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Abstract: The multigene universal stress protein (USP) family is evolutionarily conserved. Members 

play indispensable roles in plant tolerance to abiotic stresses. Although relatively well-characterized 

in model plants, such as Arabidopsis thaliana and Oryza sativa, this family has not been investigated 

in Salvia miltiorrhiza, an important herbal plant for which yields can be limited by various abiotic 

stresses. Here, we identified 32 USP family members in the S. miltiorrhiza genome, and used 

phylogenetic analysis to sort these SmUSPs into four groups. Groups A and B belong to the ATP-

binding class whereas Groups C and D are in the non-ATP-binding class. Motif analysis and 

multiple sequence alignment hinted that members of group A and B were able to bind ATP. Our 

qRT-PCR data from different tissues/organs and under salt and heat stresses provided an overall 

expression pattern for those genes. Three SmUSPs (SmUSP1, SmUSP8, and SmUSP27) were cloned 

from S. miltiorrhiza and functionally characterized in Escherichia coli. Compared with the control 

cells, those that expressed SmUSPs exhibited enhanced tolerance to salt, heat, and a combination of 

the two. This suggested that the protein has a protective role in cells when exposed to single-stress 

and multiple-stress conditions. Our findings provide valuable information that helps improve our 

understanding of the evolutionary and functional conservation and diversity associated with the 

USP gene family in S. miltiorrhiza. 

Keywords: universal stress protein (USP); gene family; Salvia miltiorrhiza; Escherichia coli; abiotic 

stress 

 

1. Introduction 

Abiotic stresses, such as drought, salinity, and extreme temperatures, are limiting factors for 

normal plant growth. Excessive salinity interrupts homeostasis in water potential and ion 

distribution at both the cellular and whole-plant level [1]. This results in molecular damage, arrested 

development, and even mortality [2]. High temperatures can cause irreversible damage, including 

protein denaturation, aggregation, and degradation [3], as well as inhibition of protein synthesis and 

inactivation of enzymes. Extreme temperatures can also increase the fluidity of membrane lipids, 

leading to a loss of membrane integrity [4]. Field environments are very different from the controlled 

conditions used in laboratory studies, and outdoor experiments often involve exposing plants 

simultaneously to more than one type of abiotic and/or biotic stress, e.g., salinity plus heat, a 

combination that is probably the major environmental factor that restricts growth and yields in the 

21st Century [5].  
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The family of universal stress protein genes (USPs) appears to play a positive role in the abiotic-

stress response, with members encoding proteins that contain highly conserved residues of the 

Universal Stress Protein A domain (UspA domain; Pfam Accession Number PF00582). These genes 

are widely distributed across most living organisms, including bacteria, archaea, fungi, protozoa, 

plants, and mammals [6–8]. The first USP was discovered in a bacterium, and was initially named 

C13.5 protein because of its migration on a two-dimensional Isoelectric Focusing-PAGE gel. That 

name was later changed to USP to reflect its ability to respond to diverse stresses. The label UspA 

was quickly and extensively acknowledged, and now represents an orthologous group of proteins, 

the UspA superfamily [9]. Six USP genes in Escherichia coli have different functions linked to motility, 

adhesion, and resistance to oxidative stress [10]. Homologs of USPs are ubiquitous in plants and 

encoded by gene families. They include 44 Arabidopsis proteins that are similar to the UspA domains 

in bacteria as well as 16 putative USP genes in barley (Hordeum vulgare) [6,11]. This gene family 

comprises two classes: ATP-binding and non-ATP-binding [12]. 

Although USP genes have been characterized in diverse plant species, including barley, A. 

thaliana (hereafter, Arabidopsis), Oryza sativa, Gossypium arboreum, Astragalus sinicus, Vicia faba, 

Solanum pennellii, and viridiplantae, their functions remain largely unknown [6,11,13–17]. It appears 

that USP improves the rate of cell survival during prolonged exposure to stress agents, and may 

endow plants with wide-ranging stress tolerance [18]. For example, SpUSP in S. pennellii reduces the 

stomatal aperture to protect plants from the effects of drought [10]. Among the Arabidopsis USP genes, 

At5g54430 and At4g27320 are phosphorylated in response to microbial elicitation of the cells [17]. 

