposition method,
more and more researchers are paying attention to the integration model of NMF [6,7]. The integrated
model of NMF has straightforward interpretability. Naturally, some improvements and enhancements
to the integration model of NMF have been proposed. For example, Zhang et al. [2] proposed joint
NMF (jNMF) to discover the common pattern in multi-dimensional genomic data. In order to enhance
the robustness of the model to heterogeneous noise, Yang et al. [8] obtained the integrative NMF
(iNMF) model by improving jNMF. After applying orthogonal constraints on jNMF, Stražar et al. [9]
proposed integrative orthogonality-regularized NMF (iONMF) to predict protein-RNA interactions.
In order to detect differentially expressed genes in transcriptomics data, Wang et al. [10] proposed a
new method called joint non-negative matrix factorization meta-analysis (jNMFMA) by combining
jNMF and meta-analysis.

Although the above methods are effective, their flexibility is limited. They cannot simultaneously
perform feature selection and multi-view clustering. However, feature selection and multi-view
clustering facilitate the multi-level understanding of the overall system of cancer. Therefore, in this
paper, we present a novel method called Multi-view Non-negative Matrix Factorization (MvNMF).
It can effectively perform selection of co-differential genes and multi-view clustering simultaneously.
Specifically, we improved jNMF by decomposing the coefficient matrix HI into the product of the
subspace transformation matrix UI and the shared coefficient matrix V. Then, the new model is
XI = WUIV (I = 1, 2, . . . , d). d indicates the number of different types of non-negative matrices.
The shared basis matrix W contains potential group structures between different views. The shared
coefficient matrix V not only has the low rank characteristic, but also has the shared feature pattern
for views with different sources. In order to enhance the robustness of MvNMF to data containing
manifold structures, the graph regularized MvNMF (GMvNMF) method is further proposed. This can
be obtained by adding the intrinsic geometric information of the data to the MvNMF method.

The main contributions of this paper are as follows:

1. In order to effectively cluster and select features for multi-view data at the same time, a novel
integrated model called MvNMF is proposed. In the MvNMF framework, the shared basis matrix
can reconstruct the potential cluster group structure, which contributed to the improvement of
clustering performance. The selection of the co-differential genes can be performed because the
shared coefficient matrix can recover the common feature pattern from different views.

2. The graph regularization was applied to the objective function to form the GMvNMF method,
which ensured that GMvNMF can capture the manifold structure of the multi-view data. This
makes sense for the performance improvement of the integrated model.

3. Scientific and rational experiments were designed on the cancer genomic data to illustrate the
validity of the GMvNMF method and achieve satisfactory results.

In what follows, jNMF and its representative variants, graph regularization are reviewed in
Section 2; a detailed description of the proposed GMvNMF method is also included. The results of
multi-view clustering and co-differential gene selection are presented in Section 3. Finally, the paper is
concluded in Section 4.

2. Materials and Methods

2.1. Joint Non-Negative Matrix Factorization and Representative Variants

Joint NMF (jNMF) [2] is a popular matrix decomposition algorithm. In the field of bioinformatics,
each type of genomic data can be represented as an original matrix. The row of the matrix represents
the sample, and the column represents the expression level of genomic data.
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Given d different types of non-negative matrices, the goal of jNMF is to find that the product
of a shared basis matrix Wn×k and the corresponding coefficient matrix (HI)k×mI

is similar to the
input data matrix (XI)n×mI

, i.e., XI ≈ WHI(I = 1, 2, . . . , d). n represents the number of rows of the
input data matrix. The value of k means the degree of dimensionality reduction of data. mI represents
the number of columns of the i-th input data matrix. Further, the objective function of jNMF can be
expressed as:

min
d

∑
I=1
‖XI −WHI‖2

F s.t.W ≥ 0, HI ≥ 0, (1)

where ‖ · ‖F denotes the Frobenius norm of the matrix. The shared basis matrix can reflect the sharing
pattern of multi-view data matrices from different sources [11]. It is obvious that jNMF is equivalent to
NMF when the value of d is 1. In other words, jNMF is a flexible and clever NMF extension model for
the integration of multi-view data. Then, the updated rules are as follows:

