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Abstract: Bioassays and molecular diagnostics are routinely used for the monitoring of malaria vector
populations to support insecticide resistance management (IRM), guiding operational decisions
on which insecticides ought to be used for effective vector control. Previously developed TaqMan
assays were optimised to distinguish the wild-type L1014 from the knockdown resistance (kdr) point
mutations 1014F and 1014S (triplex reaction), and the N1575 wild-type from the point mutation 1575Y
(duplex reaction). Subsequently, artificial pools of Anopheles gambiae (An. gambiae) specimens with
known genotypes of L1014F, L1014S, and N1575Y were created, nucleic acids were extracted, and
kdr mutations were detected. These data were then used to define a linear regression model that
predicts the allelic frequency within a pool of mosquitoes as a function of the measured ∆Ct values
(Ct mutant − Ct wild type probe). Polynomial regression models showed r2 values of >0.99 (p < 0.05).
The method was validated with populations of variable allelic frequencies, and found to be precise
(1.66–2.99%), accurate (3.3–5.9%), and able to detect a single heterozygous mosquito mixed with 9
wild type individuals in a pool of 10. Its pilot application in field-caught samples showed minimal
differences from individual genotyping (0.36–4.0%). It allowed the first detection of the super-kdr
mutation N1575Y in An. gambiae from Mali. Using pools instead of individuals allows for more
efficient resistance allele screening, facilitating IRM.

Keywords: vector monitoring; kdr; L1014F; L1014S; N1575Y; molecular diagnostics; TaqMan assays;
SNPs; pooled samples; insecticide resistant management

1. Introduction

Since 2000, malaria cases have halved, mostly thanks to case management and vector control
interventions, which is estimated to have saved 660 million lives [1]. Around 80% of the disease
reduction is attributable to the use of insecticides; however, this success is threatened by increasing
insecticide resistance in the malaria mosquito vector. Some mosquito populations show resistance to
pyrethroids and other insecticide classes; the prevalence and, therefore, the impact of this phenomenon
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is increasing every year [2–4]. Studies on the molecular mechanisms elucidated target-site and
metabolic resistance mechanisms which are associated with pyrethroid resistance in Anopheles gambiae
(An. gambiae) mosquitoes [5], but also mechanisms including alterations in the insect cuticle that
contribute additionally to the emergence of striking multiple resistance phenotypes [6].

Probably the best characterised mechanism of resistance is the so-called knockdown resistance
(kdr) to pyrethroids and dichlorodiphenyltrichloroethane (DDT). Knockdown resistance arises by point
mutations (e.g., L1014F, L1014S) of the target site, the para-type sodium channel, leading to reduced
insecticide sensitivity [7,8]. An additional kdr mutation (N1575Y) has been discovered more recently.
The N1575Y mutation enhances the resistance phenotype even further when in combination with
the L1014F mutation [9]. Convergent results have identified cytochrome P450 enzymes of the CYP6
subfamily as major contributors to metabolic resistance [10,11]. Some of these genes confer resistance
across multiple insecticides [12], but few DNA markers are available [13].

Strategies for insecticide resistance management (IRM) in the context of Integrated Vector
Management (IVM) must be evidence-based [14]. Contemporary data on resistance to insecticides is
a prerequisite for the implementation of effective interventions. For this purpose, a suite of bioassays
(diagnostic dose as well as intensity bioassays and use of synergists) and complementary assays for
known molecular markers have been developed to facilitate the implementation of vector control
interventions [13].

Bioassays may reliably detect resistance phenotypes at the population level regardless of the
underlying cause of resistance, but they require high numbers of live insects, and are not very sensitive
to low frequencies of resistance alleles or recessive mutations. Molecular assays complement bioassays
in that they may detect resistant alleles at low frequencies at an early stage of resistance development
(i.e., incipient resistance) when the effect on the phenotype is not yet apparent. Moreover, molecular
assays provide information on the underlying mechanism of insecticide resistance. The molecular
assays are applied either on pooled samples in the case of metabolic resistance, with the use of
advanced gene expression techniques (Reverse Transcription-quantitative PCR;RT-qPCR, microarrays,
RNA-seq), or on individual mosquitoes, with a number of options available; for kdr genotyping for
example, these include allele-specific PCR, Sequence Specific Oligonucleotide Probe- enzyme-linked
immunosorbent assay (SSOP-ELISA), Heated Oligonucleotide Ligation Assay and TaqMan assays
(reviewed in [15] and [13]). The latter represents both a reliable (in terms of sensitivity and specificity)
and operationally feasible approach (simple one step, closed tube, high throughput, rapid run), and it
has been adapted by several labs in malaria endemic countries [13]. However, TaqMan genotyping of
individual mosquitoes has a relatively high running cost, as thousands of mosquito specimens are
analysed every year worldwide through national vector control programs [16].