At3g53990 exhibits a chaperone function and is significantly induced by heat, H2O2, and drought 

treatments [19]. Another Arabidopsis USP gene, At3g62550, encodes an ATP-binding motif and has 

been shown to be up-regulated in a drought microarray dataset [17].  

Salvia miltiorrhiza (family Labiatae) is an important herbal plant. Its dried roots, also known as 

‘Danshen’, are widely used in modern and traditional Chinese medicine (TCM) for treating 

cardiovascular/cerebrovascular diseases and various symptoms of inflammation [20–22]. This species 

is emerging as a model plant for TCM studies because of its relatively small genome (600 Mb), short 

life cycle, minimal growth requirements, and significant medicinal value [23]. Although the functions 

of numerous genes from S. miltiorrhiza have been reported, information about the SmUSP gene family 

is lacking. The genomic database of S. miltiorrhiza has been published online at 

http://www.ndctcm.org/shujukujieshao/2015-04-23/27.html [24]. Heterologous in vivo expression in 

E. coli is an approach now available for functional characterization of stress-responsive genes [25]. 

Here, we identified USP members from the genomic database of S. miltiorrhiza. By integrating the 

results from phylogenetic analysis and investigations of protein motif structures, gene expression, 

and heterologous expression in E. coli, we were able to determine the evolutionary and functional 

conservation and diversity of this gene family in S. miltiorrhiza. Our findings provide a genetic 

resource for improving abiotic stress tolerance by S. miltiorrhiza through genetic engineering 

technologies. 

2. Materials and Methods 

2.1. Identification of USP Genes from the Salvia miltiorrhiza Genomic Database 

Using the conserved domain search service of the NCBI database 

(www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), we found 44 Arabidopsis protein sequences with 

similarity to the UspA domains of bacteria [6], and obtained 26 UspA domains. Those conserved 

domain sequences were used to search, with TBLASTN (e-value < 10−10), for the sequences of USPs in 

the Salvia miltiorrhiza genomic database [24]. All of the identified candidates were analyzed using the 

protein family database (Pfam; http://pfam.sanger.ac.uk/) to confirm the presence of UspA domains 

in their protein structure. 

  

http://pfam.sanger.ac.uk/
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2.2. Bioinformatics Analysis, Phylogenetic Analysis, and Multiple Sequence Alignment 

The molecular weights, theoretical pI values, and number of amino acids for the 32 SmUSPs 

were predicted using the Compute pI/Mw tool on the ExPASy server (http://web.expasy.org/ 

compute_pi/) [26]. Their conserved protein motifs were examined with MEME v4.11.2 software 

(http://meme-suite.org/tools/meme), which revealed 10 different motifs, and minimum motif and 

maximum motif windows set to 6 and 50, respectively. A signal peptide analysis was conducted 

using the TargetP algorithm (TargetP: http://www.cbs.dtu.dk/services/TargetP/). Finally, the exon–

intron structures of SmUSPs were determined via GSDS 2.0 (http://gsds.cbi.pku.edu.cn/), comparing 

the full-length cDNA sequences to the genomic sequences.  

We used MEGA 6 software to construct a phylogenetic tree by the Neighbor Joining method, 

according to the following parameters: P-distance model, pairwise deletions, and 1000-replicates 

bootstrap. Multiple sequence alignments of 21 SmUSPs and the USP sequence of Methanococcus 

jannaschii MJ0577 (1MJHA; NCBI protein GI: 5107801), were generated by DNAMAN v6.0.3.99 

software, with default parameters. 

