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Abstract: Recent sequence-based profiling technologies such as high-throughput sequencing to
detect fragment nucleotide sequence (Hi-C) and chromatin interaction analysis by paired-end
tag sequencing (ChIA-PET) have revolutionized the field of three-dimensional (3D) chromatin
architecture. It is now recognized that human genome functions as folded 3D chromatin units
and looping paradigm is the basic principle of gene regulation. To better interpret the 3D data
dramatically accumulating in past five years and to gain deep biological insights, huge efforts have
been made in developing novel quantitative analysis methods. However, the full understanding of
genome regulation requires thorough knowledge in both genomic technologies and their related data
analyses. We summarize the recent advances in genomic technologies in identifying the 3D chromatin
structure and interaction, and illustrate the quantitative analysis methods to infer functional domains
and chromatin interactions, and further elucidate the emerging single-cell Hi-C technique and its
computational analysis, and finally discuss the future directions such as advances of 3D chromatin
techniques in diseases.
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1. Introduction

Although the diverse cell types of an organism share the same DNA information, their genomes
undergo quite different structural and organizational changes during differentiation and replication;
and such changes affect gene expression and cellular functions via different information routes.

In vivo, human genome functions as a folded three-dimensional (3D) chromatin polymer.
Nearly half a century ago, gene position on a single chromosome was considered a main determinant
of gene activity due to the lack of an advanced profiling technique. The regulatory activities were
simplified into a genetic one-dimensional sequence underlying the expression level [1]. The 3D
physical location of regulatory elements and corresponding targeted genes have gained prominence
with the most recent sequence-based profiling technologies such as high-throughput sequencing to
detect fragment nucleotide sequence (Hi-C) and chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) [2,3]. Thus, more functionally diversified regulatory elements (REs), including
enhancers, silencers, insulators, and boundaries, have been identified to act collaboratively with active
promoters via long range tethering or chromatin looping mechanisms [4]. The looping paradigm has
now been recognized as a basic principle of gene regulation.
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Through genome-wide assessing of chromatin interaction and characterizing the global contacts
between the regulatory elements and targets, the spatial architecture of the genome is found to be
indispensable functional units in the nearly all of the transcription and translation processes [5–8].
The functional units as promoters, enhancers, silencers, and insulators can regulate their respective
targets in both in cis and in trans manners under spatiotemporal chromatin conformations.
For example, Homeotic complex D (HoxD), with up to 13 homeobox gene paralogs following
collinearity in organization and expression, is regulated with the sequential chromatin opening and
promoter-enhancer looping. The entire HoxD complex keeps in one topologically association domains
(TAD) when undifferentiated, but segments into two TADs during differentiation, together with the
locus transition between these two TADs, related to cell-type identity [9].

Furthermore, huge efforts have been made in developing novel analysis methods to better
interpret the data and gain biological insights. However, the full understanding of genome regulation
requires a thorough knowledge in both genomic technologies and their related data analyses.

In this work, we summarize the recent advances in genomic technologies in identifying 3D
chromatin structure and interaction, and illustrate the quantitative analysis methods on processing
data and inferring functional domains or chromatin interactions, and further elucidate the newly
emerging single-cell Hi-C technique and its computational analysis, and finally discuss the future
directions such as advances of 3D chromatin profiling technique in diseases.

2. Nuclear Organization and Functional Elements

During cell differentiation and transcription, the human genome functions as a folded 3D
chromatin structure. These processes cover the large-scale folding of whole chromosomes or smaller
genomic regions, and the reorganization of local interactions between enhancers and promoters,
mediated by the binding of transcription factors and chromatin looping. The higher-order organization
of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures
such as the lamina [8].

Within condensed chromatin compartments, there exist functionally genetic elements called
TAD, serving as a pervasive structural feature in the genome organization. Moreover, the occurring
topological domains keep stable across the diverse cell types, and remains highly conserved by
cross-species studies, indicating that TADs are inherent and important functional units in mammalian
genomes [10–12].

Thus, to uncover how the human genome is spatially organized and condensed within the cell
nucleus is a prerequisite to understanding genetic regulation mechanisms in normal differentiation,
development, and even dysregulation in disease.

2.1. The Structure and Functional Units of Chromosome

Diverse contact structures and models have been raised so far, such as the early proposed active
chromatin hub (ACH) related to hypersensitive genomic sites [13]. ACH is formed by direct contact
between enhancers and promoters of targets by sequence looping [14]; and, ACH-type contacts were
reported in the mouse gene CD8 locus [15], and in human AML1/RUNX1 [16] and CFTR loci [17].

TAD is a discretely folded structural entity with specific chromatin activities, normally it takes the
size of kilo to mega base pairs. The central regions in TADs have highly frequent chromatin interactions,
supporting the viewpoint that TADs dictate tissue-specific genes’ and enhancers’ activities [18–20].
In addition, there exist clustered housekeeping genes enriched within TAD boundaries, together with
high concentrations of CTCF and cohesion binding events; and, the inter-interactions between TADs
are often inhibited by CTCF binding [8].

Within nucleus, the inner envelope is covered by lamins and other types of proteins, both of
which form the nucleus laminas. Nucleus laminas have the key leverage on the spatial organization of
chromosomes through contacts with chromatins while sustaining spatial positions on the inner nucleus.
Lamina-associated domain (LAD) is a recently identified structural unit associated with condensed
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chromatin, often bound by nucleus lamina. LADs have a median size of ≈0.5 Mb, with a relatively
low gene density where most of these genes are transcriptionally inactive, suggesting that the nuclear
lamina has a repressive role in gene regulation. LADs also participate in the two main roles during cell
differentiation when constitutive LADs (cLAD) keep attached to laminas, and facultative LADs (fLAD)
become disaffiliated from laminas due to the corresponding activated genes. After mitosis, some
LADs can return to the nucleolus periphery, which was reported as a sequence specificity although the
underlying mechanisms remain unclear [21,22].

Noticeably, within TADs, there exists two highly dynamic architectures of submegabase scale:
(I) smaller-size domains, named sub-TADs [23–25], and (II) chromatin loops [24,26], which are closely
related to cell differentiation and development.

2.2. High-Throughput Profiling 3D Techniques

Deciphering the mechanisms controlling chromosome folding and interpreting their roles in gene
regulation become the focus in the current epigenetic study. Recent high-resolution microscopy and
conformation capture-based techniques have revealed that chromatin has a complicated structure,
varying across different organisms and cell types.