Wil ←Wil
∑d

I=1(XIHI)il

∑d
I=1
(
WHIHT

I
)

il

, (2)

Hl j ← Hl j

(
WTXI

)
l j(

WTWHI

)
l j

, I = 1, 2, . . . , d, (3)

where Wil and Hl j refer to specific elements in the matrices W and HI .
jNMF is effective in finding homogenous effects of data from different sources, however, it does

not consider the effects of heterogeneous noise between multi-view data. Therefore, Yang et al. [8]
proposed an integrative NMF (iNMF) model. Specifically, the objective function of iNMF was defined
as follows:

min
d
∑

I=1
‖XI − (W + VI)HI‖2

F + λ
d
∑

I=1
‖VIHI‖2

F

s.t. W ≥ 0, HI ≥ 0, VI ≥ 0, I = 1, . . . , d,
(4)

where λ represents a balance parameter. WHI means taking into account the homogenous effect,
and VIHI means considering the heterogeneous effect. In other words, VIHI can be used as an
approximation of the heterogeneous effect.

In order to obtain non-overlapping and sparse solutions, Stražar et al. [9] proposed integrative
orthogonality-regularized non-negative matrix factorization (iONMF) by applying orthogonal
regularization in the jNMF framework. Thus, its cost function can be written as:

min
d
∑

I=1

(
‖XI −WHI‖2

F + α
∥∥HIHT

I − I
∥∥2

F

)
s.t. W ≥ 0, HI ≥ 0, I = 1, . . . , d,

(5)

where I represents a unit matrix, and α is a trade-off parameter. iONMF exhibits better performance in
predicting protein-RNA interactions.

2.2. Graph Regularization

The maturity of manifold learning theory made people pay more attention to the internal
geometric structure in the original data. The basic idea of graph regularization is to reconstruct
the low-dimensional manifold structure embedded in high dimensional sample space. That is to say,
adjacent sample points in the high dimensional sample space should be as close as possible in the
low dimensional space [12]. If each sample point is used as the vertices of the graph to construct a
K-nearest neighbor graph, then a symmetric matrix E is obtained [13]. Eij represents the weight of
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the edge connecting vertex i and vertex j. Thus, the degree of proximity between the vertices can be
measured using Eij. The definition of Eij can be shown as follows:

Eij =

{
1 if xi ∈ NK

(
xj
)

or xj ∈ NK(xi),
0 otherwise,

(6)

where NK(xi) is the set of K nearest neighbors of xi. xi is the i-th sample point.
Mathematically, the graph regularization can be formulated as follows:

min
V

∑
i,j

∥∥si − sj
∥∥2Ei,j

= min
V

tr
(
V(D− E)VT)

= min
V

tr
(
VLVT), (7)

where D is a diagonal matrix and the elements on the diagonal are composed of the sum of the rows
or columns of E. si and sj are the low dimensional representation of xi and xj, respectively. tr(·) is the
trace of the matrix. The matrix V represents the coefficient matrix produced by the decomposition of
NMF. Finally, L = D− E is a graph Laplacian matrix [14].

2.3. Graph Regularized Multi-View Non-Negative Matrix Factorization

It is well known that cancer genomic datasets contain many types of data. In order to effectively
utilize the information of multiple views, we proposed the MvNMF model and further improved it to
get GMvNMF. The GMvNMF algorithm is introduced in detail; the proposed algorithm is given in
Algorithm 1.

2.3.1. Objective Function

jNMF is a good integration model that can fully explore potential shared structures in multiple
views [2]. However, its flexibility is not sufficient to explore multi-view clustering and selecting
co-differentially expressed genes at the same time. For multi-view clustering, the same sample points
in different views are likely to be grouped together. Therefore, we required the basis matrix to exhibit
the potential cluster structure that is shared by different views. For the selection of co-differential genes,
the expression of the same gene in different views should be considered comprehensively. Therefore,
we required that the coefficient matrix reflected the shared feature structure from different views.