2.3. Plant Growth and Stress Treatments 

For expression profiling, we placed 2-month-old, uniformly developed S. miltiorrhiza plants in a 

greenhouse (16-h photoperiod, 25 °C). Salt stress was induced by watering the plants with a 150 mM 

NaCl solution, heat-stress conditions were imposed by transferring the plants to a growth chamber 

and holding them at 38 °C. For the combined salt/heat treatment, the plants were watered with 150 

mM NaCl solution, then transferred to the chamber and held at 38 °C. After 24 h, leaves were collected 

from different plants (three biological replicates), immediately frozen in liquid nitrogen, and stored 

at −80 °C. For the control, plants continued to receive normal irrigation in the greenhouse, under the 

conditions described above, throughout the experimental period. Their leaves were also collected 

and stored at −80 °C. 

2.4. Promoter Sequence Analysis, RNA Isolation, and Quantitative RT-PCR Analysis 

The 2-kb genomic sequence upstream of the 5’-UTR of each SmUSP was obtained for putative 

cis-element analysis, using the PlantCARE database (http://bioinformatics.psb.ugent.be/web 

tools/plantcare/html/). Quantitative RT-PCR (qRT-PCR) analysis was performed to monitor the 

expression levels of SmUSPs in the roots, stems, leaves, flowers, and seeds, as well as under various 

stress treatments. The gene-specific primers are listed in Table S1. Total RNA was isolated using an 

RNA rapid extraction kit (Xi’an Chunfeng, Xi’an, China) according to the manufacturer’s 

instructions. First-strand cDNA was synthesized with reverse transcriptase (Takara, Beijing, China) 

by following the manufacturer’s protocol, and qRT-PCR was conducted on a LightCycler 96 system 

(Roche, Basel, Switzerland). The reaction mixture contained 10 μL of 2 × SYBR Premix Ex Taq II 

(Takara, Beijing, China), 500 nM each of sense and antisense primers, 20 ng of first-strand cDNA. 

Initial thermal-cycling at 95 °C for 30 s was followed by 45 cycles of 95 °C for 10 s and 60 °C for 30 s. 

Ubiquitin (GenBank Accession No. JF760206.1) served as the internal control. Relative gene 

expression levels were analyzed according to the comparative 2−ΔΔC(T) method [27].  

2.5. Molecular Cloning and Construction of Escherichia coli Strains Expressing Universal Stress Proteins 

Full-length opening read frames of SmUSP1, SmUSP8, and SmUSP27 were cloned using high-

fidelity ARHS DNA polymerase (Takara), and restriction sites were added to the primers (Table S2). 

The PCR conditions consisted of an initial denaturation at 98 °C for 1 min; then 30 cycles at 98 °C for 

10 s, 55 °C/58 °C/59 °C for 25 s, and 72 °C for 60 s; followed by a final extension at 72 °C for 10 min. 

The PCR products were digested with SacI and XhoI/BamHI and HindIII/BamHI and XhoI (New 

England BioLabs, or NEB, Ipswich, MA, USA). Afterward, the fragments of SmUSPs, with sticky SacI, 

XhoI/BamHI, HindIII/BamHI, and XhoI (NEB), were inserted into pET28a vectors and sequenced to 

create recombinant plasmids pET28a–SmUSPs. 

http://meme-suite.org/tools/meme
http://www.cbs.dtu.dk/services/TargetP/
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These plasmids plus the empty vector pET28a were transformed into E. coli BL21 strain. Cells 

carrying either pET28a–USPs or pET28a were cultured overnight at 37 °C in Luria-Bertani (LB) liquid 

media containing 50 mg L−1 kanamycin (kan). They were then diluted 1000 times with fresh LB liquid 

media containing 50 mg L−1 kan and incubated continually until the cells reached the mid-log phase 

(OD600nm = 0.6). Isopropyl b-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 

mM and the cells were cultured for another 6 h. They were then harvested by centrifugation, re-

suspended in LB liquid media, and mixed with 5 × SDS loading buffer (Zhuangmeng Biology, Beijing, 

China). After being held in a 100 °C water bath for 5 min, the mixture was used for SDS-PAGE 

analysis. For western blot, HIS-Tag mouse monoclonal antibody was used for detection (Beijing 

Biodragon Immunotechnologies Co., Ltd., Beijing, China) along with HRP Goat anti-mouse Ig (H + 

L) (Abbkine Scientific Co., Ltd, California, USA). The immunoreactive bands were detected by 

chemiluminescence and pictured with the ChemiDoc™ MP Imaging System (BIO-RAD Hercules, 

California, USA). 