However, is it necessary to genotype individual mosquito specimens, or could pooled mosquitoes
be used instead to measure allele frequencies for vector control monitoring activities?

The presence and frequency of resistance in mosquito populations (but not individual mosquitoes)
is the primary outcome in global databases like the IR Mapper [4], and this data level informs decision
making bodies for the appropriate IRM implementation. Examples include the percentage mortality
rates which are captured and presented by the bioassay monitoring activities, the levels of detoxification
genes which are determined and given as expression levels in pooled mosquito samples, and the
frequency of insecticide resistance alleles, irrespectively of whether this latter is captured by analysing
individual mosquitoes [4]. Furthermore, in most cases, the frequency of certain insecticide resistance
alleles is either absent or close to the fixation levels, which makes the analysis of those traits in
individual mosquitoes even more redundant.

Here, we developed and validated a novel approach for monitoring the frequency of pyrethroid
resistance mutations in pooled An. gambiae samples and discuss its advantages, limitations,
and perspectives for application in the framework of IRM.
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2. Materials and Methods

2.1. Mosquito Strains and Field Populations

The An. gambiae Kisumu (insecticide susceptible), VK7 (1014F and 1575Y control), and RSP-ST
(1014S control) laboratory strains were used for the initial development of the method (Table S1).
Field populations originated from Gounkan, Mali, collected during September 2017, were also
included in the validation analysis. Anopheles gambiae larvae were collected from different breeding
sites. Blood fed female An.gambiae mosquitoes were collected and put for oviposition in the
insectary, while a subset of F1 female adult mosquitoes were collected and stored in RNAlater
(Invitrogen, Carlsbad, CA, USA) until analysis.

2.2. Preparation of Pooled Samples

Initially the allelic frequency of the corresponding mutations was determined for the three colonies
(Kisumu, VK7, RSP-ST). Artificial pools of 10 adult mosquitoes with known allelic frequency were
created. Three replicates for each defined allelic frequency were prepared. To do so, 3–5 days old
female mosquitoes (laboratory strains and field populations) were first individually genotyped by
extracting genomic DNA (gDNA) from single legs following the DNAzol protocol according to the
manufacturer’s instructions, with the following modifications: 200 µL DNAzol reagent (Invitrogen,
Cat. No. 10503027), 100 µL of 100% ethanol for DNA precipitation, 10 µL of DEPC treated water for
DNA solubilization. Genotyping was performed using the TaqMan assays of Bass et al. [7] for kdr point
mutations L1014F and L1014S and the Taqman assay of Jones et al. [9] for kdr point mutation N1575Y.

2.3. Nucleic Acids Extraction from Mosquito Pools

Protocols for nucleic acid (NA) extraction were designed in the framework of the interdisciplinary
research project DMC-MALVEC (https://dmc-malvec.eu) with the aim of developing an automated
multiplex diagnostic platform (LabDisk) for malaria vectors able to concurrently assess DNA and RNA
markers within the same sample [17]. However, the procedure we describe here can also be adapted
for conventional DNA extraction protocols.

Mosquito tissue from 10 specimens was mechanically disrupted using a cordless mortar
(Sigma-Aldrich, St. Louis, MI, USA, Cat. No. Z359971) and pestle (Sigma-Aldrich, Cat. No. Z359947),
with the addition of 200 µL TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Subsequently,
NA (DNA and total RNA) was extracted using the MagnaMedics magnetic bead-based protocol
with the following modifications to minimise time and materials needed. A total of 150 µL lysis
buffer was added to the mechanically disrupted tissue, followed by 10 min incubation at room
temperature and a centrifugation step at 16,000 × g for 2 min in order to sediment non-lysed tissue
debris. The clear lysate obtained was subsequently used to extract NA with the following modifications
to the manufacturer’s protocol: 30 µL magnetic beads (MagSi-DNA beads, MagnaMedics, Geleen,
The Netherlands, Cat. No. MD01017), 440 µL binding buffer (incubation 10 min in a magnetic stand
and removal of supernatant), 200 µL of each wash buffer (incubation 1 min in a magnetic stand and
removal of supernatant). Nucleic acid elution was performed with 180 µL elution buffer for 10 min at
50 ◦C. The integrity of NA was assessed via agarose gel electrophoresis (1.0% w/v).