In view of the above requirements, a model called MvNMF was designed. It can simultaneously
perform multi-view clustering and selection of co-differentially expressed genes. (XI)n×mI

can be
approximated by WUIV (I = 1, 2, . . . , d). Specifically, the objective function of MvNMF can be
formulated as optimization problem:

min
d
∑

I=1
‖XI −WUIV‖2

F

s.t. W ≥ 0, UI ≥ 0, V ≥ 0, I = 1, 2, . . . , d,
(8)

where Wn×k is the shared basis matrix, (UI)k×r is the subspace transformation matrix, and Vr×m is the
shared coefficient matrix. n is the number of samples in the dataset. m is the number of features in the
dataset. k denotes dimensionality reduction and r denotes the rank of the matrix. From the objective
function we can see that the HI of jNMF can be approximated by UIV.

We further considered the low-dimensional manifold structure embedded in the high-dimensional
multi-view data space. Thus, the GMvNMF model was obtained by combining graph regularization
and MvNMF.
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Its objective function can be written as the following minimization problem:

min
d
∑

I=1
‖XI −WUIV‖2

F + λItr
(

WTLIW
)

s.t. W ≥ 0, UI ≥ 0, V ≥ 0, I = 1, 2, . . . , d,
(9)

where λI ≥ 0 is the balance parameter that controls the Laplacian regularization. It is worth mentioning
that the different values of λI represent the heterogeneity of multi-view data. If λI = 0, GMvNMF
will be simplified to MvNMF. In other words, MvNMF is a special case of GMvNMF. Therefore,
the following section only shows the optimization algorithm of GMvNMF.

2.3.2. Optimization of GMvNMF

The Equation (9) can be rewritten as:

min
d
∑

I=1
tr
(
(XI −WUIV)T(XI −WUIV)

)
+ λItr

(
WTLIW

)
= tr

(
XT

I XI

)
− 2tr

(
XT

I WUIV
)
+ tr

(
VTUT

I WTWUIV
)
+ λItr

(
WTLIW

)
.

(10)

The multiplicative iterative method was used to solve the optimization problem in Equation (10).
Then the Lagrangian function f was constructed as follows:

f = tr
(

XT
I XI

)
− 2tr

(
XT

I WUIV
)
+ tr

(
VTUT

I WTWUIV
)
+ λItr

(
WTLIW

)
+ tr

(
ψWT

)
+ tr

(
ϕIUT

I
)
+ tr

(
µVT), (11)

whereψ = [ψil ],ϕI = [ϕla]I and µ =
[
µaj
]

are Lagrange multipliers that constrain W ≥ 0, UI ≥ 0 and
V ≥ 0, respectively. i, l, a and j represent the subscripts of the elements in the matrix.

We separately derived the partial derivatives of W, UI and V of the Lagrangian function as
follows:

∂ f
∂W

= −2XIVTUT
I + 2WUIVVTUT

I + 2λILIW +ψ, (12)

∂ f
∂UI

= −2WTXIVT + 2WTWUIVVT +ϕI , I = 1, 2, . . . , d, (13)

∂ f
∂V

= −2UT
I WTXI + 2UT

I WTWUIV + µ. (14)

It is well known that Karush-Kuhn-Tucher (KKT) conditions [15] can be applied to solve an
optimization problem with inequality constraints. By using the KKT conditions ψW = 0, ϕIUI = 0
and µV = 0, we can get the following update rules:

Wil ←Wil
∑d

I=1 (XIVTUT
I )il

∑d
I=1 (WUIVVTUT

I + λILIW)il

, (15)

(UI)la ← (UI)la
(WTXIVT)la

(WTWUIVVT)la
, I = 1, 2, . . . , d, (16)

Vaj ← Vaj
∑d

I=1 (U
T
I WTXI)aj

∑d
I=1 (U

T
I WTWUIV)aj

. (17)