2.6. Salt, Heat, and Combined Treatments with Transformed E. coli Cells 

Cell cultures of E. coli were grown as described above. After IPTG induction for 6 h, the OD600 

was determined for each sample so that they could be equilibrated to the same value. Afterward, 

each sample was diluted 10, 100, or 1000 times. For studying their tolerance to salinity, 7-μL samples 

from those different dilutions were spotted onto LB solid media containing 50 mg L−1 kan plus 200 

mM NaCl. The plates were incubated upside-down overnight at 37 °C. Samples with the same OD600 

value were then inoculated into an LB liquid medium (1:200 ratio) containing 50 mg L−1 kan plus 200 

mM NaCl and measurements were made at 2-h intervals to produce a growth curve. 

For evaluating their degree of heat tolerance, samples of the different dilutions were exposed to 

50 °C for 60 min before 7-μL aliquots were spotted on LB media containing 50 mg L−1 kan. The plates 

were incubated upside-down overnight at 37 °C. Samples with the same OD600 value were exposed 

to 50 °C for 30 min before being inoculated into an LB liquid medium (1:200 ratio) containing 50 mg 

L−1 kan. Measurements were made at 2-h intervals to produce a growth curve.  

For studying their tolerance to the combination of salt and heat stressors, the same procedures 

as for evaluating heat tolerance were utilized, except that the LB medium contained both 50 mg L−1 

kan and 200 mM NaCl.  

2.7. Statistical Analysis  

All data were presented as the means ± Standard Deviation (SD) of at least three replicates. 

Statistical analysis was performed with SPSS 17.0 software (IBM, Armonk, State of New York, USA). 

Analysis of variance (ANOVA) was followed by Tukey’s pairwise comparison tests. Mean values 

were considered significantly different at p < 0.05. 

3. Results 

3.1. Gene Identification, Features of Sequences, and Phylogenetic Analysis 

We identified 32 SmUSP genes that contain the UspA domain. They were named SmUSP1 

through SmUSP32, based on their annotated gene IDs (NCBI Accession Number: MF614040 to 

MF614071). Salvia miltiorrhiza has fewer USPs than Arabidopsis. The genomic DNA of the former 

group ranges in length from 362 bp (SmUSP11) to 5478 bp (SmUSP5), while the cDNAs are 279 bp 

(SmUSP11) to 2274 bp (SmUSP3) long (Table S3). The molecular weights of the predicted SmUSPs 

vary from 10361.16 Da (SmUSP11) to 83958.85 Da (SmUSP3), while the theoretical isoelectric points 

are predicted to range from 4.87 (SmUSP15) to 11.16 (SmUSP30). 

A phylogenetic analysis based on full-length protein sequences revealed that these 32 SmUSPs 

can be arranged into four groups together with the 26 Arabidopsis USPs that also contain the UspA 

domain, thereby confirming that all belong to the same gene family (Figure 1). Subfamily A has the 

most, i.e., 20 SmUSPs while subfamily B has only one member, SmUSP10. 

http://www.baidu.com/link?url=6KdC5rhAXb_EsAFG1R3rSsN_5uXkAIhlQ7wGZefcDP0UQXDu6WvQrZeezIXj2i52YFz2pVwOmhVGn3a1M6_qzoGpOcZ__34bPLR_PPf0qrG
http://www.baidu.com/link?url=6KdC5rhAXb_EsAFG1R3rSsN_5uXkAIhlQ7wGZefcDP0UQXDu6WvQrZeezIXj2i52YFz2pVwOmhVGn3a1M6_qzoGpOcZ__34bPLR_PPf0qrG
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Figure 1. Phylogenetic relationship of Salvia miltiorrhiza and Arabidopsis thaliana universal stress 

protein genes (USPs) that contain UspA domain. USP groups are distinguished by color of branch. 

