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Abstract: Soil salinity is a serious threat to plant growth and crop productivity. Tall fescue utilization
in saline areas is limited by its inferior salt tolerance. Thus, a transcriptome study is a prerequisite
for future research aimed at providing deeper insights into the molecular mechanisms of tall fescue
salt tolerance as well as molecular breeding. Recent advances in sequencing technology offer a
platform to achieve this. Here, Illumina RNA sequencing of tall fescue leaves generated a total of
144,339 raw reads. After de novo assembly, unigenes with a total length of 129,749,938 base pairs
were obtained. For functional annotations, the unigenes were aligned to various databases. Further
structural analyses revealed 79,352 coding DNA sequences and 13,003 microsatellites distributed
across 11,277 unigenes as well as single nucleotide polymorphisms. In total, 1862 unigenes were
predicted to encode for 2120 transcription factors among which most were key salt-responsive. We
determined differential gene expression and distribution per sample and most genes related to salt
tolerance and photosynthesis were upregulated in 48 h vs. 24 h salt treatment. Protein interaction
analysis revealed a high interaction of chaperonins and Rubisco proteins in 48 h vs. 24 h salt treatment.
The gene expressions were finally validated using quantitative polymerase chain reaction (qPCR),
which was coherent with sequencing results.

Keywords: tall fescue; salinity stress; photosynthesis; RNA-sequencing; simple sequence repeats
transcription factors

1. Introduction

As a result of increased poor irrigation practices and natural soil salinization, salt stress remains
a major threat to plant growth and crop productivity globally [1]. The vast area of salinized land
and the heterogeneity of salinity level in the soil make it complex to study in toto [2]. Instead,
it is more practical to describe the various bioprocesses that collectively confer salt tolerance to the
whole plant. Tall fescue (Festuca arundinacea Schreb.) is a cool-season grass that is commonly used
as a forage and turfgrass due to its excellent adaptability, high yield, and high aesthetic value [3].
However, its selection and utilization in salt-affected regions are limited by its inferior salt tolerance in
comparison to warm-season turfgrasses [4,5]. Complex salt response mechanisms at the metabolic,
physiological, structural, biochemical and molecular levels have been reported in tall fescue [6–11].
Through molecular cloning, several salt tolerant genes have been identified in tall fescue. For example,
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a tall fescue zinc figure gene FaZnF was reported to be involved in the regulation of pathways initiated
by the salt-stress response [12]. In addition, an Arabidopsis thaliana AtNHX1 gene enhanced the salt
tolerance level of transformed tall fescue progenies [13], while Ma et al. [14] found out that the
overexpression of A. thaliana SOS1 + SOS2 + SOS3 genes enhanced salt tolerance in tall fescue. Recent
reports on transcriptomic studies have provided insights into the mechanisms of salt tolerance in
plants. For example, Wang et al. [15] uncovered novel salt responsive genes at the seedling stage of
salt-tolerant Indica rice; Krishnamurthy et al. [16] identified genes that are responsible for ethylene,
auxin, and abscisic acidsignaling in mangrove (Avicennia officinalis) growing under salt stress, while
Song et al. [17] identified candidate genes that were associated with detoxification, photosynthesis,
and signal transduction under long salt stress in a population of Miscanthus energy crops. Through
comparative transcriptome analyses, Upadhyaya et al. [18] revealed a differential response at early and
late stages of salt stress in table grapes leaves, while Sun et al. [19] observed that salt-tolerant tomato
exhibited a higher expression of salicylic acid-binding protein 2 (SABP2) as well as more activation of
the salt overly sensitive pathway compared to the salt-sensitive genotype. More recently, Zhu et al. [20]
revealed alternative splicing under salt stress in cotton (Gossypium davidsonii). The transcriptome data
has also enabled genome-wide studies of individual salt responsive genes as well as their functions.
For example, Kumar et al. [21] reported that the ectopic expression of OsSta2 gene in rice enhanced
salt tolerance, while AP2/EREBP and dehydrin genes have been characterized in Cucurbitaceae
species [22,23]. Also, the transcriptome of plants growing under other abiotic stresses such as
cold [24,25], drought [26–29], and heat [30] have been reported. However, currently, a major constraint
of understanding fully tall fescue salt tolerance is the absence of its whole genomic data. An integrated
approach of combining bioinformatic tools with reported response mechanisms is imperative for
unraveling crucial genome-scale information about tall fescue. In particular, the recent advancements
in RNA-sequencing technology offer the high prospect for studying tall fescue transcriptome rapidly
and cost-effectively, which will provide further insights into the salt response mechanism and also lay
the platform for future breeding programs.

2. Materials and Methods

2.1. Plant Growth Conditions

Tall fescue (Puregold cultivar) that we previously found to be among the most salt-tolerant was
selected from a wide population through marker-assisted selection. Plant materials were collected from
turfgrass germplasm center of Wuhan Botanical Garden, Chinese Academy of science. A single healthy
and complete tiller (with roots and shoots) was planted in plastic pots (13 cm diameter, 11 cm deep)
containing a mixture of sand and peat soil (1:1, v/v) in a greenhouse. Irrigation was performed every
other day in order to maintain sufficient water supply conditions, fertilized weekly with half-strength
Hoagland’s solution, and mowed to 7 cm canopy height once a week. After two months of plant
establishment, tillers with uniform growth were uprooted, roots were washed with distilled water, and
plants were transferred into 300 mL glass conical flasks filled with half-strength Hoagland’s solution.
To prevent any algal contamination, flasks were wrapped with aluminum foil. The plants were left to
acclimatize to new conditions for 7 days in growth chambers with the temperature ranging from 20 ◦C
to 25 ◦C, 1000–1500 µmol photons m−2 s−1, 14 h photoperiod of natural sunlight, and 76% average
relative humidity.