Finally, we summarize the iterative process of the proposed GMvNMF model in Algorithm 1.
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Algorithm 1: GMvNMF

Data Input: (XI)n×mI

Parameters: λI
Output: W, UI and V
Initialization: W ≥ 0, UI ≥ 0 and V ≥ 0
Set r = 1
Repeat

Update W by (15);
Update UI by (16);
Update V by (17);
r = r + 1;

Until convergence

3. Results

We performed experiments with multi-view clustering and selection of co-differentially expressed
genes to verify the effectiveness of the proposed method. In addition, we used jNMF [2], iNMF [8] and
iONMF [9] as comparison methods. Detailed information on the experimental settings and results are
shown in the following section.

3.1. Datasets

The Cancer Genome Atlas (TCGA) program intends to analyze the genomic variation map of
cancer by using high-throughput sequencing technology [16]. As the largest cancer genome database,
TCGA contains a lot of valuable and incredible information. An in-depth study of this information
can help us understand, prevent, and treat cancer. In this paper, we used four multi-view datasets to
analyze the performance of the proposed method. These datasets included pancreatic adenocarcinoma
(PAAD), esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), and head and neck squamous
cell carcinoma (HNSC). Each cancer dataset contained three different types of data, such as GE, CNV,
and ME. All of the above data can be downloaded from the TCGA (https://tcgadata.nci.nih.gov/tcga/).
In the experiment, we performed preprocessing on the data. First, principal component analysis (PCA)
was used to reduce dimensionality and remove redundant information and noise on the data. Then,
the data matrix was normalized such that each row of the matrix was distributed between 0 and 1.
More descriptions of multi-view datasets are summarized in Table 1.

Table 1. Description of four multi-view datasets.

Datasets Data Types Normal Samples Tumor Samples Genes

PAAD GE, CNV, ME 176 4 19,877
ESCA GE, CNV, ME 183 9 19,877
HNSC GE, CNV, ME 398 20 19,877
COAD GE, CNV, ME 262 19 16,977

Note: Datasets represent different multi-view data. PAAD: pancreatic adenocarcinoma; ESCA: esophageal
carcinoma; HNSC: head and neck squamous cell carcinoma; COAD: colon adenocarcinoma; GE: gene expression;
CNV: copy number variation; ME: methylation.

3.2. Parameter Setting

In the MvNMF and GMvNMF methods, we needed to choose parameters such as k, r and λI .
The values of k and r determined the size of the shared basis matrix, the subspace transformation
matrix and the shared coefficient matrix. Thus, choosing a reasonable parameter value will promote
the experimental results. Since the value of k means the degree of dimensionality reduction of data,
it had a significant impact on the experiment. r is the rank of the matrix. If the value of r is more
appropriate, then a better genetic selection result will be obtained. In other words, MvNMF and

https://tcgadata.nci.nih.gov/tcga/
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GMvNMF were sensitive to the choice of k and r. The graph regularization parameters λI controlled
the extent to which the internal geometric structure of the original data was preserved. In addition,
λI reflected the heterogeneity of data from different sources in multi-view data.

In the experiment, we empirically set λI corresponding to different views in a multi-view data to
the same value [17]. For convenience, we used the grid search algorithm to select the optimal value
of the parameter. When k, r, and λI were selected in the interval [1, 50], [1, k − 1], and [1, 100,000],
respectively, MvNMF and GMvNMF achieved the best performance. The specific conditions of the
selected parameters can be seen from the following figures. It should be noted that, as we can see from
Figure 1a, when k = 2, MvNMF had a higher accuracy in the HNSC dataset. That is to say, the value of
r in MvNMF can only be 1 on the HNSC dataset. Therefore, it is not shown in Figure 1c. In summary,
we can select the optimal parameters through Figures 1 and 2.
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Figure 1. Performance of the Multi-view Non-negative Matrix Factorization (MvNMF) set with
different values of k and r. (a) is the clustering performance of MvNMF on PAAD and HNSC about
k; (b) is the clustering performance of MvNMF on ESCA and COAD about k; (c) is the clustering
performance of MvNMF on PAAD, ESCA and COAD about r.
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Figure 2. Performance of the graph regularized MvNMF (GMvNMF) set with different values of k, r
and λ. (a) is the clustering performance of GMvNMF on PAAD, HNSC, ESCA and COAD about k;
(b) is the clustering performance of GMvNMF on PAAD, HNSC, ESCA and COAD about r; (c) is the
clustering performance of GMvNMF on PAAD, HNSC, ESCA and COAD about λ.
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3.3. Convergence and Computational Time Analysis