Green stars, USPs from Arabidopsis; red stars, USPs from S. miltiorrhiza. 

3.2. Conserved Motifs, Multiple Sequence Alignments, Genetic Structures, and Analysis of Subcellular 

Locations 

We identified 10 motifs that contain 6 to 50 residues (Figure 2A and Figure S1). The motif 

patterns are conserved among the 32 SmUSPs and members within each group have similar 

organizations. For example, Motif 2 is shared by 27 SmUSPs; Motif 3, by 24 SmUSPs. Motif 1 contains 

the ATP binding motif (G-2X-G-9X-G[S/T]), which is distributed only in subfamilies A and B (Figure 

2B) [28]; Motif 10 is found only in subfamily C; Motif 4 is shared by six members (SmUSP9, 18, 19, 26, 

27, and 32) in subfamily A; Motif 6 is shared by seven members (SmUSP4, 13, 14, 20, 24, 25, and 31) 

in subfamily A; and Motif 5 is shared by three members (SmUSP3, 7, and 22) in subfamily C. 
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Figure 2. Conserved motifs of SmUSP. (A) Conserved motifs and phylogenetic tree of 32 SmUSPs. 

Red spots, members of ATP-binding class; green spots, members of non-ATP-binding class; (B) ATP-

binding motif (G-2X-G-9X-G[S/T]) is marked. 

Motif 1 is distributed only in subfamilies A and B, which indicates that all 21 members have the 

ATP-binding structure. To confirm the sequence similarity of those 21 SmUSPs to the USP sequence 

of M. jannaschii MJ0577 (1MJHA), we performed a multiple sequence alignment (Figure 3). 

Analysis of the exon–intron organization structures of all SmUSPs revealed that they contain 

one to 10 exons, while two genes (in subfamily A) lack introns (Figure 4). An excess of symmetric 

exons and phase-0 introns is likely to facilitate exon-shuffling, recombinational fusion, and an 

exchange of protein domains [29,30]. Among the 100 introns found in these SmUSPs, 40 are phase 0, 

28 are phase 1, and 32 are phase 2. Our analysis of the SmUSP structures demonstrated that these 

genes are relatively well-conserved. 

We then predicted subcellular distributions and found that the 21 SmUSPs are localized in the 

cytosol or nucleus (in Table S3, “other” means that no signal peptide was detected). Our results 

showed that SmUSP8, SmUSP15, SmUSP27, and SmUSP28 are probably targeted to mitochondria; 

SmUSP2, SmUSP5, SmUSP20, and SmUSP29 are probably targeted to chloroplasts; and SmUSP2 and 

SmUSP16 are exclusively targeted to a secretory pathway. 
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Figure 3. Multiple sequence alignment of 21 SmUSPs and USP MJ0577 (1MJH). The secondary 

structures involved in ATP-binding function of SmUSPs are marked below sequences according to 

structure of MJ0577 (1MJH). 

 

Figure 4. Exon–intron organization structures of 32 SmUSPs. Exons are represented by red, round-

cornered rectangles; blue lines connecting 2 exons represent introns. Numbers above lines indicate 

intron phases. 
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3.3. Patterns of Expression for SmUSP Genes in Various Tissues/Organs 

To profile the expression patterns of SmUSP genes in S. miltiorrhiza, we sampled different tissues 

and organs for analysis by qRT-PCR (Figure 5). In all, 29 genes were expressed in all five plant parts, 

while some exhibited diverse profiles. For example, expression was highest in the seeds for 16 

SmUSPs and in the roots for 10 genes. Moreover, SmUSP11, SmUSP16, and SmUSP21 showed the 

highest expression in leaves; SmUSP2 and SmUSP18, in flowers; and SmUSP9, in stems. While 

SmUSP31 was not expressed in the seeds, nor SmUSP18 in the roots, SmUSP20 was specifically 

expressed in both stems and seeds. 

 

Figure 5. Expression patterns of 32 SmUSP genes in different tissues/organs. Transcription levels were 

analyzed according to comparative 2−ΔΔC(T) method; all expression levels are relative to that detected 

in stem samples because all 32 SmUSPs expressed in stem. All data were presented as the means ± 

Standard Deviation (SD) of at least three replicates. 