Until now, sophisticated profiling platforms in mapping chromatin contacts generate
high-throughput sequencing data with deep insights into the 3D formation of chromatin interactions,
and into their roles in the chromatin organization and cellular function [3,10,27]. The Chromosome
Conformation Capture (3C)-based methods are major genomic technologies widely used for
determining chromatin structure and interaction (Figure 1). Typically, after chromatin fragmentation
being digested by restriction enzyme, being chemically cross-linked, digested, end-repaired, and
proximity-ligated with a biotinylated bridge adaptor, and the resulting ligations are further
sheared, affinity-purified by streptavidin bead immobilization, and subjected to traditional
PCR amplification-based ligation capture or next-generation library preparation for paired-end
sequencing [28]. Ligated products, which are considered as putative chromatin contacts, are further
subjected to the quantitative analysis for determining their genomic distances and locations with
different resolution levels.
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Figure 1. Schematic illustration of the experiment pipeline for the Chromosome, Conformation and
Capture (3C)-based method and its derivatives. Basically, the 3C capture technique includes digestion,
ligation, DNA purification, and the following sequencing for the resulting ligation products.

PCR amplification-based ligation capture techniques that are mainly composed of the typical
3C-based technique and its extensions, such as Chromosome Conformation Capture on Chip (4C) [29,30],
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and Carbon-Copy Chromosome Conformation Capture (5C) [31]. The sequencing-based techniques
generally cover multiplexed 3C sequencing (3C-seq) [32], 4C combined with high-throughput
sequencing (4C-seq) [33], capture-C [34], Hi-C [3], Tethered Conformation Capture (TCC) [35], and
Targeted Chromatin Capture (T2C) [36]. There are also other techniques in the field, but due to the
space limit, we just name a few representative platforms as listed above.

3. Advances in Statistical and Computational Analyses

3.1. General Pipeline for Preprocessing High-Throughput Profiling 3D Data

Given the diverse experimental protocols, there requires specific consideration in designing the
computational algorithms and pipelines for characterizing 3D chromatin interaction. In this section,
we illustrate the basic principle and general pipeline for preprocessing high-throughput profiling 3D
data. A typical sequence-based 3D data preprocess procedure includes raw reads mapping, fragment
filtering, read-pair filtering, normalization, and downstream analysis (Figure 2). For the initial mapping
procedure, because the end distances in the ligation products are of various lengths, from a few base
pairs to kilobases, thus it is necessary to iteratively map each pair-end reads in processing the raw
sequence reads.

In short, Figure 2 lists the other necessary analysis procedures as fragment and read-pair filtering,
before the bias-correction normalization. Then downstream analyses focus on pattern recognition and
deep interpretation of the spatial interaction among chromatin structures.
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3.2. Progresses in Modeling and Analyse of 3D Chromatin Interactions

In addition to noticeable advancements in profiling techniques, statistical models and quantitative
analyses are a prerequisite in discovering the chromosome folding mechanism, together with its origin
and function in diverse cellular activities. In this section, we review recent progresses in chromosome
modeling with a focus on computational analysis of identifying chromatin interactions.

The Strings and Binders Switch (SBS) model was introduced based on the hypothesis that the
chromatin conformation occurs during the interaction of specific binding sites with diffusing binding
factors. SBS model has shown that it can recapitulate scaling and dynamic folding properties of
chromosome organization in the spatial and temporal dimensions [37,38].



Genes 2017, 8, 223 5 of 15

To reveal the causal underpinnings of complex diseases, there is still an open challenge
to distinguish the gene targets of a distal regulatory element from other adjacent coding genes.
Whalen et al. presented a computational method, TargetFinder, to reconstruct the regulatory
landscapes from multiple genome-wide features [39]. It was claimed that the resulting models could
accurately predicate the individual enhancer–promoter interactions across multiple cell lines with
a much smaller false discovery rate than using the closest gene. The authors further evaluated the
genomic signatures contributing to the claimed accuracy, and revealed combined interactions among
structural proteins, transcription factors, epigenetic modifications, and transcription that together
distinguish interacting from other enhancer-promoter pairs. In summary, the method was reported to
accurately predict the interactions up to 2 Mb apart at a high resolution and identify minimal sets of
predictive features quantified by genomic region; together with a focus on high-resolution intra- rather
than inter-TAD interactions [40].

Because 3D genome structures are highly plastic and diverse among cells even in an isogenic
sample, it is still a major task to inferring structure-function linkages. Recently, based on
ensemble-averaged and single-cell Hi-C data, Dai and their colleagues reported an approach to
comprehensively identify 3D chromatin clusters occurring frequently across a population of genome
structures [41]. At the macrodomain resolution on lymphoblastoid cells, they identified an atlas
of stable inter-chromosomal chromatin clusters, defined as Regulatory Communities. They further
showed centromere clustering and transcription factor (TF) binding could significantly stabilize
the communities that were found to be cell specific. This indicates that the connection between
expression variability and genome structure [40]. Lan et al. proposed a Mixture Poisson Regression
Model and a power-law decay background to define a highly specific set of interacting genomic loci
and regions [15]. By integrating with multiple ENCODE Consortium resources with the Hi-C data,
DNase-seq data and ChIP-seq data for 45 TFs and 9 histone modifications, they classified 12 different
clusters of interacting loci with two distinguished types of chromatin linkages. They further found that
cluster 9 was highly enriched for three TFs (GATA1, GATA2 and c-Jun) and three chromatin modifiers
(BRG1, INI1, and SIRT6). Their work provides genome-wide evidence that the Hi-C data identify sets
of biologically relevant interacting loci [14].

To assess the chromatin domains and their positional association, Molitor et al. introduced
multiscale correlation evaluation (MCORE), based on the fluctuation spectrum of mapped sequencing
reads to quantify and compare chromatin patterns with diverse scales. Through integrating
multiple sources from chromatin immunoprecipitation, RNA expression, DNA methylation, and 3C
experiments, the approach was claimed capable of revealing the positional relationships on different
genomic scales [41].

Despite plenty of cis-regulatory sequences annotated, it is still challenging to identify their target
genes in the human genome. Previous strategy is to profile the long-range looping interactions for
those elements with 3C-based techniques, but they lack either resolution or coverage depth satisfying
the whole-genome and precise capture of chromatin interactions.

Ren and his colleagues reported a comprehensive chromatin interaction map at 5–10 kb resolution
for human fibroblasts using a genome-wide Hi-C sequencing technique [28]. Through determining
over one million long-range chromatin interactions, they concluded the general principles of chromatin
organization at different types of genomic features, together with the dynamics of promoter-enhancer
contacts after tumor necrosis factor-α (TNF-α) signaling in these cells. Long-range interactions within
transcription regulatory elements implement key roles in gene activation, epigenetic silencing, and
chromatin organization. They further claimed that the established 3D chromatin landscape for
a particular cell type is comparatively stable and could function cell-specifically on the selection
or activation of target genes [27].

Genetic transcription activities depend on tissue-specific chromatin architecture and flexible
localization among the involved transcription and regulation elements. The inherent organization
and coordination mechanisms are still under investigation. Bortle et al. explored recent findings, and
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focused on highly conserved multiprotein complexes composed of insulator and Polycomb group
proteins, which were identified with functions in interceding long-range interactions and nuclear
organization [42]. Furthermore, chromatin contacts for inter- and intra-promoters and other elements
present cell-specific epigenomic characteristics. Network analysis is another way in modeling the
chromatin interactions. Recently, a chromatin assortativity-based method was proposed to combine the
epigenomic landscape of a specific cell type with its chromatin interaction network. By high-resolution
promoter capture Hi-C, Hi-Cap, and ChIA-PET data from mouse embryonic stem cells, the authors
studied promoter-centered chromatin interaction networks, and further quantified the presence of
specific epigenomic features in the chromatin fragments for the network nodes. It was reported the
method could identify the proteins or chromatin marks mediating the genomic contacts [43].