2.2. Salt Treatment

Plants were divided into two groups. One group was transferred to a fresh half-strength
Hoagland’s solution (control designated CK), while the other was moved into the identical
solution supplemented with 1.5% NaCl. Preliminarily, through measurement of K+/Na+ content,
malondialdehyde content, electrolyte leakage, and chlorophyll content in the leaves, we observed
that this salinity concentration was successful in separating salinity response of tall fescue at 0 h,
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24 h, and 48 h. The materials were arranged in a randomized complete block design with multiple
independent replicates. From both the control and salt treatment groups of each cultivar, leaf samples
were collected for Illumina deep sequencing (two replicates) and quantitative polymerase chain
reaction (qPCR) validation (three replicates), respectively. The samples were frozen immediately in
liquid nitrogen and then stored at −80 ◦C for subsequent analysis.

2.3. Total RNA Extraction and Library Construction

The total RNA from the leaves of each sample was isolated using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) and purified using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA)
following the manufacturer’s protocol. The RNA was analyzed using the Agilent 2100 Bioanalyzer
(Agilent RNA 6000 Nano Kit Hewlett-Packard-Straß, Waldbronn, Germany). Total RNA concentration
with a fragment size of 28S/18S and purity was measured using a UV spectrophotometer NanoDrop™
(Thermo Fisher Scientific, Lenexa, KS, USA), and processed by enriching the mRNA of polyA tails
with magnetic beads containing Oligo(dT) followed by the fragmentation of the obtained RNA using
an interrupting buffer. Random primers were used for reverse transcription, and cDNA duplex was
synthesized to form double-stranded DNA. Subsequently, the synthetic double-stranded DNA was
filled at the 5′ and 3′ ends followed by ligation. The ligation product was amplified by PCR (Veriti,
Applied Biosystems, Thermo Fisher Scientific, Santa Fe, KS, USA) using specific primers. Briefly,
the material was heat-denatured into single-stranded chains, and a single-stranded circular DNA
library was cyclized with a bridging primer to obtain a single-stranded circular DNA library followed
by sequencing on a computer. The sequences have been deposited in GEO NCBI with the following
accession numbers: GPL23814 for Illumina HiSeq 2000 (Festuca arundinacea); GSM3389404 for CK;
GSM3389405 for salt-24h and GSM3389406 salt-48h.

2.4. Sequencing Data Filtering and De Novo Assembly

The raw data sequenced contained low-quality linker contaminants and reads with too high and
unknown base content. Therefore, to ensure the reliability of results, internally developed software was
used for filtering out the reads. The filtered data was designated clean reads which were candidates of
de novo assembly. Trinity program version 2.8.4 [31] was used to remove PCR duplicates in order to
improve the assembly efficiency of clean reads. The assembled transcripts were then clustered and
unigenes were obtained. The unigenes were divided into two parts: the first were clusters, which was
the result of further redundancy, beginning with CL, which denotes cluster, followed by the number of
the gene family; the remaining were singletons, beginning with Unigene.

2.5. Unigene Annotation and Coding DNA Sequence Forecast

The assembled unigenes were annotated by aligning them with the other seven public databases,
including Pereira’s et al. [32] Non-redundant nucleotide sequences databases Nt and Nr (ftp://ftp.
ncbi.nlm.nih.gov/blast/db), Tatusov et al. [33] Eukaryotic Ortholog Groups (KOG) (http://www.ncbi.
nlm.nih.gov/KOG) for functional prediction. Conesa et al. [34] Basic Local Alignment Search Tool
Gene Ontology (blastGO) version 2.5.0 (https://www.blast2go.com) database was used to annotate
all the unigene results from the Nr database against Ashburner et al. [35] Gene Ontology (GO)
(http://geneontology.org). For pathway annotation enrichment analysis, Kanehisa et al. [36] Kyoto
Encyclopedia for Genes and Genomes database (KEGG) version 58 was used while Quevillon et al. [37]
InterProscan database version 5.11-51.0 (http://www.ebi.ac.uk/interpro) was used to identify family
members based on protein domains. Finally, Wu et al. [38] SwissProt (http://ftp.ebi.ac.uk/pub/
databases/swissprot) database was used to check for better quality annotation results. Furthermore,
a Transdecoder software version 3.0.1 software (https://transdecoder.github.io) recommended by
Trinity was used to identify candidate coding DNA Sequences (CDS) in Unigene. Briefly, the reading
frame was opened by searching for unigene families. The homologous sequence of the protein family
was then searched by Blast against the SwissProt database.