We iterated the updated rules of MvNMF and GMvNMF to approximate the local optimal solution
of the objective function. In Figure 3, the convergence curves for the five methods are given (to save
space, only the convergence curves on the ESCA dataset are shown). These five methods consisted of
jNMF, iNMF, iONMF, MvNMF, and GMvNMF. It can be observed from Figure 3 that these five methods
converged in 100 iterations. The error value is the loss function value. Additionally, the convergence
criterion was that the error value tended to zero. Since MvNMF and GMvNMF had smaller error
values than other methods, the convergence of MvNMF and GMvNMF is better.
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Figure 3. Convergence curves of joint Non-negative Matrix Factorization (jNMF), integrated NMF
(iNMF), integrative orthogonality-regularized NMF (iONMF), MvNMF, and GMvNMF.

In addition, we compared the execution time of these five algorithms. Experiments were executed
on a PC with 3.50 GHz Intel(R) (Santa Clara, CA, USA) Xeon(R) CPU and 16G RAM. In the experiment,
each method was repeated 10 times. The mean and variance were calculated. The statistics of the
computational time are listed in Table 2. As can be seen from Table 2, all five methods had satisfactory
running times. Because iNMF takes into account the heterogeneous effect, its computational time was
affected. IONMF imposed orthogonal constraints, thus, it had the longest running time. MvNMF
and GMvNMF had lower running times. This is because the experimental results showed that the
decomposed matrix of our proposed method had better sparsity and lower rank than the matrix after
jNMF decomposition.

Table 2. Computational time on ESCA.

Methods Times (s)

jNMF 2.8808 ± 1.7 × 10−4

iNMF 3.4647 ± 1.3 × 10−3

iONMF 5.7375 ± 2.8 × 10−3

MvNMF 1.3495 ± 7.0 × 10−5

GMvNMF 1.0767 ± 1.4 × 10−4

3.4. Clustering Results

We performed clustering experiments on four multi-view datasets to verify the effectiveness of
the proposed method. Multi-view clustering was performed on the shared basis matrix using the
K-means algorithm.
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3.4.1. Evaluation Metrics

In order to strictly analyze the performance of multi-view clustering, we adopted multiple
measures, including accuracy (AC), recall, precision, and F-measure [18,19]. The AC is defined as
follows:

AC =
∑n

i=1 δ(si, map(ri))

n
, (18)

where n is the number of samples contained in the dataset, ri is the clustering label obtained using the
clustering algorithm, and si is the real data label. map(ri) is a permutation mapping function that maps
clustering labels to real data labels. The real clusters refer to the known sample labels. In addition,
δ(x, y) is a delta function.

Recall, precision, and F-measure are a set of metrics that are widely used in clustering applications.
Recall can also be called sensitivity. True-positive (TP) indicates that two data points of the same
cluster are divided into the same cluster. True-negative (TN) means that two data points of the same
cluster are divided into different clusters. False-positive (FP) indicates that data points of two different
clusters are divided into the same cluster. False-negative (FN) refers to two data points in different
clusters divided into different clusters. Recall, precision and F-measure are defined as follows:

recall =
TP

TP + FN
, (19)

precision =
TP

TP + FP
, (20)

F−measure =
2

1/recall + 1/precision
, (21)

where F-measure is a comprehensive evaluation indicator that takes into account recall and precision.

3.4.2. Multi-View Clustering Results

In the experiment, each algorithm is executed 50 times to reduce the impact of random
initialization on multi-view clustering results. The mean and variance of performance on each
multi-view data are recorded in Table 3.