2.4. Multiplex Quantitative Polymerase Chain Reaction for Assessing kdr Mutations

Previously published primers and probes were used for the kdr 1014F, 1014S [7], and 1575Y [9]
assays (Table S2). A triplex assay was optimised for simultaneously detecting the wildtype L1014
and the kdr mutations 1014F and 1014S in the same reaction. Each probe was labelled with a different
fluorescent dye (HEX for wildtype L1014, FAM for 1014F, and Atto647N for 1014S). The 1575Y assay
was used in the duplex format (HEX for wildtype N1575 and FAM for 1575Y), as previously described
in Jones et al. [9].

https://dmc-malvec.eu
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All oligonucleotides were optimized using primer/probe matrices for efficiency, sensitivity and
specificity (discrimination of wild-type and mutant alleles) in terms of final concentration (Table S2)
in the mastermix used in this study, supplied by FTD (Fast-Track Diagnostics, Esch-sur-Alzette,
Luxembourg). Total NA of at least 100 ng per sample were used in a total reaction volume of 10 µL.
The thermal cycle parameters were: 50 ◦C for 15 min, 95 ◦C for 3 min, and 40 cycles of 95 ◦C for
3 s and 60 ◦C for 30 s, allowing a qPCR run of approximately 75 min. Samples were amplified in
duplicates, and each run always included a non-template control. The analytical parameters of the
qPCR reactions are presented in Table S3. Reactions were performed in the ViiA 7 Real-Time PCR
System (Applied Biosystems, Waltham, MA, USA). The ∆Ct values (Ct mutant probe − Ct wild type
probe) were used in each case for the calculation of % allelic frequency in mosquito pools and the
development of regression models. Alternative methods of calculating allelic frequency using the
Elongation Factor (EF) gene for normalisation (∆Ct = Ct mutant probe − Ct EF) or using solely the Ct
values of the mutant probe were also tested.

2.5. Linear Regression Models for Determining Allelic Frequency in Mosquito Pools

The SPSS statistical software was used (SPSS Inc. Released 2008. SPSS Statistics for Windows,
Version 17.0. Chicago, IL, USA). A training set of pools of 10 mosquitoes composed of different
numbers of individuals from the lab colonies with known kdr mutation status was used to fit linear
regression models that predict allelic kdr frequencies as a function of measured ∆Ct values. Both linear
and polynomial (quadratic) regression models were fitted and the best model chosen on the basis of
adjusted R squared and residual plot analysis (goodness of fit), standard error of estimate (accuracy),
and p values (significance). An independent validation set of artificial populations was used to
corroborate the predictive value of the selected models from the training set, and also to calculate the
average margin of error. For this reason, the equations developed were applied to calculate % allelic
frequencies from ∆Ct values and the average difference between predicted and expected values was
calculated for each trait.

Variance due to pooling formation (σ2
pf) was calculated as described in [18] using triplicate

mosquito pools of several allelic frequencies for each point mutation, and calculating the median
variance in the predicted % allelic frequency. The method’s accuracy and precision were calculated
according to Lavebratt et al. [19]. Precision was measured as the within population standard deviation
of the difference between estimated and actual allele frequency (D). The mean value of |D| between
different populations was used for the calculation of accuracy. Artificial pools having a wide range
of allelic frequencies were used for the estimation of accuracy and precision. The limit of detection
(LOD) was defined as the lowest allelic frequency that could be reliably detected in a mosquito pool of
10 individuals. p values < 0.05 were considered statistically significant.

3. Results

3.1. Quality Control of quantitative Polymerase Chain Reaction Assays and Genotyping of Mosquito Control Strains

The developed method determines allelic frequencies quantitatively for the triplex L1014F/S
and the duplex N1575Y assays. Relevant analytical parameters such as reaction efficiency, linearity,
dynamic range, and percent Coefficient of Variation (% CV) for Ct values are presented in Table S3.

The kdr mutation status of each strain was initially determined (Table S1). The Kisumu strain was
100% wild type for all mutations, 1014F and 1014S were found with a frequency of 100% in VK7 and
RSP-ST, respectively. The 1575Y mutation was found with a 40% frequency in the VK7 strain.

3.2. Development of Regression Models with the Training Set

Linear regression models were developed for all three kdr point mutations (1014F, 1014S,
and 1575Y). In all cases, quadratic models showed superior performance compared to models with



Genes 2018, 9, 479 5 of 11

a single term in terms of goodness of fit, estimated by adjusted R squared values and residual plot
analysis (Figure S1), and in terms of accuracy, estimated by the standard error of the estimate (Table 1).