ftp://ftp.ncbi.nlm.nih.gov/blast/db
ftp://ftp.ncbi.nlm.nih.gov/blast/db
http://www.ncbi.nlm.nih.gov/KOG
http://www.ncbi.nlm.nih.gov/KOG
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http://www.ebi.ac.uk/interpro
http://ftp.ebi.ac.uk/pub/databases/swissprot
http://ftp.ebi.ac.uk/pub/databases/swissprot
https://transdecoder.github.io
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2.6. Unigene’s Transcription Factors Coding Capacity Prediction, Simple Sequence Repeats, and Single
Nucleotide Polymorphism Test

To predict salt responsive transcription factors (TFs) in tall fescue, we used Rice et al. [39] getorf
database mini-size 150 (http://genome.csdb.cn/cgi-bin/emboss/help/getorf) to detect unigene’s
open reading frame (ORF) and then used Mistry et al. [40] hmmsearch database version 3.0 (http:
//hmmer.org) to align the ORF to the TF protein domain. The aligned sequences were described
according to the family of TF families listed in Zhang et al. [41] PlantfDB database version 3.0 (http:
//plntfdb.bio.uni-potsdam.de). Furthermore, we tested unigene simple sequence repeats (SSR)s
using Thiel et al. [42] MIcroSAtellite identification tool (MISA) version 1.0 followed by Untergasser
et al. [43] Primer3 software version 2.2.2 (http://bioinfo.ut.ee/primer3) to perform primer design
on the detected SSRs. At the same time, we used Kim et al. [44] Hierarchical Indexing for Spliced
Alignment of Transcripts (HISAT) database version 0.1.6-beta (http://ccb.jhu.edu/software/hisat) to
align clean reads to the unigene, and then McKenna et al. [45] Genome Analysis Toolkit (GATK) version
3.4-0 (https://www.broadinstitute.org/gatk) was used to detect single nucleotide polymorphisms
(SNPs).

2.7. Unigene Expression Calculation and Differentially Expressed Gene (DEG) Detection

We calculated the differential expression of the genes between different tall fescue samples based
on the gene expression and expressed as fragment per kilobase million (FPKM). A rigorous algorithm
was developed for screening differentially expressed genes (DEGs) between two samples. Next,
multiple hypotheses tests were made to determine the p-value by controlling the False Discovery Rate
(FDR), as previously demonstrated by Benjamini et al. [46]. The smaller the FDR value, the more
significant was the difference in expression. Therefore, in our analysis, DEGs are defined by default
as FDR genes with p ≤ 0.001 and a fold difference of more than 2-fold. Differential gene expression
comparison between libraries was done using the Poisson D method [47]. Subsequently, Langmead
et al. [48] Bowtie2 software version 2.2.5 (http://bowtie-bio.sourceforge.net/Bowtie2/index.shtml)
was used to align clean reads with Unigene, while Li et al. [49] RNA-Seq by Expectation-Maximization
(RSEM) software version 1.2.12 (http://deweylab.biostat.wisc.edu/RSEM) was used to calculate the
base of each sample according to the level of expression. Subsequently, Kumar et al. [50] time-series
analysis software Mfuzz version 2.34.0 (http://mfuzz.sysbiolab.eu) was used to classify genes into
multiple clusters based on similar expression profiles in order to help find functionally similar genes.

2.8. Functional Analysis of Differentially Expressed Genes

For functional annotation, the DEGs were classified into various GO categories. The pathway
enrichment analysis was then done on the categories using the KEGG database.For protein interaction
analysis, the DEGs were aligned to the von Mering’s et al. [51] Search Tool for the Retrieval of
Interacting Genes/proteins (STRING) database version 10 (http://string-db.org/) using the homology
with known proteins in order to investigate the interaction between DEG-encoded proteins. We then
drew the first 100 relationships using Cytoscape software version 3.x.

2.9. qPCR Validation

To confirm the validity of the RNA-Sequencing (RNA-Sequencing) data, we randomly selected
nine DEGs from the three libraries and their expression under salt stress was detected by qPCR analysis.
Briefly, the cDNA was constructed from 3 µg of total RNA collected at the same time as the sequencing
sample. Reverse transcription was performed using oligo (dT) primer following the manufacturers
manual cDNA synthesis kit (Fermentas, Burlington, Ontario, Canada). Primer 5 software version
5.2.0. was used to design gene specific primers for each gene based on the target gene sequences using
EF1-1α as an internal control. The primer use efficiencies were determined based on Robin et al. [52]
and calculated using a web-based calculator (https://www.genomics.agilent.com/biocalculators/

http://genome.csdb.cn/cgi-bin/emboss/help/getorf
http://hmmer.org
http://hmmer.org
http://plntfdb.bio.uni-potsdam.de
http://plntfdb.bio.uni-potsdam.de
http://bioinfo.ut.ee/primer3
http://ccb.jhu.edu/software/hisat
https://www.broadinstitute.org/gatk
http://bowtie-bio.sourceforge.net/Bowtie2/index.shtml
http://deweylab.biostat.wisc.edu/RSEM
http://mfuzz.sysbiolab.eu
http://string-db.org/
https://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp
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calcSlopeEfficiency.jsp). Primers that had efficiency levels ranging from 85–100% (slopes between −3.1
and −3.6 on the qPCR standard curve) were selected for expression analysis. The qPCR was done in a
total volume of 20 µL, with each containing 2 µM of the forward and reverse primers, 2 µL of cDNA,
and 10 µL of 2× SYBR Green qPCR Mix (Takara, Otsu, Shiga, Japan). The thermal cycling consisted
of 40 cycles of fast denaturation at 95 ◦C for 5 s, followed by annealing and extension at 52–55 ◦C
for 20 s. To test the amplicon specificity, a melting curve was generated by gradually increasing the
temperature to 95 ◦C. To determine relative fold changes for each sample, the 2−∆∆CT method was
used based on normalization with the reference gene. For reliability, the PCR analysis was done thrice,
and values were expressed as triplicate means. All the gene-specific primers are listed in Table S1.