3.4. Analysis of Promoter Sequences and Differential Expression of SmUSP Genes in Response to Salt and 

Heat Stresses and Their Combination 

We also investigated the putative stress-responsive cis-elements within the regions of 2-kb 

genomic sequences upstream of the 5’-UTR of these 32 SmUSPs (Table S4). Among them, 18 contained 

the ABRE responsible for responses to salinity, dehydration, heat, and cold; 20 had the HSE element 

involved in heat stress-responsiveness; and 22 carried the MBS element that is a transcription factor 

MYB binding site involved in drought-inducibility.  

Expression pattern of different SmUSP genes were shown in response to either single or 

combinatorial stress (Figure 6). Our qRT-PCR result showed that 14 SmUSPs (SmUSP1, 2, 4, 7, 8, 10, 

11, 12, 13, 14, 16, 17, 18, 21) were significantly induced after salt stress, while 8 (SmUPS6, 15, 19, 22, 
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25, 28, 30, 32) were significantly repressed. For the heat treatment, 13 SmUSPs (SmUSP3, 9, 12, 15, 18, 

19, 23, 24, 26, 27, 29, 31, 32) were significantly upregulated, while 11 (SmUSP2, 5, 6, 8, 10, 11, 13, 16, 

21, 25, 30) were significantly downregulated. After the salt/heat combination treatment, most SmUSP 

genes were significantly downregulated, while SmUSP24, 28 were exclusively upregulated. 

 

Figure 6. Expression of 32 SmUSP genes under different stress conditions. Based on comparative 

2−ΔΔC(T) method, all levels are relative to control. For each gene, *, **, and *** indicate that expression is 

significantly different from control at p < 0.5, 0.1, and 0.01, respectively. All data were presented as 

the means ± Standard Deviation (SD) of at least three replicates. 
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3.5. Heterologous Expression and Functional Validation in E. coli 

Transformation of pET28a–SmUSP1, pET28a–SmUSP8, and pET28a–SmUSP27 into E. coli BL21 

produced protein profiles showing overexpression of approximately 27 kDa, 30 kDa, and 24 kDa 

recombinant protein, respectively, which was approximately 3 kDa larger than their predicted values 

(Figure 7). 

The effect of SmUSP expression on stress tolerance was studied with E. coli cells. In the spot 

assay, the number of bacterial colonies expressing each of three genes was compared with that of the 

control (empty-vector) cells (Figure 8). Under salt, heat, or combined-stress treatment, more colonies 

containing the constructs expressed SmUSP1, SmUSP8, or SmUSP27 than did the control, indicating 

that all of these selected genes were able to enhance stress tolerance in that organism. In particular, 

cells expressing SmUSP27 showed greater tolerance to salt and to the combination treatment when 

compared with cells expressing SmUSP1 or SmUSP8. In contrast, the level of tolerance to heat stress 

was strongest in cells expressing SmUSP8. 

 

Figure 7. Western blot analysis of SmUSP-overexpression in E. coli BL21. Lanes 1, 3, 5: E. coli BL21 

strain harboring pET28a-SmUSP27, pET28a-SmUSP8, and pET28a-SmUSP1 without induction, 

respectively. Lanes 2, 4, 6: E. coli BL21 strain harboring pET28a-SmUSP27, pET28a-SmUSP8, and 

pET28a-SmUSP1 induced for 6 h, respectively. Lane 7: E. coli BL21 strain harboring empty pET28a 

induced for 6 h. M: marker. 
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Figure 8. Overexpession of SmUSP1, 8, 27 in E. coli enhanced the tolerance to different stresses by spot 

assay. Each sample was diluted 10-fold, 100-fold, and 1000-fold and spotted onto Luria-Bertani (LB) 

plates to assess tolerance to various stress treatments. LB represents E. coli BL21 strains transformed 

plasmids pET28a–SmUSPs and the empty vector pET28a were spotted onto LB solid media; 200 mM 

NaCl represents those strains were spotted onto LB solid media containing 200 mM NaCl; 60 min 

Heat represents those strains were exposed to 50 °C for 60 min before 7-μL aliquots were spotted on 

LB media; 200 mM NaCl and 30 min Heat represents those strains exposed to 50 °C for 30 min before 

7-μL aliquots were spotted on LB media containing 200 mM NaCl. 