Table 3. The clustering performance on PAAD, ESCA, COAD and HNSC.

Methods Metrics jNMF iNMF iONMF MvNMF GMvNMF

PAAD

AC (%) 70.39 ± 3.71 70.30 ± 3.71 65.01 ± 2.73 63.86 ± 0.78 95.59 ± 0.05
Recall (%) 61.78 ± 7.34 56.49 ± 8.30 53.17 ± 5.48 56.30 ± 2.77 91.90 ± 5.28

Precision (%) 97.93 ± 0.03 98.35 ± 0.01 97.89 ± 0.00 97.88 ± 0.03 95.99 ± 1.92
F-measure (%) 71.99 ± 5.26 66.92 ± 7.06 65.65 ± 4.65 69.89 ± 1.92 92.12 ± 5.03

ESCA

AC (%) 65.32 ± 3.70 66.42 ± 3.49 57.64 ± 0.21 68.04 ± 0.70 93.23 ± 0.21
Recall (%) 51.48 ± 6.67 54.39 ± 6.55 51.90 ± 0.67 51.10 ± 3.75 97.21 ± 0.74

Precision (%) 88.16 ± 5.84 88.29 ± 6.21 94.70 ± 0.20 93.51 ± 0.51 95.20 ± 0.00
F-measure (%) 62.81 ± 6.60 65.61 ± 6.25 67.16 ± 0.55 64.47 ± 3.39 95.97 ± 0.37

COAD

AC (%) 73.91 ± 1.84 71.00 ± 1.33 66.99 ± 0.68 65.13 ± 0.03 92.01 ± 0.01
Recall (%) 57.15 ± 6.54 51.28 ± 5.16 50.24 ± 2.95 47.15 ± 1.58 94.70 ± 3.61

Precision (%) 90.02 ± 3.29 87.60 ± 4.52 90.18 ± 1.88 89.94 ± 0.64 93.42 ± 0.00
F-measure (%) 68.25 ± 5.34 63.53 ± 5.11 63.79 ± 2.8 61.45 ± 1.58 92.22 ± 3.23

HNSC

AC (%) 66.75 ± 0.00 66.16 ± 0.01 66.39 ± 0.00 67.70 ± 0.03 86.18 ± 2.67
Recall (%) 53.62 ± 2.19 51.18 ± 2.21 50.68 ± 2.20 55.23 ± 2.44 87.07 ± 5.57

Precision (%) 95.22 ± 0.38 94.30 ± 0.39 94.03 ± 0.39 95.53 ± 0.33 94.93 ± 0.05
F-measure (%) 67.85 ± 2.01 65.61 ± 1.96 65.09 ± 2.03 69.10 ± 2.20 88.63 ± 3.30

Note: The best experimental results are highlighted in bold.
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According to Table 3, we can draw the following conclusions:

1. The clustering performance of jNMF on PAAD and COAD datasets was better than iNMF, iONMF,
and MvNMF. This demonstrates that improvements to the traditional NMF integration model
may result in the loss of useful information, which in turn affected the clustering results. However,
in the ESCA and HNSC datasets, MvNMF outperformed jNMF, iNMF, and iONMF from the
overall perspective of the evaluation metrics. This shows the validity of our proposed MvNMF
model, which better preserved the complementary information between multiple views.

2. From Table 3, we can see that the precision of the GMvNMF method and the precision of the
MvNMF method were similar in the four multi-view datasets. However, the GMvNMF method
was at least about 18, 32 and 20% higher than the MvNMF method in terms of AC, recall,
and F-measure. Therefore, the GMvNMF method had better clustering performance. This shows
that it is necessary to consider the manifold structure that exists in multi-view data.

3. Taking the four multi-view datasets in Table 3 as a whole, the proposed GMvNMF method had
the best clustering performance. GMvNMF outperformed other methods by about 23, 39, 0.67,
and 25%, with respect to the average values of the metrics AC, recall, precision, and F-measure.
Therefore, GMvNMF is an effective integration model that takes into account the latent group
structure and intrinsic geometric information between multi-view data.