Table 1. Polynomial regression models for the detection of 1014F, 1014S, and 1575Y in mosquito pools
(training set).

Kdr
Mutation Equation R Square

(Adjusted)
SE of the
Estimate p Value σ2

pf Mean
(Range)

Detection
Limit

1014F %MAF = 1.37 × (∆Ct)2 − 11.9 × (∆Ct) + 23.9 0.996 1.72 3.55 × 10−7 4.9
(0.72–10.6) 5.0%

1014S %MAF = 1.11 × (∆Ct)2 − 10.6 × (∆Ct) + 21.7 0.996 1.53 1.07 × 10−4 2.9
(1.6–12.1) 5.0%

1575Y %MAF = 5.68 × (∆Ct)2 + 35.4 × (∆Ct) + 60.0 0.997 1.28 5.88 × 10−5 2.2
(0.13–16.6) 5.0%

MAF: Mutant Allele Frequency; ∆Ct = (Ctmutant probe - Ctwild-type probe); SE: Standard error; σ2
pf: Variance in

pool formation.

Alternative methods of estimating allelic frequencies by normalising the signal of the mutant
probe with an independent assay (i.e., EF exon), and by using the Ct value of the mutant probe only,
were also explored but showed suboptimal results when compared to the ∆Ct approach (Table S4).
Therefore, polynomial regression models using the ∆Ct as the predictive value were selected for further
analysis. An example of this approach is presented for the 1014F allele in Figure 1.

The developed models show a good fit for all three mutations with adjusted R squared values
in the range of 0.996–0.997 (Table 1), and no signs of dependencies in the residuals (Figure S1).
The variance due to pooling formation ranged from 2.2 to 4.9% (Table 1).

All models were able to reach as low as 5.0% in allelic frequency (Table 1) with the training set,
translating to a detection limit of one heterozygous mosquito out of a pool of 10; this is the lowest
detection rate that could possibly be required for a pool of 10 mosquitoes.

Figure 1. Cont.
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Figure 1. Development of regression models. A-F: Reaction curves for L1014F showing the increasing
difference between cycling of mutant and wild type probes from higher to lower population frequencies
of the mutant allele. G: Polynomial regression curve for 1014F.

3.3. Validation of Regression Models

The developed regression models were applied to calculate allelic frequencies in an independent
series of samples with known allelic frequencies for each mutation (validation set). The margin of
absolute error in determination (accuracy) between true and estimated allelic frequencies was in the
range of 3.26–5.9%, depending on the locus (Table 2). Variability in determinations within populations
of the same frequency (precision) was also low (1.66–2.99%) (Table 2).

Table 2. Application of the developed regression models in an independent set of artificial populations
(validation set). Calculation of accuracy and precision of the method and correlation between true and
estimated allelic frequencies.

kdr Accuracy ± SE Precision (Range) rs p Value

1014F 3.58 ± 0.84 2.99 (1.73–3.66) 0.978 5.20 × 10−6

1014S 5.9 ± 1.5 2.32 (0.69–4.1) 0.989 2.50 × 10−5

1575Y 3.26 ± 0.62 1.66 (0.517–3.86) 0.959 8.37 × 10−7

rs: Pearson correlation coefficient between true and estimated allele frequencies.

The correlation coefficient between estimated and true allele frequencies ranged between 0.959
and 0.989 (p < 0.001). When looking at individual populations covering different scales of allelic
frequencies, the average differences between actual and measured mutant allelic frequency values
were 7.7% for high- (60–80%), 3.7% for mid- (20–50%) and 2.1% for low- (5–15%) allelic frequency
populations (Table 3).
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Table 3. Validation of the developed regression models: Differences in actual versus measured allelic
frequencies. For populations where N= 2 replicates were analysed, the mean value ± SE of % allelic
frequency is given.

kdr Species Population Individuals
Genotyped

Actual
MAF

Measured MAF
± SE

Absolute
Difference

1014F

An. gambiae s.s.
S-form and

An. gambiae s.s.
M-form

P1a, P1b RR =6; RS = 0; SS = 4 60% 55.54% ± 2.25 4.46%
P2a, P2b RR =3; RS = 0; SS = 7 30% 33.14% ± 1.97 3.14%
P3a, P3b RR = 2; RS = 0; SS = 6 20% 25.35% ± 2.59 5.35%
P4a, P4b RR = 1; RS = 0; SS = 9 10% 11.60% ± 1.22 1.60%

P5a RR = 1; RS= 0; SS = 18 5% 1.90% 3.1%

1014S
An. gambiae s.s.