3. Results

3.1. Sequencing Statistics

A total of approximately 87.1, 85.9, and 88.4 million raw reads were obtained from CK, salt-24h,
and salt-48h, respectively. After filtering out contaminants, approximately 66.6, 65.9, and 65.8 million
clean reads were obtained in CK, salt-24h, and salt-48h, respectively. Within the clean reads, a total of
96.41% and 96.31% bases in salt-24 and salt-48h had mass values greater than 20%, while 89.1% and
89% had bases with mass values greater than 30%, see Table 1.

Table 1. Quality statistics of filtered reads.

Sample Total Raw
Reads (Mb)

Total Clean
Reads (Mb)

Total Clean
Bases (Gb)

Clean Reads
Q20 (%)

Clean Reads
Q30 (%)

Clean Reads
Ratio (%)

CK 87.16 66.65 6.67 96.48 89.35 76.47
Salt-24h 85.915 65.965 6.595 96.41 89.175 76.8
Salt-48h 88.405 65.825 6.585 96.315 89.01 74.47

CK: Control; Total Raw Reads (Mb): The number of reads before filtering; Total Clean Reads (Mb): Filtered reads
Total Clean Bases (Gb): Total number of bases after filtration; Clean Reads Q20 (%): The percentage of the number
of bases with mass values greater than 20% in the filtered reads; Clean Reads Q30 (%): The percentage of the
number of bases with a mass value greater than 30% in the filtered reads; Clean Reads Ratio (%): The proportion of
filtered reads.

3.2. De Novo Assembly and Unigene Annotation

Due to the lack of tall fescue genome, to improve assembly efficiency, the clean libraries were de
novo-assembled into one reference transcriptome with the program Trinity. The assembler generated a
mean total of 150,957 (CK), 152,599, (salt-24h), and 152,317 (salt-48h) reads with GC contents of 50.2%,
50.4%, and 50%, respectively. Of the three libraries, salt-48h had the highest total length of 99,403,369,
while CK had the least. The mean length ranged from 646 to 652 nt across the three libraries, see
Table 2a. Subsequently, a cluster deduplication was performed to get the final unigene for a subsequent
analysis designated All-unigene. As a result, a total of 144,339 All-unigenes were generated with a
mean length of 898 and GC content of 49.49%, see Table 2b.

A total of 74,388 (51.5%), 62,387 (43.2%), 41,836 (28.9%), 48,083 (33.3%), 47,776 (33.1%), 45,601
(31.6%), and 40,017 (27.7%) reads were aligned in Nr, Nt, SwissProt, KEGG, KOG, Interproscan, and GO
databases, respectively, see Table S2. Furthermore, 17,928 Unigenes were found in all seven databases;
while 83,213 unigenes were not found in more than one of the seven databases, see Figure 1a and
Table 3. Most of the transcripts had remarkable sequence similarity with Branchypodium distachyon,
Hordeum vulgare, Aegilops tauschii, Triticum urartu, and others, which each of the above sharing 28.07%,
19.16%, 16.16%, 9.17%, and 27.43% of the total number of transcripts, respectively, see Figure 2b.

https://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp
https://www.genomics.agilent.com/biocalculators/calcSlopeEfficiency.jsp
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Figure 1. Graphical representation of unigenes based on (a) Venn diagram depicting the overlap in
various databases. The number outside the circle denotes the total number of unigenes in each database.
The number within one circle denotes the overlapped unigenes, respectively. (b) Species distribution
showing the proportions of different species associated with the unigene annotations according to the
results of the NR annotations.

Table 2. (a) Trinity statistics. (b) Unigenes statistics.

Sample Total
Number

Total
Length

Mean
Length N50 N70 N90 GC (%)

CK (a) 150,967 98,232,067 650 1034 598 261 50.23
Salt-24h (a) 152,598.5 98,743,637 646 1024 592.5 261 50.395
Salt-48h (a) 152,316.5 99,403,369 651.5 1040 603 261.5 50.035

CK (b) 86,828 63,981,634 736 1147 679 301 49.69
Salt-24 (b) 88,639.5 65,201,778 734.5 1137.5 677 303 49.875
Salt-48 (b) 87,520.5 64,836,088 740 1152 689 303 49.5

All-Unigene (b) 144,339 1.3 × 108 898 1443 912 367 49.49

Total Number: number of reads per sample; Total Length: reads length of each sample; Mean Length: average
length of reads; N50: used to measure the continuity of the assembly, the larger the value, the better the assembly
effect; N50, N70 and N90: the percentage of the total length which is the last accumulated value after sorting by the
transcript length from big to small and accumulating all transcriptions one by one; GC (%): Ratio of bases G and C.
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Table 3. Table of alignment results for the seven databases.