3.5. Gene Selection Results

3.5.1. Co-Differentially Expressed Gene Selection Results

It is well known that genomic alterations and genetic mutations can cause cancer [20,21]. Therefore,
research on cancer genomic data is an urgent task. In the feature selection experiment, we used
genomic data including GE, CNV, and ME to verify the effectiveness of the proposed method.
The co-differential genes were selected on a shared coefficient matrix. Since the differential genes
we selected are genes expressed in GE, CNV, and ME, the selected co-differential genes have more
important biological significance.

In the experiment, we scored all the genes. These genes were then ranked in descending order of
score. The higher the score of a gene, the greater its significance. We chose such a gene as a differentially
expressed gene. In practice, we selected the top 500 genes of each method as co-differentially expressed
genes for comparison. Then, the selected genes were placed in the GeneGards (http://www.genecards.
org/) for analysis. GeneCards is a comprehensive database of human genes that provides a variety
of valuable information for studying genes [22]. Table 4 lists the results of five methods for selecting
co-differential genes.

Table 4. Co-differential genes selection results on four multi-view datasets.

Methods
PAAD ESCA COAD HNSC

N HRS ARS N HRS ARS N HRS ARS N HRS ARS

jNMF 374 84.93 4.89 168 76.15 5.19 142 103.7 7.02 175 168.23 17.75
iNMF 375 84.93 4.84 171 76.15 5.31 144 103.7 7.71 175 102.98 16.65

iONMF 375 100.56 5.19 170 76.15 5.36 141 165.65 8.64 175 168.23 17.52
MvNMF 365 100.56 5.23 170 76.15 5.52 145 165.65 8.66 177 168.23 18.00
GMvNMF 376 100.56 5.53 182 76.15 5.69 152 173.12 8.37 177 168.23 17.60

Note: N is obtained by matching the co-differential genes selected by each method to the virulence gene pool of
PAAD, ESCA, COAD, and HNSC. HRS represents the highest relevant score, and ARS represents the average
relevant score. The best experimental results are highlighted in bold.

In Table 4, N is obtained by matching the co-differential genes selected by each method to the
virulence gene pool of PAAD, ESCA, COAD, and HNSC. A larger N indicates a higher accuracy in
identifying co-differentially expressed genes. HRS represents the highest relevant score, and ARS
represents the average relevant score. Relevant scores represent the degree to which a gene is associated

http://www.genecards.org/
http://www.genecards.org/
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with a disease. A higher relevant score for a gene means that the gene is likely to be a pathogenic
gene. Although the ARS of MvNMF was slightly higher than GMvNMF in COAD and HNSC,
the performance of co-differentially expressed genes selected by GMvNMF was better on the whole.
This indicates that our method was reasonable. In order to retain the geometric structure in the data, it
was necessary to add graph regularization to the method.

3.5.2. Discussion of Co-Differential Genes

Table 5 lists the relevant information of the top 10 co-differential genes selected by the GMvNMF
method (to save space, we only listed the top 10 genes selected in the COAD dataset.). From Table 5,
we can see that BRCA1 has the highest relevance score. BRCA1 is a protein-coding gene involved in
DNA repair. When it is mutated, the tumor suppressor protein does not form normally. This leads
to the emergence of cancer. BRCA1 has been confirmed to be related to COAD [23]. BRCA2 is a
tumor suppressor gene, which is mainly involved in the repair of DNA damage and regulation of
transcription. There is literature that BRCA2 is related to COAD [24]. As we all know, mutations in
BRCA1 and BRCA2 increase the risk of breast or ovarian cancer [25]. Therefore, mutations in one
gene may be related to the production of multiple cancers. This suggests that biologists can further
study the link between COAD and breast or ovarian cancer. The protein encoded by the epidermal
growth factor receptor (EGFR) is a transmembrane glycoprotein that is a member of the protein kinase
superfamily. In addition, mutation or overexpression of EGFR generally triggers COAD [26].