For the liquid culture assay, we measured absorbance (OD600nm), which reflected the extent of 

bacterial growth (Figure 9). Under stress conditions, the activity of E. coli cells expressing SmUSP 

genes increased significantly over time when compared with the control. Salt treatment caused 

absorbance values for cells harboring SmUSP1, SmUSP8, and SmUSP27 to rise by 2.8-, 2.0-, and 3.7-

fold, respectively, over control levels when cells were cultured for 12 h. After heat treatment was 

applied, absorbance was 1.9-, 3.2-, and 2.8-fold higher, respectively, than in the control samples, while 

those increases were 1.4-, 1.9-, and 2.0-fold higher, respectively, than those calculated for the control 

when cells were exposed to the combined salt/heat treatment. Therefore, the resulting trends were 

consistent between the spot and liquid culture assays. 
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Figure 9. Overexpession of SmUSP1, 8, 27 in E. coli enhanced the tolerance to different stresses by 

liquid assay. Each sample was diluted 200-fold, using fresh LB media, and absorbance (OD600nm) was 

measured for 12 h at 2-h intervals. Each sample has three biological replicates. LB represents samples 

with the same OD600 value were inoculated into an LB liquid medium (1:200 ratio); 200 mM NaCl 

represents those samples were inoculated into an LB liquid medium (1:200 ratio) containing 200 mM 

NaCl; 30 min Heat represents those samples were exposed to 50 °C for 30 min before being inoculated 

into an LB liquid medium (1:200 ratio); 200 mM NaCl and 30 min Heat represents those samples were 

exposed to 50 °C for 30 min before being inoculated into an LB liquid medium (1:200 ratio) containing 

200 mM NaCl. 

4. Discussion 

4.1. Members of the SmUSP Gene Family and Their Evolution 

Our study is the first to report the identification and characterization of USPs based on the entire 

genome sequence of S. miltiorrhiza. We identified 32 universal stress proteins in S. miltiorrhiza. A 

search of the NCBI database showed that SmUSP3, 7, and 22 (belonging to subfamily D) contain both 

an UspA domain and a PKinase domain, while the others have only the UspA domain, similar to 

what is found with A. thaliana [6]. Our phylogenetic analysis led us to organize the 32 SmUSPs into 

four subfamilies, A through D. The two UspA classes of bacteria include one that binds ATP, i.e., M. 

jannaschii MJ0577 (1MJH) and one that does not, i.e., Haemophilus influenzae universal stress protein 

(1JMV) [6]. Further analysis revealed that Motif 1 in Salvia contains the ATP-binding domain and 

appears in subfamilies A and B, where members belong to the ATP-binding class. The other SmUSPs 

belong to the non-ATP-binding class. Based on their exon–intron organizational structures, these 32 

SmUSP genes are relatively well-conserved. Results from those examinations plus the phylogenetic 

analysis and multiple sequence alignment suggest that the family members have a common ancestor 

and have diverged over time.  
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4.2. Variations in Gene Expression Patterns  

In S. miltiorrhiza, most of the SmUSPs displayed ubiquitous but highly variable expression in all 

tissues/organs studied, which suggested functional divergence. Because the 29 genes were detected 

in all plant parts, it demonstrates that members of this gene family are widely distributed and 

expressed in that species, and are undoubtedly involved in normal plant growth and development. 