3.3. Processes in Inferring 3D Spatial Structure

Both the well-established light microscopy-based cell-imaging and most recent molecular
3C-based techniques provide researchers with the unprecedentedly precise insight into human
genomics. The human genome exists as a stereoscopic entity within the nucleus, and lineage-specific
transcriptional activities related to cell identity and fate are performed under the 3D context. Molecular
3C-based techniques have many unique advantages in 3D chromosome conformation studies, which
make it possible to identify the conformations between cells in the population. Hi-C contact maps are
the foundation for Hi-C data analyses of 3D spatial structure, as depicted in Figure 3. High quality
Hi-C contact map is an important prerequisite for 3D chromosome conformation study, and several
typical tools for Hi-C data processing are listed in Table 1.
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points, respectively. Peak detection is used to distinguish between functional contacts and contacts that
are due to random polymer looping or other confounding factors.

Table 1. Typical tools for Hi-C data analysis.

Tool Sequencing Reads Aligner Feature Programing Language

HiCapp [44] Bowtie2 Correct copy number bias Shell
hiclib [45] Bowtie2 Iterative Python

HiCExplorer [46] Bwa, Bowtie2, Hisat2 Check inter chromosomal fraction of reads Python
HiC-Pro [47] Bowtie2 Trimming of reads Python, R
TADbit [48] GEM Iterative Python
HiCUP [49] Bowtie, Bowtie2 Pre-truncation Perl, R

HiC-Box [50] Bowtie2 Correct contact maps for systematic biases Python
HiCdat [51] Subread Analyze larger structural features C++, R
HIPPIE [52] BWA Extract enhancer-target gene relationships Python, Perl, R

HiC-inspector [53] Bowtie Focus on mapping and filtering Perl, R
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To correct the copy number bias in the Hi-C interaction matrix, Wu et al. recently proposed
a linear regression-based chromosome-level adjustment method called caICB [45], which is based on
the ICB protocol, to correct for the bias. They proposed a chromosome-adjusted iterative correction
method that significantly improved in terms of eliminating copy number bias, when compared to the
original iterative correction [44].

TAD is a discretely folded domain with self-interacting chromatin in its central region,
and normally such a structural entity ranges from kilo- to mega-basepairs. Since the current 3C-based
sequencing data is inevitably contaminated with systematic biases, the ICE (iterative correction and
eigenvector decomposition) technique was proposed to identify the local chromatin states, global
chromosomal interactions, and the conserved chromatin organization [45]. To infer the hierarchy of
the nested structure, TADtree was recently introduced based on empirical distributions of contact
frequencies within TADs [54]. TopDom is another easy-to-implement pipeline to study cross-tissue
TAD conservation [55]. To tackle terabase-size data for those with less informatics experience, Juicer is
recommended as a one-click system for Hi-C experiments, although essentially it needs much more
parallel computing resources [56].

Proper gene expression requires communication with the corresponding regulatory elements
scattered across the chromosome. The physics of chromatin fibers imposes a range of constraints on
such communication. The molecular and biophysical mechanisms for chromosomal communication are
key issues in the spatial organization of chromosomes. Dekker et al. proposed a topological machine
with the claimed function of setting up and exploiting a 3D genome organization to both promote
and censor intra- and inter-chromosome communication [57]. Through the overview of 3D genome
organization principles in mammalian cells, Gorkin et al. studied the emerging relationship between
genome organization and lineage-specific transcriptional regulation, and argued their inextricable
linkages with cell pluripotency [58].

To infer 3D spatial associations within TADs from histone modification, chromatin accessibility
and RNA-seq profiling resources, EpiTensor was proposed to computationally identify sets of
hotspots as key elements stabilizing the 3D interaction. Through further study on diverse cell types,
the identified hotspots were claimed to complete with higher chromatin, transcriptional activity,
and enriched TF and ncRNA binding [59].

Besides considerable genome-wide study on chromosomal architecture by 3C and Hi-C techniques,
the recent in situ DNase Hi-C was reported to demonstrate the inactive murine X chromosome adopts
a bipartite structure. The in situ DNase Hi-C relies on the endonuclease DNase I, rather than on
a restriction enzyme to digest chromatin as traditional Hi-C does. Furthermore, through comparison
with traditional Hi-C libraries, it is claimed that in situ DNase Hi-C has a higher effective resolution.
The advantage brings forward much more opportunities in higher sequencing depth or hybrid capture
techniques [28].

4. Advances in Single Cell Hi-C Computational Analyses

4.1. Computational Methods to Infer Chromatin 3D Structure from Single-Cell Hi-C Data

Owing to the great improvement in the Hi-C protocol [60], single-cell contact maps can be
extracted from Hi-C data through following several steps, including the trimming of reads, mapping
the reads to the reference genome, and the filtering of the mapped reads and read pairs at several
different levels [61]. From each extracted single cell Hi-C contact map, chromatin 3D structures
can be then inferred by using computational methods, as depicted in Figure 4. Two main types of
computational methods are discussed in this section, consensus methods and deconvolution methods.

Consensus methods transform the frequency of read pairs into pairwise distances and store the
distances in a matrix, in which each element can be visualized as a point in 3D space. Interaction
frequencies, nuclear envelope, nuclear pore complexes, and nucleoli have been used as constraints to
the reconstruction of the 3D structures. However, each distance is based on an average of multiple
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structures in that population and is not suitable for the triangle inequality principle. As a result,
the structure inferred from the average of millions of cells will differ from structures derived from the
subpopulations of cells and will typically not represent any of the structures in individual cells [62,63].
Semi-definite programming techniques have been applied to find the best consensus structure fitting
the observed Hi-C data and a golden section search has been used to estimate the correct parameter
for converting the contact frequency to spatial distance [64], which makes it possible to recover the
correct structure in the noise-free case. Bayesian statistical models have also been used to study the
consensus structures and structural variations of chromatins from the Hi-C data. The systematic biases
and account for observational noise sources can be removed properly by rigorous statistical inference,
and sequencing depth variations can be explicitly modeled by Poisson distributions [65].Genes 2017, 8, 223  8 of 14 
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Figure 4. Three-dimensional (3D) structure of haploid mouse embryonic stem cells (mESCs) with the
chromosomes colored differently and two chromosomes are shown separately Single-cell Hi-C data
comes from Stevens et al. [66].

Consensus methods are usually used to identify unique 3D structures and assess chromosomal
structural heterogeneity, but cannot fully capture the 3D structural heterogeneity within a cell
population [62]. They provide a possible approach to explore single cell 3D structure.