Values Total Nr Nt SwissProt KEGG KOG Interpro GO Intersection Overall

Number 144,339 74,388 62,387 41,836 48,083 47,776 45,601 40,017 17,928 83,213
Percentage 100% 51.54% 43.22% 28.98% 33.31% 33.10% 31.59% 27.72% 12.42% 57.65%

Intersection: The total number and proportion of unigenes in all database notes in the seven databases; Overall:
The total number and proportion of unigenes in any one of the seven databases. NT is NCBI official nucleic acid
sequence database, NR is the official protein sequence database, with comprehensive, non-redundant features. We
divided the NT and NR databases in order to annotate the unigene sequence to the corresponding points to get
corresponding functional results. The Venn diagram in Figure 1 shows the sharing of unigenes in different databases.
KEGG: Kyoto Encyclopedia for Genes and Genomes; KOG: Eukaryotic Ortholog Groups; GO: Gene Ontology.

In total, 40,017 unigenes were classified into 54 GO functional groups and were divided into
three major categories, i.e., biological process, cellular component, and molecular function. Under biological
process, metabolic process constituted the largest sub-category with 21,347 genes. Other categories with a
high number of genes included cellular process (20,549), single organism process (12,156), and biological
regulation (6095). The least number of genes were observed in cell killing (8), biological adhesion (8),
biological phase (12), and locomotion 14. Within cellular component, cell and cell part had the most unigenes
at 21,021 and 20,942, respectively. Nucleod, with 42 unigenes, constituted the least number of genes.
Under molecular function, binding and catalytic activity were the most represented sub-categories with
19,172 and 18,875 unigenes, respectively, while metallochaperone activity, with only seven unigenes,
constituted the least represented group, see Figure 2a. We further analyzed pathway enrichment of
All-unigene using the KEGG database. As a result, 48,083 unigenes were assigned to 21 pathways that
were classified into six major categories, i.e., cellular process, environmental information processing, genetic
information processing, human diseases metabolism, and organism systems. Metabolism category was the most
enriched [11] under which the global overview maps sub-category was the most represented followed by
carbohydrate metabolism. Under genetic information processing category, translation sub-category was the
most enriched pathway. Despite having only one sub-category, environmental adaptation was highly
enriched with 2800 unigenes, see Figure 2b. At the same time, 47,776 unigenes from the KOG database
were divided into 25 functional groups. Among the categories, general function prediction only, with
11,952 genes, constituted the largest group, while cell motility, with only 28 genes, constituted the
smallest group. Other groups with notably many unigenes included signal transduction mechanism
(6689 genes); post-translational modification, protein turn over, chaperones (5442 genes); transcription (3968);
transcription factors (3612); and carbohydrate transport and metabolism (2689), Figure 2c.
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Figure 2. Graphical representation of unigene distribution based on (a) Gene Ontology (GO)
classification and (b) Kyoto Encyclopedia of Genes and Genomes (KEGG). Genes are divided into six
branches according to the participating KEGG metabolic pathways: cellular processes, environmental
information processing, genetic information processing, human diseases, metabolism, organisms,
medicines drug development. (c) Eukaryotic Ortholog Groups (KOG) annotation of putative proteins.
All 47,776 putative proteins showing significant homology to those in the KOG database were
functionally classified into 25 groups. The X-axis represents the corresponding unigene number,
and the Y-axis represents the functional classification.

3.3. Unigene’s Transcription Factors Coding Capacity Prediction and Unigene’s Coding DNA Sequence
Forecast

The assembled transcriptome of salt-stressed tall fescue leaves showed that 2120 completely
unique TFs from 59 different families were differentially expressed during early salinity stress.
In particular, the most expressed TF constituted key families that are salt-responsive, i.e., transcriptional
activator Myb (MYB) (251), MYB-related (187), NAC domain-containing proteins (NAC) (112), WRKY
transcription factors (WRKY) (146), APETALA2 and ethylene-responsive element binding proteins
(AP2-EREBP) (139), and Basic helix-loop-helix (BHLH) (131) categories (see Figure 3a and Table S3).
TransDecoder software identified a total of 79,352 sequences with a total length of 63,662,448. The length
of the sequences ranged from 297–12,375, with a mean length of 297 and GC content of 53.95.
A sequence size of 400 nt constituted the most All-unigene-CDS (see Figure 3b and Table S4).
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3.4. Unigene’s SSR and SNPs Test

A total of 22,328 SSRs were identified in contig sequences. The SSRs included both single
and compound SSRs. Among the compound SSRs, tri-nucleotide constituted the largest group
followed by di-nucleotides. Mononucleotides consisted of 1897 motif numbers, Figure 4. Based
on the assembly results, we designed primers for each SSR and defined their length characteristics,
Table S5. Furthermore, based on the assembly results, we detected the SNP of each sample. Among
the SNPs, 209,859, 187,300, and 189,920 had A-G and C-T mutations (i.e., they contained substitution
between purines and purines, or the substitution between pyrimidines and pyrimidines) in CK,
salt-24h, and salt-48h, respectively, while 117,382, 105,488, and 106,858 had A-C, A-T, C-G, and G-T
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variants of SNPs (i.e., had substitutions between purines and pyrimidines) in CK, salt-24h, and salt-48h
regimes, respectively, Table 4.