S-form

P6a, P6b RR = 8; RS = 0; SS = 2 80% 90.96% ± 1.64 10.96%
P7a RR = 5; RS = 0; SS = 5 50% 45.73% 4.27%

P8a, P8b RR = 3; RS = 0; SS = 7 30% 33.54% ± 0.49 3.54%
P9a, P9b RR = 1; RS = 0; SS = 9 10% 14.00% ± 2.89 4.00%

1575Y

An. gambiae s.s.
S-form and

An. gambiae s.s.
M-form

P10a RR = 4; RS = 2; SS = 4 50% 47.94% 2.06%
P11a, P11b RR = 1; RS = 4; SS = 5 30% 33.97% ± 1.05 3.97%
P12a, P12b RR = 1; RS = 1; SS = 8 15% 13.83% ± 2.19 1.17%
P13a, P13b RR = 1; RS = 0; SS = 9 10% 9.63% ± 3.56 0.37%
P14a, P14b RR = 0; RS = 1; SS = 9 5% 7.59% ± 1.85 2.59%

MAF: Mutant allele frequency; SE: Standard error; s.s.: sensu stricto; RR: Mutant homozygotes; RS: Heterozygotes;
SS: Wild-type homozygotes.

We also developed specific models to cover the (rather rare) case where populations are comprised
exclusively of a mixture of mutant 1014F and 1014S mosquitoes (Table S5). By using the 3-plex
L1014F/S assay, these populations can be identified by an undetectable Ct signal for the wild type
probe, and a concurrent detectable signal for both mutant probes (1014F, 1014S). As the wild type
Ct value cannot be used in such cases, we investigated the development and validation of models
using the EF exon assay an independent normaliser, or solely the Ct value of the mutant probe as
input for the estimation of allelic frequencies. A new series of artificial populations consisting of
VK7 (1014F homozygous mutant) and RSP-ST (1014S homozygous mutant) individuals in various
proportions was used following the approach described above. The results obtained from using the
Ct value from the mutant probe as input were more consistent compared to those obtained with
EF exon as normaliser, and are presented in the Table S5. For 1014F the accuracy was 6.45% and the
precision 2.37%, whereas for 1014S the values were 14.27% and 10.31%, respectively.

In order to further validate our approach, we applied it to previously collected An. gambiae field
populations from Mali (Gounkan area). In a first step, we genotyped the legs of N = 30 individuals
to obtain the accurate allele frequency. Next, we genotyped three pools of each 10 randomly chosen
remaining bodies to estimate the allele frequency with our new model. Results from individuals
showed a 1014F allelic frequency of 75.0% (N = 18 mutant homozygotes, N = 9 heterozygotes,
N = 3 wild-type homozygotes) compared to 71.0%, as assessed by the average of the three pools,
indicating a difference of only 4.0 % between the two methods. The 1575Y mutation was detected
at a frequency of 30.0% in N = 30 individuals (N = 1 mutant homozygotes, N = 16 heterozygotes,
N = 13 wild-type homozygotes), compared to 29.64% when analysing the corresponding samples in
pools. The difference between the two methods in this case was negligible (equal to 0.36%).

4. Discussion

Reducing the time and cost of determinations is essential for vector control monitoring in the
frame of IRM applications. Here, we developed and validated a novel approach to reliably calculate
allelic frequencies of major An. gambiae kdr mutations (L1014F, L1014S, N1575Y) in pooled mosquito
samples. Firstly, optimisation of previously developed TaqMan assays now allows the detection of kdr
1014F and 1014S and L1014 alleles in a single triplex reaction; this was previously performed in two
separate reactions. Secondly, the presence and frequency of resistant alleles was accessed in pooled
mosquito samples, and the outcomes were compared with the outcomes derived by “gold standard”



Genes 2018, 9, 479 8 of 11

kdr assessment in individual mosquitoes. The developed method allows the detection of allelic
frequencies of as low as 5.0%. This means that a single heterozygous mosquito can be reliably detected
in a pool of 10 mosquitoes in which all the remaining individuals are wild type. The method is both
precise (Precision = 1.66–2.99%) and accurate (Accuracy = 3.3–5.9%). The variance in pool formation
was smaller than 5%, which is reasonable and not unexpected, considering that the natural variability
in body size will affect the allele frequency measured per mosquito.