To identify structurally plausible, unobserved substructures, deconvolution methods are applied
to seek an ensemble of 3D structural solutions and perform well in capture the inherent heterogeneity
of chromosome structures in a cell population. There are two main deconvolution methods, namely
structural deconvolution and matrix deconvolution. Structural deconvolution is applied at the 3D
structure reconstruction level, and the resulting structural ensemble can be clustered to study the
underlying structural variability and sub-population constituents. Matrix deconvolution is applied
directly on contact frequency matrices and are usually faster than structural deconvolution, but the
substructures recovered might not be physically plausible. Implementing solid-phase ligation is
applied to improve the signal-to-noise ratio and enable a detailed analysis of the inter-chromosomal
interactions [35]. TADs are used to search for a set of contact frequency matrices that optimally reflect
the proportions of each predicted substructure in the cell population [67]. Combinatorial cellular
indexing is applied to separate the cells by karyotypic and cell-cycle state differences, and to identify
cell-to-cell heterogeneity in chromosomal conformation [68].
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Deconvolution methods enable the inference of the main substructures that exist but require
extensive computational resources. It is also not quite sure how accurate the deconvolution
methods could be and whether the current data allows for the well-determined estimation of
structural subpopulations.

4.2. Challenges for Single Cell Hi-C Computational Analyses

A crucial issue with single-cell Hi-C chromosome contact information is the inherent sparsity of
the contact frequency maps [69,70], as depicted in Figure 5.

The genome coverage from the richest data sets was as low as approximately 2.5%, and the sparsity
of genome coverage even led to concerns over the success rate of the single cell Hi-C protocol [60].
One approach to alleviate the sparsity of single-cell Hi-C data is to computationally generate the
missing distances by referring to the observed contacts, but additional noise may be introduced at the
same time, which dominates over the more accurate local distances. By combining the shortest-path
derived distances with appropriate weights to reduce the influence of noise, the Manifold based
optimization approach is a good choice to reconstruct 3D structures consistent with the chromosome
contact maps [71]. Deep sequencing of single-cell Hi-C ligation products may be a solution to enable
the reconstruction of 3D chromatin conformations with high confidence.

Genes 2017, 8, 223  9 of 14 

 

contact maps [71]. Deep sequencing of single-cell Hi-C ligation products may be a solution to enable 
the reconstruction of 3D chromatin conformations with high confidence. 

 
Figure 5. Single-cell Hi-C contact map of haploid mESCs, sparsity of the values in the distance matrix 
is the significant weakness Single-cell Hi-C data comes from Stevens et al. [66]. 

Another major inherent limitation for single-cell Hi-C experiments is the technical noise. Quality 
control of sequencing data is crucial to avoid technical artifacts. For single-cell sequencing, technical 
noise is mainly due to low amounts of starting material, often resulting in variable capture efficiencies 
[72]. Sequencing of negative controls is applied to reduce the reagent contamination and sample 
cross-contamination. Mapping efficiency or coverage cut-offs can be used to eliminate cells that have 
performed much worse than the average. 

Additionally, the two copies of human autosomal chromosomes are difficult to be distinguished 
in single-cell Hi-C experiments, which can complicate the 3D structure reconstruction. The genomic 
distribution of the digestion sites of the restriction enzyme used can also be an important limitation 
to the Hi-C map resolution. 

5. Conclusions and Future Perspectives 

Despite that we have witnessed a booming field of 3D genome organization studies within a 
short period, we should be cautious that some important caveats have been noted about the nature 
of the contacts detected by ligation-based methods, especially when interpreting results obtained 
with these techniques [8]. It is necessary to integrate multi-source information and multi-level 
approaches in analyzing transcriptional regulation and their functional characteristics [73]. 

In addition, many issues depend on the improvement of genomic techniques and the 
development of sophisticated statistical and computational methods. We want to point out the 
devoid of substantial applications of 3D chromatin structure and interaction in disease biology. 

Figure 5. Single-cell Hi-C contact map of haploid mESCs, sparsity of the values in the distance matrix
is the significant weakness Single-cell Hi-C data comes from Stevens et al. [66].

Another major inherent limitation for single-cell Hi-C experiments is the technical noise.
Quality control of sequencing data is crucial to avoid technical artifacts. For single-cell sequencing,
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technical noise is mainly due to low amounts of starting material, often resulting in variable capture
efficiencies [72]. Sequencing of negative controls is applied to reduce the reagent contamination and
sample cross-contamination. Mapping efficiency or coverage cut-offs can be used to eliminate cells
that have performed much worse than the average.

Additionally, the two copies of human autosomal chromosomes are difficult to be distinguished
in single-cell Hi-C experiments, which can complicate the 3D structure reconstruction. The genomic
distribution of the digestion sites of the restriction enzyme used can also be an important limitation to
the Hi-C map resolution.

5. Conclusions and Future Perspectives

Despite that we have witnessed a booming field of 3D genome organization studies within a short
period, we should be cautious that some important caveats have been noted about the nature of the
contacts detected by ligation-based methods, especially when interpreting results obtained with these
techniques [8]. It is necessary to integrate multi-source information and multi-level approaches in
analyzing transcriptional regulation and their functional characteristics [73].

In addition, many issues depend on the improvement of genomic techniques and the development
of sophisticated statistical and computational methods. We want to point out the devoid of substantial
applications of 3D chromatin structure and interaction in disease biology.

5.1. Advances in 3D Chromatin Structure Interaction in Diseases

With the development of 3D genome technology, many labs have promptly applied 3C-based
high-throughput profiling techniques for disease research. Here, we review a few representative
studies to demonstrate aberrant 3D chromatin structures and interactions in human diseases.

Hi-C contact frequencies have been found to be tissue-specific and to influence the translocation
partner selection in human diseases [74]. Chromosomal 3D structure has been indicated to have
an intricate relationship with gene expression in breast cancer [75] and leukemia [14]. Aberrantly
amplified distant estrogen response elements reduce transcription of the proximal target genes in
luminal breast cancer [76].

Noticeably, the recent 3C-based technique revealed that genomic duplications in human patient
cells and mice can lead to the formation of new chromatin domains (neo-TADs), and such a process
determines their corresponding pathology outcomes [77]. Enhancer hijacking is recently proposed in
the rearrangement of TAD boundaries, which mediates cancer-related gene overexpression in colorectal
cancer [78]. Genetic mutations can disrupt chromosome neighborhood boundaries and then activate
oncogene in many types of cancer [79].

Due to hypermethylation at cohesin and CTCF binding sites human IDH mutant glioma have
dysfunction of chromosomal topological domains and allows oncogene expression [80]. The disruption
of TADs has been reported to rewire chromatin structure interactions between promoters and
enhancers, which leads to human limb malformations [81].

For validation and complement analysis on genomic 3C-based profiling techniques, the recent
molecular imaging for noninvasive detection, such as quantitative 3D telomere fluorescence in
situ hybridization (FISH) analysis and 3D super-resolution imaging (3D-SIM), are also a promising
direction [82,83].