Table 5. Summary of the co-differential genes selected by the GMvNMF method.

Gene ID Gene ED Related Go Annotations Related Diseases Relevance Score

672 BRCA1 RNA binding and ligase activity Breast-Ovarian Cancer, Familial 1
and Pancreatic Cancer 4 173.12

675 BRCA2 protease binding and histone
acetyltransferase activity

Fanconi Anemia,
Complementation Group D1 and
Breast Cancer

135.87

1956 EGFR identical protein binding and
protein kinase activity

Inflammatory Skin and Bowel
Disease, Neonatal, 2 and Lung
Cancer

104.16

3569 IL6 signaling receptor binding and
growth factor activity

Kaposi Sarcoma and Rheumatoid
Arthritis, Systemic Juvenile 58.74

4318 MMP9 identical protein binding and
metalloendopeptidase activity

Metaphyseal Anadysplasia 2 and
Metaphyseal Anadysplasia 45.57

1495 CTNNA1 actin filament binding
Macular Dystrophy, Patterned, 2
and Butterfly-Shaped Pigment
Dystrophy

41.99

1950 EGF
calcium ion binding and
epidermal growth factor receptor
binding

Hypomagnesemia 4, Renal and
Familial Primary
Hypomagnesemia with
Normocalciuria and
Normocalcemia

40.84

5594 MAPK1

transferase activity, transferring
phosphorus-containing groups
and protein tyrosine kinase
activity

Chromosome 22Q11.2 Deletion
Syndrome, Distal and Pertussis 39.23

2475 MTOR

transferase activity, transferring
phosphorus-containing groups
and protein serine/threonine
kinase activity

Focal Cortical Dysplasia, Type II
and Smith-Kingsmore Syndrome 34.07

887 CCKBR

G-protein coupled receptor
activity and
1-phosphatidylinositol-3-kinase
regulator activity

Panic Disorder and Anxiety 23.43

Note: Gene ID represents the number of the gene. Gene ED represents the gene name.



Genes 2018, 9, 586 12 of 14

Table 6 lists the co-differentially expressed genes with the highest relevance score selected
by GMvNMF on the multi-view dataset of PAAD, ESCA and HNSC. These co-differential genes
were highly likely to cause cancer. The relevance score of EGFR is 168.23 in the HNSC. EGFR is a
protein-coding gene. Among its related pathways are extracellular regulated protein kinases (ERK)
signaling and GE. Moreover, the importance of EGFR in HNSC has been widely recognized [27,28].
EGFR also appears in Table 5, which indicates that EGFR has to do with the occurrence of COAD and
HNSC. This provides a new way for biologists to study COAD and HNSC.

Table 6. Summary of the co-differential genes selected on PAAD, ESCA and HNSC.

Gene ID Gene ED Related Go Annotations Related Diseases Paralog Gene

999 CDH1 calcium ion binding and
protein phosphatase binding

Gastric Cancer, Hereditary
Diffuse and
Blepharocheilodontic
Syndrome 1

CDH3

1499 CTNNB1 DNA binding transcription
factor activity and binding

Mental Retardation,
Autosomal Dominant 19 and
Pilomatrixoma

JUP

1956 EGFR identical protein binding and
protein kinase activity

Inflammatory Skin and Bowel
Disease, Neonatal, 2 and Lung
Cancer

ERBB4

Note: Paralog gene produced via gene duplication within a genome.

4. Conclusions

In this paper, we proposed a new integrated NMF model called MvNMF for multi-view clustering
and selection of co-differentially expressed genes. Considering the low-dimensional manifold structure
existing in the high-dimensional multi-view sample space, the graph regularization constraint was
added to the objective function of MvNMF. This new model is called GMvNMF. It effectively encodes
the geometric information inherent in the data. Numerous experiments on cancer genomic data
showed that our proposed GMvNMF method is more effective.

For future work, we continue to improve the model to enhance its robustness and sparsity.
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