Figure 4. Bar plot of simple sequence repeats (SSR) distribution. The X-axis represents the SSR type,
and the Y-axis represents the corresponding number of SSRs.

Table 4. Integrated results of each sample single nucleotide polymorphism (SNP).

Sample A–G C–T Transition A–C A–T C–G G–T Transversion Total

CK 105,203 104,656 209,859 28,471 20,647 39,544 28,720 117,382 327,241
Salt-24h 93,988 93,312.5 187,300.5 25,432 18,548.5 35,876 25,632 105,488.5 292,789
Salt-48h 95,195 94,725.5 189,920.5 25,844.5 19,188.5 35,741.5 26,083.5 106,858 296,778.5

A–G: Number of SNPs with A–G mutations (including A to G, G to A); C–T: Number of SNPs with C–T mutations;
Transition: The number of SNPs with A–G and C–T mutations, the substitution between purines and purines, or the
substitution between pyrimidines and pyrimidines; A–C: Number of SNPs with A–C variation; A–T: Number of
SNPs with A-T variation; C–G: Number of SNPs with C–G mutation; G–T: Number of SNPs with G–T mutation;
Transversion: A–C, A–T, C–G, and G–T variants of SNPs, substitutions between purines and pyrimidines; Total:
The total number of all variant types.

3.5. Differential Gene Expression and Distribution in Samples

According to the assembly results, we mapped the clean reads of each sample to Unigene and
then calculated the gene expression level of each sample. A mean total of 50,987,376, 51,527,965, and
50,782,868 reads were mapped in CK, salt-24h, and salt-48h, respectively. Among them, 21,680,100,
21,538,592, and 21,848,553 unique reads were mapped, Table 5.

Table 5. The statistics of the differentially expressed genes.

Sample Total Bases Total Reads Total Mapped Reads Unique Mapped Reads

CK 6,665,213,000 66,652,130 50,987,376 21,680,100
Salt-24h 6,596,346,200 65,963,462 51,527,965 21,538,592
Salt-48h 6,582,573,600 65,825,736 50,782,868 21,848,553

Sample: sample name; Total Bases: The number of bases for the sample; Total Reads: Number of reads for samples;
Total Mapped Reads: Reads of all referenced sequences; Unique Mapped Reads: The number of reads aligned to a
unique position in the reference sequence.
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Furthermore, an average of 102,031, 106,569, 106, 065 genes were differentially expressed in the
CK, salt-24h, and salt-48h, respectively, at FPKM ≤ 1, FPKM 1–10, and FPKM ≥ 10, Figure 5 and
Table S6. Mfuzz software revealed that all the DEGs fell into 12 clusters. With 25,854 DEGs, cluster 12
was the largest, followed by cluster 11 (14,100), while cluster four had only 5113 DEGs, Table S7.

Figure 5. Plots of differentially expressed genes (DEGs) based on (a) gene abundance in samples as a
function of expression levels in different fragment per kilobase million (FPKM) intervals. The X-axis
represents the sample name, the Y-axis represents the number of genes, and the shade of color represents
the level of different expression levels: FPKM ≤ 1 is when a gene has a very low expression level,
FPKM is between 1 and 10 (when genes have low expression levels), and FPKM ≥ 10 are genes with
high expression levels. (b,c) A heat map showing differential gene expression; the X-axis represents
different samples and the Y-axis represents the differential gene. The darker the color, the higher the
expression, while the lighter the color, the lower the expression.

Subsequently, based on the results of the gene expression levels in each sample, we used the
Poisson D algorithm to compare DEG expression levels between samples. At p ≤ 0.001 in salt-24h vs.
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CK, 12,930 DEGs were upregulated while 9506 were downregulated. In salt-48h vs. CK, 15,610
were upregulated and 12,017 were downregulated, indicating an increase; while in salt-48h vs.
salt-24h regime, 5637 DEGs were upregulated while 5519 were downregulated, indicating that more
transcripts were uniquely expressed with an increase in salt treatment time, Figure 6 and Table S8.
Among the upregulated genes in salt-48h vs. salt-24h were NAC67 (Unigene16967_All), NAC48
(CL5587.Contig1_All), NAC021 (CL19340.Contig2_All), WRKY20 (CL5384.Contig1_All), WRKY46
(CL12389.Contig1_All), and ERF1 (CL914.Contig6_All) among others. Also upregulated were
regulators of antioxidant enzyme activities such as CATALASE 1 (CAT1) (CL342.Contig3_All) and CAB1
(CL1733.Contig11_All). Others are photosynthesis-related genes such as CLH2 (CL13725.Contig1_All),
WHAB1.6 (CL1733.Contig12_All), and VAR3 (Unigene12326_All), Table 6.

Figure 6. DEGs quantity chart. The X-axis represents each set of differential alignment schemes, and
the Y-axis represents the corresponding number of DEGs. Blue represents the number of upregulated
DEGs and red represents downregulated DEGs.

Table 6. Some of the selected salt-responsive and photosynthesis-related genes that were upregulated
at 48 h of salt treatment compared to 24 h.