Acknowledgments: This work was supported by the Natural Science Foundation of Jiangsu, China (BE2016655
and BK20161196), Fundamental Research Funds for China Central Universities (2016B08914) and Changzhou
Science & Technology Program (CE20155050); partly supported by National Institutes of Health (NIGMS
R01GM114142 and NCI U54CA217297). This work was made use of the resources supported by the
NSFC-Guangdong Mutual Funds for Super Computing Program (2nd Phase), and the Open Cloud Consortium
sponsored project resource, supported in part by grants from Gordon and Betty Moore Foundation and the
National Science Foundation (USA) and major contributions from OCC members.



Genes 2017, 8, 223 11 of 15

Author Contributions: B.T. and V.X.J. conceived and designed the topic; X.C. contributed the single-cell Hi-C
summary; Y.X. contributed the summary of analysis tools; Z.C. contributed the summary of the recent technological
progress; Y.Z. contributed the summary of Hi-C in disease. B.T., X.C., Y.X., W.Z., Y.Z. and V.X.J. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Giniger, E.; Varnum, S.M.; Ptashne, M. Specific DNA binding of GAL4, a positive regulatory protein of yeast.
Cell 1985, 40, 767–774. [CrossRef]

2. Rusk, N. When chia pets meet Hi-C. Nat. Meth. 2009, 6, 863. [CrossRef]
3. Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.;

Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive mapping of long-range interactions reveals
folding principles of the human genome. Science 2009, 326, 289–293. [CrossRef] [PubMed]

4. Feuerborn, A.; Cook, P.R. Why the activity of a gene depends on its neighbors. Trends Genet. 2015, 31,
483–490. [CrossRef] [PubMed]

5. Chatterjee, S.; Ahituv, N. Gene regulatory elements, major drivers of human disease. Ann. Rev. Genom.
Hum. Genet. 2017, 18, 45–63. [CrossRef] [PubMed]

6. Bonev, B.; Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 2016, 17, 661–678.
[CrossRef] [PubMed]

7. Boettiger, A.N.; Bintu, B.; Moffitt, J.R.; Wang, S.; Beliveau, B.J.; Fudenberg, G. Super-resolution imaging
reveals distinct chromatin folding for different epigenetic states. Nature 2016, 529, 418–422. [CrossRef]
[PubMed]

8. Pombo, A.; Dillon, N. Three-dimensional genome architecture: Players and mechanisms. Nat. Rev. Mol.
Cell Biol. 2015, 16, 245–257. [CrossRef] [PubMed]

9. Noordermeer, D.; Leleu, M.; Schorderet, P.; Joye, E.; Chabaud, F.; Duboule, D. Temporal dynamics and
developmental memory of 3D chromatin architecture at hox gene loci. eLife 2014, 3, e02557. [CrossRef]
[PubMed]

10. Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y. Topological domains in mammalian genomes
identified by analysis of chromatin interactions. Nature 2012, 485, 376–380. [CrossRef] [PubMed]

11. Dixon, J.R.; Jung, I.; Selvaraj, S.; Shen, Y.; Antosiewicz-Bourget, J.E.; Lee, A.Y. Chromatin architecture
reorganization during stem cell differentiation. Nature 2015, 518, 331–336. [CrossRef] [PubMed]

12. Schmitt, A.D.; Hu, M.; Jung, I.; Xu, Z.; Qiu, Y.; Tan, C.L.; Li, Y.; Lin, S.; Lin, Y.; Barr, C.L.; et al. A compendium
of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 2016, 17,
2042–2059. [CrossRef] [PubMed]

13. Tolhuis, B.; Palstra, R.-J.; Splinter, E.; Grosveld, F.; de Laat, W. Looping and interaction between hypersensitive
sites in the active β-globin locus. Mol. Cell 2002, 10, 1453–1465. [CrossRef]

14. Lan, X.; Witt, H.; Katsumura, K.; Ye, Z.; Wang, Q.; Bresnick, E.H.; Farnham, P.J.; Jin, V.X. Integration of
Hi-C and CHIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res. 2012, 40, 7690–7704.
[CrossRef] [PubMed]

15. Ktistaki, E.; Garefalaki, A.; Williams, A.; Andrews, S.R.; Bell, D.M.; Foster, K.E.; Spilianakis, C.G.; Flavell, R.A.;
Kosyakova, N.; Trifonov, V.; et al. CD8 locus nuclear dynamics during thymocyte development. J. Immunol.
2010, 184, 5686–5695. [CrossRef] [PubMed]

16. Markova, E.N.; Kantidze, O.L.; Razin, S.V. Transcriptional regulation and spatial organisation of the human
AML1/RUNX1 gene. J. Cell. Biochem. 2011, 112, 1997–2005. [CrossRef] [PubMed]

17. Blackledge, N.P.; Ott, C.J.; Gillen, A.E.; Harris, A. An insulator element 3′ to the CFTR gene binds CTCF
and reveals an active chromatin hub in primary cells. Nucleic Acids Res. 2009, 37, 1086–1094. [CrossRef]
[PubMed]

18. Ghavi-Helm, Y.; Klein, F.A.; Pakozdi, T.; Ciglar, L.; Noordermeer, D.; Huber, W. Enhancer loops appear
stable during development and are associated with paused polymerase. Nature 2014, 512, 96–100. [CrossRef]
[PubMed]

19. Shen, Y.; Yue, F.; McCleary, D.F.; Ye, Z.; Edsall, L.; Kuan, S.; Wagner, U.; Dixon, J.; Lee, L.; Lobanenkov, V.V.; et al.
A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488, 116–120. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0092-8674(85)90336-8
http://dx.doi.org/10.1038/nmeth1209-863
http://dx.doi.org/10.1126/science.1181369
http://www.ncbi.nlm.nih.gov/pubmed/19815776
http://dx.doi.org/10.1016/j.tig.2015.07.001
http://www.ncbi.nlm.nih.gov/pubmed/26259670
http://dx.doi.org/10.1146/annurev-genom-091416-035537
http://www.ncbi.nlm.nih.gov/pubmed/28399667
http://dx.doi.org/10.1038/nrg.2016.112
http://www.ncbi.nlm.nih.gov/pubmed/27739532
http://dx.doi.org/10.1038/nature16496
http://www.ncbi.nlm.nih.gov/pubmed/26760202
http://dx.doi.org/10.1038/nrm3965
http://www.ncbi.nlm.nih.gov/pubmed/25757416
http://dx.doi.org/10.7554/eLife.02557
http://www.ncbi.nlm.nih.gov/pubmed/24843030
http://dx.doi.org/10.1038/nature11082
http://www.ncbi.nlm.nih.gov/pubmed/22495300
http://dx.doi.org/10.1038/nature14222
http://www.ncbi.nlm.nih.gov/pubmed/25693564
http://dx.doi.org/10.1016/j.celrep.2016.10.061
http://www.ncbi.nlm.nih.gov/pubmed/27851967
http://dx.doi.org/10.1016/S1097-2765(02)00781-5
http://dx.doi.org/10.1093/nar/gks501
http://www.ncbi.nlm.nih.gov/pubmed/22675074
http://dx.doi.org/10.4049/jimmunol.1000170
http://www.ncbi.nlm.nih.gov/pubmed/20404270
http://dx.doi.org/10.1002/jcb.23117
http://www.ncbi.nlm.nih.gov/pubmed/21445863
http://dx.doi.org/10.1093/nar/gkn1056
http://www.ncbi.nlm.nih.gov/pubmed/19129223
http://dx.doi.org/10.1038/nature13417
http://www.ncbi.nlm.nih.gov/pubmed/25043061
http://dx.doi.org/10.1038/nature11243
http://www.ncbi.nlm.nih.gov/pubmed/22763441