They include 16 SmUSPs that showed the highest expression in seeds. An Arabidopsis USP, At3g53990 

(subfamily A), was widely expressed in most tissues, including the root, stem, leaf, and flower, and 

was most strongly expressed in the stem. This Arabidopsis USP exhibits a chaperone function, and is 

induced significantly by heat, H2O2, and drought [19]. SmUSP9, similar in sequence to At3g53990, 

showed the highest expression in stems and was induced significantly by heat. Another Arabidopsis 

USP, At3g62550 (subfamily A), encodes an ATP-binding motif and is up-regulated in a drought 

microarray dataset [17]. An SpUSP gene from Solanum pennellii is highly expressed in leaves and 

stomata, and can reduce the stomatal aperture to protect plants from drought [10]. Both SmUSP11 

and SmUSP21 (100% bootstrap values between them; Figure 1) showed the highest expression in 

leaves. Their promoter sequences contain a cis-element involved in circadian control, similar to one 

found in an SpUSP gene (Table S5). These results imply that SmUSP11 and SmUSP21 can reduce 

stomatal apertures to protect plants of S. miltiorrhiza against the effects of drought; both were induced 

significantly by heat and drought. SmUSP10, with high sequence similarity to SLRd2, both of which 

are strongly expressed in roots, might enable S. miltiorrhiza to resist oxidative stress [31]. Thus, our 

findings that most of these genes are induced by salt, heat, or a combination of the two, is consistent 

with the results from our analysis of their promoter sequences (Figure 6 and Table S5).  

4.3. SmUSP Genes Enhance Stress Tolerance in E. coli 

The heterologous expression of a USP gene from Salicornia brachiata in E. coli enhances tolerance 

to salt and osmotic stresses [25]. We selected SmUSP1, SmUSP8, and SmUSP27 because of their 

heterologous expression in E. coli. All three were expressed in the five tissue/organ samples, with 

SmUSP1 and SmUSP27 belonging to the ATP-binding class and SmUSP8 belonging to the non-ATP-

binding class. Our results showed that, although SmUSP1/8/27 responded differentially to stress 

conditions, their related proteins conferred tolerance to salt, heat, and the combination treatments 

when applied to E. coli. Compared to SmUSP8, SmUSP27 and SmUSP1 conferred greater tolerance to 

salinity in that organism while SmUSP8 conferred the highest tolerance to heat stress. This was 

probably because the two separate classes of USP exhibit different functions in S. miltiorrhiza. For 

example, whereas SmUSP27 induced the highest tolerance against both salt stress and the 

combination treatment in E. coli, transcription profiling indicated that SmUSP8 was significantly up-

regulated only by heat stress. Results from previous studies have also demonstrated that the response 

of a plant to a combination of two or more stress conditions is unique and one cannot directly 

extrapolate this to the response a plant might have to those stresses when applied individually [5]. 

4.4. Function of SmUSPs under Simultaneous Stresses 

In contrast to having controlled growth conditions when experiments are conducted in the 

laboratory, a field environment often involves the simultaneous exposure of plants to more than one 

type of abiotic and/or biotic stress [5]. Our results indicated that the three selected SmUSPs are less 

tolerant to a combined stress than to salt or heat stress alone. Among the 32 SmUSP genes, 24 were 

significantly induced by the combined treatment while 22 and 25 were significantly induced by salt 

and heat stress, respectively (Figure 6). This led to a high degree of complexity in plant responses 

that are largely controlled by different, and sometimes opposing, signaling pathways that may 

interact and inhibit each other [4]. For example, in a study of Triticum aestivum, researchers found 

that the combined effects of drought plus heat on grain yields were greater than the influence that 

those stressors had individually [32]. In contrast, tomato plants were much better protected against 

the combination of salt and heat stresses than they were when challenged with salinity alone [33]. 

Our data demonstrate how important it is that we develop new plant lines with enhanced tolerance 
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to various stress combinations. With that goal, we propose that future investigations into the 

functions of all SmUSPs should also be validated in both E. coli and S. miltiorrhiza.  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/9/224/s1, Figure 

S1: Motif 2-10 of SmUSP proteins, Table S1: Primers for qRT-PCR, Table S2: Primers for cloning the full-length 

of 3 SmUSPs, Table S3: The characteristics of the 32 SmUSP proteins, Table S4: Promoter sequences analysis of 

32 SmUSPs.  
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