Unigene log2 Fold Change
(Salt-48h/Salt-24h) Gene name Function Reference

CL19340.Contig2_All 1.048 NAC021 Salt tolerance [53,54]
CL914.Contig6_All 8.247 ERF1 ROS signaling [55]
CL5384.Contig1_All 2.098 WRKY20 Salt tolerance [56]
CL12389.Contig1_All 2.228 WRKY46 Osmotic stress response [57]

CL8335.Contig1_All 1.3 GAPC Photosystem repair and salt
tolerance [58]

CL342.Contig3_All 1.1 CAT1 Response to oxidative stress [59]
CL16806.Contig2_All 1.7 APX2 Response to oxidative stress [60]

Unigene27613_All 1.5 PFK6 Fructose 6-phosphate metabolic
process; [61]

Unigene12326_All 2.3 VAR3 Chloroplast development [62]

CL1733.Contig12_All 1.4 WHAB1.6 Photosynthesis, light harvesting
in photosystem I [63]

CL1733.Contig11_All 1.3 CAB1 Photosynthesis, light harvesting
in photosystem I [64]

Unigene16967_All 2.362 NAC67 Salt tolerance [65]

The CL at the beginning of a unigene name denotes a cluster and is followed by the number of the gene family; ROS
is reactive oxygen species.
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3.6. Functional Analysis of Differentially Expressed Genes

The three major functional categories were classified into 53 functional groups. Generally, the GO
annotation trend was not so different among the three libraries, despite some differences in the number
of annotated genes. For example, compared to the control, at 24 h of salt treatment, under molecular
function, most genes were annotated to catalytic activity (4021) and binding (3574). Under cell component,
cell (3972) and cell part (3951) constituted the largest group. Under biological process, metabolic process
(4345) and cellular process (4118) constituted the largest groups. Among the highly annotated genes,
a majority were upregulated. At 48 h the number of annotated genes increased remarkably. Under
molecular function, catalytic activity and binding still contained the most genes; however, the number
of genes was remarkably higher compared to 24 h. The same applied to other categories. Pathway
enrichment analysis on the three major functional categories showed that metabolic pathways were the
most enriched, with over 1000 genes in 24 h compared to control, and then followed by biosynthesis
of secondary metabolites. Differently, at 48 h, biosynthesis of secondary metabolites was the most enriched
followed by plant hormone signal transduction, Figure S1.

3.7. Differential Protein Interaction Analysis

We used the STRING (http://string-db.org) protein interaction database to perform
a protein interaction analysis for each group of DEGs. With the highest interaction
and upregulation were Rubisco large subunit-binding protein subunit (CL1333.Contig4_All,
Unigene34323_All, CL7713.Contig1_All) and chaperonins, such as CPN60-ß (CL7099.Contig1,2&3_All),
CPN21(CL17027.Contig 2,3 &4_All), and groS-A (CL8218.Contig2_All), Figure 7 and Figure S2.

Figure 7. A representative of the most upregulated and highest protein interaction data in salt-48h vs.
salt-24h. The larger the circle, the denser the relationship. The CL at the beginning of a name denotes a
cluster and is followed by the number of the unigene family.

3.8. qPCR Validation

All the randomly selected genes were detected via qPCR. ACS, APX1 ATK5 MYB38 PTR7, and
EXPA4 were highly upregulated, especially at 48 h compared to 24 h, while ACC2, MPK12, and PSY
were downregulated, which corresponds to RNA-seq data, thus indicating its validity, Figure 8.

http://string-db.org
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Figure 8. Bar plot showing the expression analysis of randomly selected RNA-Seq genes by quantitative
polymerase chain reaction (qPCR). EF1-a gene was used as the reference gene for normalization of
gene-expression data. Values are the average of three independent replicates. <1 is downregulation
while >1 is upregulation.

4. Discussion

Like other mesophytes, the harmful effects of salinity on tall fescue are attributed to Na+ and
Cl− -induced ion toxicity, physiological drought, and nutrient imbalances [66]. Hence, the transcript
response in tall fescue is putatively aimed at ameliorating/preventing the three limiting factors via
triggering a broad array of activities that optimize plant performance under saline conditions.

GO, KEGG, and KOG are vital databases of determining potential gene functions. The differential
annotation of genes in salt-24h and salt-48h compared to CK, and their enrichment in binding, cell and
metabolic pathways in the KEGG database implied that salt stress duration played a role in triggering a
remarkable difference in not only the transcript level but also in the gene function, hence, sampling
time is crucial in assessing salt-responsive gene function in tall fescue. Previously, under water stress,
Talukder [67] observed that proteolysis, nucleus, as well as ATP binding, contained the most genes
in biological process, cellular part, and molecular function categories, respectively. Differently, in our
study, metabolic process, cell, and binding had the largest unigenes in biological process, cellular part,
and molecular function, respectively. This remarkable difference in GO annotations of same species
might be attributed to the nature of stress differences. However, consistent with our study, under
heat [68] and lead stress [69] metabolic processes and binding constituted the largest group of unigenes
in biological and molecular function categories, respectively. This was also similar in Tibetan barley
growing under low nitrogen conditions [70]. This observation highlighted the possible overwhelming
importance of genes annotated to metabolic process and binding sub-categories in response to various
environmental conditions.