Genes 2017, 8, 223 12 of 15

20. Symmons, O.; Uslu, V.V.; Tsujimura, T.; Ruf, S.; Nassari, S.; Schwarzer, W.; Ettwiller, L.; Spitz, F. Functional
and topological characteristics of mammalian regulatory domains. Genome Res. 2014, 24, 390–400. [CrossRef]
[PubMed]

21. Guelen, L.; Pagie, L.; Brasset, E.; Meuleman, W.; Faza, M.B.; Talhout, W.; Eussen, B.H.; de Klein, A.; Wessels, L.;
de Laat, W.; et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina
interactions. Nature 2008, 453, 948–951. [CrossRef] [PubMed]

22. Peric-Hupkes, D.; Meuleman, W.; Pagie, L.; Bruggeman, S.W.M.; Solovei, I.; Brugman, W.; Gräf, S.; Flicek, P.;
Kerkhoven, R.M.; van Lohuizen, M.; et al. Molecular maps of the reorganization of genome-nuclear lamina
interactions during differentiation. Mol. Cell 2010, 38, 603–613. [CrossRef] [PubMed]

23. Phillips-Cremins, J.E.; Sauria, M.E.G.; Sanyal, A.; Gerasimova, T.I.; Lajoie, B.R.; Bell, J.S.K.; Ong, C.-T.;
Hookway, T.A.; Guo, C.; Sun, Y.; et al. Architectural protein subclasses shape 3D organization of genomes
during lineage commitment. Cell 2013, 153, 1281–1295.

24. Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.;
Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 2014, 159, 1665–1680. [CrossRef] [PubMed]

25. Dowen, J.M.; Fan, Z.P.; Hnisz, D.; Ren, G.; Abraham, B.J.; Zhang, L.N. Control of cell identity genes occurs in
insulated neighborhoods in mammalian chromosomes. Cell 2014, 159, 374–387. [CrossRef] [PubMed]

26. Beagan, J.A.; Duong, M.T.; Titus, K.R.; Zhou, L.; Cao, Z.; Ma, J.; Lachanski, C.V.; Gillis, D.R.;
Phillips-Cremins, J.E. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage
commitment. Genome Res. 2017, 27, 1139–1152. [CrossRef] [PubMed]

27. Jin, F.; Li, Y.; Dixon, J.R.; Selvaraj, S.; Ye, Z.; Lee, A.Y.; Yen, C.-A.; Schmitt, A.D.; Espinoza, C.A.; Ren, B.
A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013, 503,
290–294. [CrossRef] [PubMed]

28. Ramani, V.; Cusanovich, D.A.; Hause, R.J.; Ma, W.; Qiu, R.; Deng, X.; Blau, C.A.; Disteche, C.M.; Noble, W.S.;
Shendure, J.; et al. Mapping 3D genome architecture through in situ dnase Hi-C. Nat. Protoc. 2016, 11,
2104–2121. [CrossRef] [PubMed]

29. Simonis, M.; Klous, P.; Splinter, E.; Moshkin, Y.; Willemsen, R.; de Wit, E.; van Steensel, B.; de Laat, W.
Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation
capture-on-chip (4C). Nat. Genet. 2006, 38, 1348–1354. [CrossRef] [PubMed]

30. Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing chromosome conformation. Science 2002, 295,
1306–1311. [CrossRef] [PubMed]

31. Dostie, J.; Richmond, T.A.; Arnaout, R.A.; Selzer, R.R.; Lee, W.L.; Honan, T.A.; Rubio, E.D.; Krumm, A.;
Lamb, J.; Nusbaum, C.; et al. Chromosome conformation capture carbon copy (5C): A massively parallel
solution for mapping interactions between genomic elements. Genome Res. 2006, 16, 1299–1309. [CrossRef]
[PubMed]

32. Stadhouders, R.; Kolovos, P.; Brouwer, R.; Zuin, J.; van den Heuvel, A.; Kockx, C.; Palstra, R.-J.; Wendt, K.S.;
Grosveld, F.; van Ijcken, W.; et al. Multiplexed chromosome conformation capture sequencing for rapid
genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc. 2013, 8, 509–524.
[CrossRef] [PubMed]

33. Naka, K.; Hirao, A. Maintenance of genomic integrity in hematopoietic stem cells. Int. J. Hematol. 2011, 93,
434–439. [CrossRef] [PubMed]

34. Hughes, J.R.; Roberts, N.; McGowan, S.; Hay, D.; Giannoulatou, E.; Lynch, M.; De Gobbi, M.; Taylor, S.;
Gibbons, R.; Higgs, D.R. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single,
high-throughput experiment. Nat. Genet. 2014, 46, 205–212. [CrossRef] [PubMed]

35. Kalhor, R.; Tjong, H.; Jayathilaka, N.; Alber, F.; Chen, L. Genome architectures revealed by tethered
chromosome conformation capture and population-based modeling. Nat. Biotechnol. 2012, 30, 90–98.
[CrossRef] [PubMed]

36. Kolovos, P.; van de Werken, H.J.; Kepper, N.; Zuin, J.; Brouwer, R.W.; Kockx, C.E.; Wendt, K.S.;
van IJcken, W.F.; Grosveld, F.; Knoch, T.A. Targeted chromatin capture (T2C): A novel high resolution
high throughput method to detect genomic interactions and regulatory elements. Epigenet. Chromatin 2014, 7.
[CrossRef] [PubMed]