Allelic frequencies measured in field caught samples using individual mosquitoes or pools
were very similar; for 1014F, the difference between the two approaches was 4.0%, and for 1575Y,
the corresponding difference was 0.36%. Both these figures are practically negligible in the frame of
monitoring applications for evidence based IRM decisions. In practice, very often fixation levels or the
absence of certain mutations are recorded, and intermediate levels of resistance alleles are rather rare.
Moreover, in the pilot application, the super-kdr N1575Y mutation was detected for the first time in
An. gambiae mosquitoes from Mali.

The novel approach we describe here does not distinguish between homozygotes and
heterozygotes. This is a limitation, as the operationally relevant pyrethroid resistance phenotype
is primarily expressed when mosquitoes are at the homozygote RR stage. However, given that the
frequencies commonly detected in the field are often very high or very low, this information might
be more relevant in research projects but not for decision making in IRM. Moreover, the outcome
of the assay is fully compatible with the widely used IR Mapper database (www.irmapper.com),
a tool that currently drives decision making for IRM at various stakeholder levels. Required
entry fields in this data base are “test method used”, “mechanism tested”, “number of mosquitoes
used per assay”, “outcome of the assays (detected/ not detected)” and “frequency of mutations”.
All this information is readily available by using a pool strategy, yet at a substantially reduced cost
and time. An approximately 10-fold reduction in cost (i.e., for nucleic acid extraction reagents,
qPCR reagents, and other consumables and labour for nucleic acid extractions) for analysing
mosquitoes for kdr mutations is possible with the new approach, while throughput and analysis
time are also substantially reduced.

In principle, our method can be applied to any single nucleotide polymorphism (SNP), with only
minimal requirements for optimization and assay development. A quick overview on how to setup the
experimental procedure to calculate allelic frequencies from mosquito pools is presented in Figure S2.
The rationale of the method we describe here can be also applied to other traits, such as the iAche
(G119S) mutation [20] conferring resistance to organophosphate and carbamate insecticides, as well as
the monitoring of malaria vector species identification markers [21].

The application of Plasmodium detection assays on mosquito pools has been also introduced
in many low transmission malaria countries to save time and resources [22]. A novel method with
no requirement for dissection and post-PCR processing was recently developed for the detection of
Plasmodium falciparum infective mosquitoes [23]; with high sensitivity, it can detect infective-stage
specific parasite transcripts in samples containing a mix of infective with non-infected mosquitoes
at a 1:100 ratio. The feasibility of analysing mosquito pools, maintained in RNAlater (Invitrogen, )
solutions, sets the basis for the development of more holistic and automated approaches to vector
population monitoring [24], as the same biological material e.g. a mosquito pool, can be used both for
DNA-markers, such as target site mutations and species identification, as well as for RNA-markers
(transcript levels of major detoxification genes, infective-stage plasmodium transcripts). These assays
are suitable for integration within multiplex sample-to-answer automated diagnostic platforms, such as
the DMC-MALVEC-LabDisk for malaria vectors and the ArboVec-LabDisk for arbovirus vectors that
are currently under development (https://dmc-malvec.eu, https://infravec2.eu) [17], and are in line
with applications in human diagnostics [25].

www.irmapper.com
https://dmc-malvec.eu
https://infravec2.eu
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5. Conclusions

We tested a simple research question: "Can we genotype pools of mosquitoes and still retrieve
the same information on point mutations as we would using single individuals?”. Working with
the example of kdr mutations, we optimised existing TaqMan qPCR assays and developed reliable
regression models to analyse data from pooled specimens. The novel approach is able to measure
allele frequencies from pools of ten mosquitoes with very high accuracy, i.e., equivalent to genotyping
individual mosquitoes, but requiring substantially less time and lower cost. Vector control monitoring
activities in the frame of IRM programmes may greatly benefit from the described approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/10/479/s1,
Table S1: Mosquito specimens suitable for use as artificial populations; Table S2: Primers and probes used in
the present study; Table S3: Quality control characteristics of the qPCR reactions; Table S4: Alternative methods
of calculation using normalization with exon EF or the Ct value of the mutant probe; Table S5: Results from
populations where only 1014F an 1014S individuals were present in different proportions (no wild type mosquitoes
present); Figure S1: Residual plot analysis for the selection of optimal regression model between linear and
polynomial regression models; Figure S2: A practical approach on how to setup the experimental procedure
to calculate allelic frequencies from standard mosquito pools and how to apply it in each run for unknown
pooled samples.
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