Most of the predicted TFs such as WRKY, BHLH, MYB, NAC, and ERF have clear roles in growth
and developmental programs in plants under salt stress. Here, we discuss TFs that were upregulated in
salt-48h vs. salt-24h after salt treatment. For instance, rice plants overexpressing NAC67 accumulated
higher biomass and improved salt tolerance [65]. NAC021 is a transcriptional activator that plays
an important role in growth and salt tolerance [53,54]. Lower membrane damage and improved salt
tolerance were observed in transgenic alfalfa, overexpressing WRKY20 [56]. The expression of a WRKY
transcription factor WRKY46 is rapidly induced by salt stress and regulated a set of genes involved in
cellular osmoprotection and redox homeostasis [57]. Also upregulated are key genes responsible for
various metabolic processes such as carbohydrate metabolic process during glycolysis like PFK6 [61]
and antioxidant activities. Plants have developed protective mechanisms to eliminate or reduce
reactive oxygen species (ROS) and other oxidants during salt stress and the enzymatic antioxidant
system is one of the protective mechanisms. The remarkable upregulation of CAT1 genes by salt stress
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at 48 h vs. 24 h in this study is consistent with the previous report that their activity and transcript
levels were increased under salt stress [59,60]. Plants’ photosynthetic capacity under salt stress can be
an important determinant of tolerance level [71]. Here, some genes associated with photosynthesis
were differentially expressed and upregulated in 48 vs. 24 following salt treatment. For example, GAPC
maintains photosynthesis under salt stress in Thellungiella halophila [58]. A zinc finger gene VAR3 is part
of a protein complex required for normal chloroplast and palisade cell development [62]. Chlorophyll
a-b binding genes WHAB1.6 and CAB1 encode the major chlorophyll polypeptide, which functions
as a light-harvesting complex that captures and delivers excitation energy to photosystems [63,64].
Salt stress signaling genes were also upregulated in 48 h vs. 24 h of salt treatment. For instance, ERF1
regulates ROS-dependent signaling during the initial response to salt stress in rice [55]. The temporal
differential expression of the genes and their upregulation in 48 h vs. 24 h indicates that prolonged
stress generated a unique gene expression pattern, which represents regulatory transcript responses
that cannot be predicted from the early response. In addition, an overlap of transcripts in between
48 h salt and 24 h salt suggests that some transcripts were not temporal, and their expression was an
important early and late response mechanism to salt stress.

Furthermore, the CDS forecast enabled us to predict the potentially different protein outputs
at different transcript levels. ‘All Unigenes’ at 400 nt length were most enriched and might contain
a majority of potential candidates to be converted into amino acids by the ribosomal translation
machinery. Proteins usually perform their functions after they have been combined into complexes
through interactions. Thus, to increase the statistical power we mapped the DEGs directly to candidate
protein interaction networks. As a result, we see an upregulation and high interaction level of
Rubisco and chaperonin proteins. Chaperonins are a class of molecular chaperones that mediate the
folding of non-native polypeptides with concomitant ATP hydrolysis. Salt-responsive chaperonins
such as CHAPERONINS 10, 21, and 60-ß were found to play important roles in plants response
to salt stress [72,73]. Also, Rubisco is an enzyme that is involved in the first major step of carbon
fixation [74,75]. These results suggest that high interaction of chaperonin-related and Rubisco genes as
well and their upregulation in 48h-salt vs. 24h-salt might have played important role in salt responsive
protein folding as well as modulation of photosynthesis in tall fescue leaves. Also, it is possible that
the upregulation of Rubisco in tall fescue reflects the increase in photorespiration during exposure to
salt stress.

Primarily, transcriptome data is a vital tool for the fast and cost-effective creation of molecular
markers. In particular, SNPs and SSR markers are vital tools for genomic and plant breeding studies.
Their detection and successful primer design indicate that our tall fescue transcriptome data offered
a rich genomic resource to develop a large number of molecular markers with promising potential
to be used in marker-assisted selection for plant breeding, especially in the absence of full genomic
sequencing information of tall fescue. In addition, the high abundance of SNP markers may be useful
for molecular research of tall fescue in the case of the absence of SSR markers.

5. Conclusions

In summary, to understand a tall fescue transcriptome under salt stress, RNA extracted from
three tall fescue (‘Puregold’ cultivar) leaf libraries (CK, salt-24h, and salt-48h) were sequenced. After
assembly, unigenes and their various characteristics were obtained. The unigenes were subsequently
aligned to seven databases for functional annotations, which grouped them into various categories
including those that may play important roles in salt tolerance. In addition, CDSs were detected as
well as SSRs and SNPs that were distributed among the unigenes. Also predicted were key TFs, most
of which belong to salt-tolerant families. Finally, DEGs per sample were analyzed and annotated to
various functional groups using the GO and KEGG databases. This is the first RNA-seq study to profile
tall fescue transcriptome under salt stress conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/10/466/s1,
Figure S1: Functional annotation of DEG, Figure S2: Protein interaction network, Table S1: qPCR primers, Table S2:

http://www.mdpi.com/2073-4425/9/10/466/s1
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Functional database annotations, Table S3: Transcription factors, Table S4: Coding DNA sequence, Table S5:
SSR primer sequence, Table S6: Differentially expressed genes, Table S7: DEG clusters, Table S8: Comparative
differential gene expression.
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