37. Nicodemi, M.; Pombo, A. Models of chromosome structure. Curr. Opin. Cell Biol. 2014, 28. [CrossRef]
[PubMed]

http://dx.doi.org/10.1101/gr.163519.113
http://www.ncbi.nlm.nih.gov/pubmed/24398455
http://dx.doi.org/10.1038/nature06947
http://www.ncbi.nlm.nih.gov/pubmed/18463634
http://dx.doi.org/10.1016/j.molcel.2010.03.016
http://www.ncbi.nlm.nih.gov/pubmed/20513434
http://dx.doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/25497547
http://dx.doi.org/10.1016/j.cell.2014.09.030
http://www.ncbi.nlm.nih.gov/pubmed/25303531
http://dx.doi.org/10.1101/gr.215160.116
http://www.ncbi.nlm.nih.gov/pubmed/28536180
http://dx.doi.org/10.1038/nature12644
http://www.ncbi.nlm.nih.gov/pubmed/24141950
http://dx.doi.org/10.1038/nprot.2016.126
http://www.ncbi.nlm.nih.gov/pubmed/27685100
http://dx.doi.org/10.1038/ng1896
http://www.ncbi.nlm.nih.gov/pubmed/17033623
http://dx.doi.org/10.1126/science.1067799
http://www.ncbi.nlm.nih.gov/pubmed/11847345
http://dx.doi.org/10.1101/gr.5571506
http://www.ncbi.nlm.nih.gov/pubmed/16954542
http://dx.doi.org/10.1038/nprot.2013.018
http://www.ncbi.nlm.nih.gov/pubmed/23411633
http://dx.doi.org/10.1007/s12185-011-0793-z
http://www.ncbi.nlm.nih.gov/pubmed/21384097
http://dx.doi.org/10.1038/ng.2871
http://www.ncbi.nlm.nih.gov/pubmed/24413732
http://dx.doi.org/10.1038/nbt.2057
http://www.ncbi.nlm.nih.gov/pubmed/22198700
http://dx.doi.org/10.1186/1756-8935-7-10
http://www.ncbi.nlm.nih.gov/pubmed/25031611
http://dx.doi.org/10.1016/j.ceb.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/24804566


Genes 2017, 8, 223 13 of 15

38. Barbieri, M.; Chotalia, M.; Fraser, J.; Lavitas, L.-M.; Dostie, J.; Pombo, A.; Nicodemi, M. Complexity of
chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA 2012, 109,
16173–16178. [CrossRef] [PubMed]

39. Dai, C.; Li, W.; Tjong, H.; Hao, S.; Zhou, Y.; Li, Q.; Chen, L.; Zhu, B.; Alber, F.; Jasmine Zhou, X. Mining 3D
genome structure populations identifies major factors governing the stability of regulatory communities.
Nat. Commun. 2016, 7. [CrossRef] [PubMed]

40. Whalen, S.; Truty, R.M.; Pollard, K.S. Enhancer-promoter interactions are encoded by complex genomic
signatures on looping chromatin. Nat. Genet. 2016, 48, 488–496. [CrossRef] [PubMed]

41. Molitor, J.; Mallm, J.P.; Rippe, K.; Erdel, F. Retrieving chromatin patterns from deep sequencing data using
correlation functions. Biophys. J. 2017, 112, 473–490. [CrossRef] [PubMed]

42. Bortle, K.V.; Corces, V.G. Nuclear organization and genome function. Ann. Rev. Cell Dev. Biol. 2012, 28,
163–187. [CrossRef] [PubMed]

43. Pancaldi, V.; Carrillo-de-Santa-Pau, E.; Javierre, B.M.; Juan, D.; Fraser, P.; Spivakov, M.; Valencia, A.; Rico, D.
Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
Genome Biol. 2016, 17. [CrossRef] [PubMed]

44. Wu, H.-J.; Michor, F. A computational strategy to adjust for copy number in tumor Hi-C data. Bioinformatics
2016, 32, 3695–3701. [CrossRef] [PubMed]

45. Imakaev, M.; Fudenberg, G.; McCord, R.P.; Naumova, N.; Goloborodko, A.; Lajoie, B.R.; Dekker, J.; Mirny, L.A.
Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 2012, 9,
999–1003. [CrossRef] [PubMed]

46. Ramirez, F.; Bhardwaj, V.; Villaveces, J.; Arrigoni, L.; Gruening, B.A.; Lam, K.C.; Habermann, B.;
Akhtar, A.; Manke, T. High-resolution TADs reveal DNA sequences underlying genome organization
in flies. bioRxiv 2017. [CrossRef]

47. Servant, N.; Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.-J.; Vert, J.-P. HiC-Pro: An optimized and flexible
pipeline for Hi-C data processing. Genome Biol. 2015, 16. [CrossRef] [PubMed]

48. Serra, F.; Baù, D.; Filion, G.; Marti-Renom, M.A. Structural features of the fly chromatin colors revealed by
automatic three-dimensional modeling. bioRxiv 2016. [CrossRef]

49. Wingett, S.; Ewels, P.; Furlan-Magaril, M.; Nagano, T.; Schoenfelder, S.; Fraser, P.; Andrews, S. HiCUP:
Pipeline for mapping and processing Hi-C data. F1000 Res. 2015, 4, 1310. [CrossRef] [PubMed]

50. Durand, N.C.; Robinson, J.T.; Shamim, M.S.; Machol, I.; Mesirov, J.P.; Lander, E.S.; Aiden, E.L. Juicebox
provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016, 3, 99–101.
[CrossRef] [PubMed]

51. Schmid, M.W.; Grob, S.; Grossniklaus, U. HiCdat: A fast and easy-to-use Hi-C data analysis tool.
BMC Bioinform. 2015, 16. [CrossRef] [PubMed]

52. Hwang, Y.-C.; Lin, C.-F.; Valladares, O.; Malamon, J.; Kuksa, P.P.; Zheng, Q.; Gregory, B.D.; Wang, L.-S.
Hippie: A high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics
2015, 31, 1290–1292. [CrossRef] [PubMed]

53. Castellano, G.; Le Dily, F.; Hermoso Pulido, A.; Beato, M.; Roma, G. Hi-Cpipe: A pipeline for high-throughput
chromosome capture. bioRxiv 2015. [CrossRef]

54. Weinreb, C.; Raphael, B.J. Identification of hierarchical chromatin domains. Bioinformatics 2016, 32, 1601–1609.
[CrossRef] [PubMed]

55. Shin, H.; Shi, Y.; Dai, C.; Tjong, H.; Gong, K.; Alber, F.; Zhou, X.J. Topdom: An efficient and deterministic
method for identifying topological domains in genomes. Nucleic Acids Res. 2016, 44, e70. [CrossRef]
[PubMed]

56. Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer provides
a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016, 3, 95–98. [CrossRef]
[PubMed]

57. Dekker, J.; Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 2016, 164, 1110–1121.
[CrossRef] [PubMed]

58. Gorkin, D.U.; Leung, D.; Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell
2014, 14, 762–775.

59. Zhu, Y.; Chen, Z.; Zhang, K.; Wang, M.; Medovoy, D.; Whitaker, J.W. Constructing 3D interaction maps from
1D epigenomes. Nat. Commun. 2016, 7. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1204799109
http://www.ncbi.nlm.nih.gov/pubmed/22988072
http://dx.doi.org/10.1038/ncomms11549
http://www.ncbi.nlm.nih.gov/pubmed/27240697
http://dx.doi.org/10.1038/ng.3539
http://www.ncbi.nlm.nih.gov/pubmed/27064255
http://dx.doi.org/10.1016/j.bpj.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28131315
http://dx.doi.org/10.1146/annurev-cellbio-101011-155824
http://www.ncbi.nlm.nih.gov/pubmed/22905954
http://dx.doi.org/10.1186/s13059-016-1003-3
http://www.ncbi.nlm.nih.gov/pubmed/27391817
http://dx.doi.org/10.1093/bioinformatics/btw540
http://www.ncbi.nlm.nih.gov/pubmed/27531101
http://dx.doi.org/10.1038/nmeth.2148
http://www.ncbi.nlm.nih.gov/pubmed/22941365
http://dx.doi.org/10.1101/115063
http://dx.doi.org/10.1186/s13059-015-0831-x
http://www.ncbi.nlm.nih.gov/pubmed/26619908
http://dx.doi.org/10.1101/036764
http://dx.doi.org/10.12688/f1000research.7334.1
http://www.ncbi.nlm.nih.gov/pubmed/26835000
http://dx.doi.org/10.1016/j.cels.2015.07.012
http://www.ncbi.nlm.nih.gov/pubmed/27467250
http://dx.doi.org/10.1186/s12859-015-0678-x
http://www.ncbi.nlm.nih.gov/pubmed/26334796
http://dx.doi.org/10.1093/bioinformatics/btu801
http://www.ncbi.nlm.nih.gov/pubmed/25480377
http://dx.doi.org/10.1101/020636
http://dx.doi.org/10.1093/bioinformatics/btv485
http://www.ncbi.nlm.nih.gov/pubmed/26315910
http://dx.doi.org/10.1093/nar/gkv1505
http://www.ncbi.nlm.nih.gov/pubmed/26704975
http://dx.doi.org/10.1016/j.cels.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27467249
http://dx.doi.org/10.1016/j.cell.2016.02.007
http://www.ncbi.nlm.nih.gov/pubmed/26967279
http://dx.doi.org/10.1038/ncomms10812
http://www.ncbi.nlm.nih.gov/pubmed/26960733


Genes 2017, 8, 223 14 of 15

60. Nagano, T.; Lubling, Y.; Stevens, T.J.; Schoenfelder, S.; Yaffe, E.; Dean, W. Single-cell Hi-C reveals cell-to-cell
variability in chromosome structure. Nature 2013, 502, 59–64. [CrossRef] [PubMed]

61. Ay, F.; Noble, W. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015, 16.
[CrossRef] [PubMed]

62. Sekelja, M.; Paulsen, J.; Collas, P. 4D nucleomes in single cells: What can computational modeling reveal
about spatial chromatin conformation? Genome Biol. 2016, 17. [CrossRef] [PubMed]

63. O’Sullivan, J.M.; Hendy, M.D.; Pichugina, T.; Wake, G.C.; Langowski, J. The statistical-mechanics of
chromosome conformation capture. Nucleus 2013, 4, 390–398. [CrossRef] [PubMed]

64. Zhang, Z.; Li, G.; Toh, K.-C.; Sung, W.-K. 3D chromosome modeling with semi-definite programming and
Hi-C data. J. Comput. Biol. 2013, 20, 831–846. [CrossRef] [PubMed]

65. Hu, M.; Deng, K.; Qin, Z.; Dixon, J.; Selvaraj, S.; Fang, J.; Ren, B.; Liu, J.S. Bayesian inference of spatial
organizations of chromosomes. PLoS Comput. Biol. 2013, 9, e1002893. [CrossRef] [PubMed]

66. Stevens, T.J.; Lando, D.; Basu, S.; Atkinson, L.P.; Cao, Y.; Lee, S.F.; Leeb, M.; Wohlfahrt, K.J.; Boucher, W.;
O’Shaughnessy-Kirwan, A.; et al. 3D structures of individual mammalian genomes studied by single-cell
Hi-C. Nature 2017, 544, 59–64. [CrossRef] [PubMed]

67. Naumova, N.; Imakaev, M.; Fudenberg, G.; Zhan, Y.; Lajoie, B.R.; Mirny, L.A.; Dekker, J. Organization of the
mitotic chromosome. Science 2013, 342, 948–953. [CrossRef] [PubMed]

68. Ramani, V.; Deng, X.; Qiu, R.; Gunderson, K.L.; Steemers, F.J.; Disteche, C.M.; Noble, W.S.; Duan, Z.;
Shendure, J. Massively multiplex single-cell Hi-C. Nat. Methods 2017, 14, 263–266. [CrossRef] [PubMed]

69. Qin, Z.; Li, B.; Conneely, K.N.; Wu, H.; Hu, M.; Ayyala, D.; Park, Y.; Jin, V.X.; Zhang, F.; Zhang, H.; et al.
Statistical challenges in analyzing methylation and long-range chromosomal interaction data. Stat. Biosci.
2016, 8, 284–309. [CrossRef] [PubMed]

70. Nagano, T.; Lubling, Y.; Yaffe, E.; Wingett, S.W.; Dean, W.; Tanay, A.; Fraser, P. Single-cell Hi-C for
genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 2015,
10, 1986–2003. [CrossRef] [PubMed]

71. Paulsen, J.; Gramstad, O.; Collas, P. Manifold based optimization for single-cell 3D genome reconstruction.
PLoS Comput. Biol. 2015, 11, e1004396. [CrossRef] [PubMed]

72. Clark, S.J.; Lee, H.J.; Smallwood, S.A.; Kelsey, G.; Reik, W. Single-cell epigenomics: Powerful new methods
for understanding gene regulation and cell identity. Genome Biol. 2016, 17. [CrossRef] [PubMed]

73. Tang, B.; Zhou, Y.; Wang, C.-M.; Huang, T.H.M.; Jin, V.X. Integration of DNA methylation and gene
transcription across nineteen cell types reveals cell type-specific and genomic region-dependent regulatory
patterns. Sci. Rep. 2017, 7. [CrossRef] [PubMed]

74. Engreitz, J.M.; Agarwala, V.; Mirny, L.A. Three-dimensional genome architecture influences partner selection
for chromosomal translocations in human disease. PLoS ONE 2012, 7, e44196. [CrossRef] [PubMed]

75. Barutcu, A.R.; Lajoie, B.R.; McCord, R.P.; Tye, C.E.; Hong, D.; Messier, T.L.; Browne, G.; van Wijnen, A.J.;
Lian, J.B.; Stein, J.L.; et al. Chromatin interaction analysis reveals changes in small chromosome and telomere
clustering between epithelial and breast cancer cells. Genome Biol. 2015, 16. [CrossRef] [PubMed]

76. Hsu, P.-Y.; Hsu, H.-K.; Lan, X.; Juan, L.; Yan, P.S.; Labanowska, J.; Heerema, N.; Hsiao, T.-H.; Chiu, Y.-C.;
Chen, Y.; et al. Amplification of distant estrogen response elements deregulates target genes associated with
tamoxifen resistance in breast cancer. Cancer Cell 2013, 24, 197–212. [CrossRef] [PubMed]

77. Franke, M.; Ibrahim, D.M.; Andrey, G.; Schwarzer, W.; Heinrich, V.; Schöpflin, R.; Kraft, K.; Kempfer, R.;
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