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Abstract: RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation 
mechanism that requires long noncoding RNA (lncRNA) as scaffold to define target genomic loci. 
While the role of RdDM in maintaining genome stability is well established, how it regulates 
protein-coding genes remains poorly understood and few RdDM target genes have been identified. 
In this study, we obtained sequences of RdDM-associated lncRNAs using nuclear RNA 
immunoprecipitation against ARGONAUTE 4 (AGO4), a key component of RdDM that binds 
specifically with the lncRNA. Comparison of these lncRNAs with gene expression data of RdDM 
mutants identified novel RdDM target genes. Surprisingly, a large proportion of these target genes 
were repressed in RdDM mutants suggesting that they are normally activated by RdDM. These 
RdDM-activated genes are more enriched for gene body lncRNA than the RdDM-repressed genes. 
Histone modification and RNA analyses of several RdDM-activated stress response genes detected 
increased levels of active histone mark and short RNA transcript in the lncRNA-overlapping gene 
body regions in the ago4 mutant despite the repressed expression of these genes. These results 
suggest that RdDM, or AGO4, may play a role in maintaining or activating stress response gene 
expression by directing gene body chromatin modification preventing cryptic transcription. 
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1. Introduction 

RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing in plants 
[1–3]. Of the three major RNA silencing pathways in plants, RdDM is the sole pathway capable of 
mediating DNA methylation [4–8]. RdDM plays a fundamental role in plant defense against invasive 
DNA and in maintaining genome stability by silencing transposons and repetitive sequences. RdDM 
has also been shown to regulate protein-coding genes [9,10], but this aspect of RdDM function has 
not been well studied, and very few RdDM-targeted genes have been identified. Much effort over the 
past decade has been attributed to the characterization of the components and the molecular 
mechanism of RdDM allowing a canonical pathway to be well established. RdDM is induced by 24-
nt small interfering RNAs (siRNAs), generated by the combined function of the plant-specific RNA 
POLYMERASE IV (POL IV) [4,5,7], RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) [8,11] and 
DICER-LIKE 3 (DCL3) [11,12]. POL IV transcribes single stranded RNA, which becomes converted 
into double-stranded RNA (dsRNA) by RDR2. DCL3, the main RNase III endoribonuclease of RdDM, 
cleaves these dsRNA into 24 nt siRNAs. These 24-nt siRNAs are loaded onto ARGONAUTE 4 (AGO4) 
to form an effector complex also known as RNA-induced silencing complex (RISC) [13–15], which is 
recruited to genomic loci through physical interaction with longer non-coding RNAs (lncRNAs) that 
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are transcribed by another plant-specific RNA POLYMERASE V (POL V) [16,17]. These lncRNAs 
function as a scaffold to determine the exact target genomic region at which a DNA methylation 
enzyme, DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), catalyzes cytosine 
methylation at all sequence contexts (CG, CHG and CHH, where H represents A, C or T). DNA 
methylation at these loci maintains transcription in a repressive state and therefore plays a fundamental 
role in fine-tuning the expression of genomic elements. Genome-wide methylation analyses indicate 
that RdDM accounts for 30% of all DNA methylation in Arabidopsis [18]. 

RdDM mutants of Arabidopsis generally do not show phenotypic abnormalities and develop like 
their wild-type (WT) counterparts; however, recent studies using plants carrying mutations in genes 
required for functional RdDM have implicated this pathway in the regulation of genes involved in 
conferring plant immunity. Arabidopsis plants deficient in AGO4 are highly susceptible to bacterial 
(Pseudomonas syringae) infection [19]. Mutants defective in RNA POL V and RDR2 are susceptible to 
the fungi Botrytis cinerea and Plectosphaerella cucumerina [20]. While it is widely accepted that plants 
defend against invasive pathogens through triggering complex signaling cascades regulated by 
salicylic acid, jasmonic acid and ethylene which regulate the expression level of defense-related genes 
[21,22], these recent studies clearly demonstrate that RdDM mutants are more susceptible to infection 
and highlight an alternate pathway that determines plant immunity. How RdDM, known to repress 
genes, is involved in plant immunity remains unclear. 

While previous genome-wide profiling and AGO4 pull-down analyses have identified large 
populations of 24-nt siRNAs, the scaffold lncRNAs have not been well characterized. This has 
hindered the identification of RdDM-regulated genes in plants, particularly protein-coding genes. 
Here, using nuclear RNA-immunoprecipitation, Illumina deep sequencing and bioinformatics 
analyses, along with RT-PCR analysis, we established a high-quality library of AGO4-associated long 
ncRNAs, and identified novel RdDM regulated protein-coding genes and those involved in disease 
response. We also generated evidence implicating the RdDM pathway in the activation of protein-
coding genes through gene body methylation or chromatin modification, particularly those involved 
in stress response. 

2. Materials and Methods 

2.1. Plant Material and Growth Conditions 

All wild-type, transgenic and mutant Arabidopsis thaliana plants were grown in controlled 
conditions under 16 h light at 22 °C on MS medium/agar. The dcl and rdr mutants were described 
previously in Wang et al. [23]; the rdd (Col-0 background with ros1, dml2, dml3; SALK_045303, 
SALK_131712, SALK_056440, respectively), nrpd1 (nrpd1-3), nrpe1 (drd3-7) and ago4-2 (ocp11) mutants 
were kindly provided by Jian-Kang Zhu, David Baulcombe, Majori Matzke, and Pablo Vera, 
respectively. Aerial tissues of three-week-old seedlings were collected for RNA and protein 
expression analyses. 

2.2. RNA Extraction and cDNA Synthesis 

Arabidopsis tissues were ground into fine powder under liquid nitrogen using a mortar and 
pestle. Total RNA was extracted using TRIzol (Ambion, Victoria, Australia)/isopropanol 
precipitation or the RNeasy plant mini kit (Qiagen, Victoria, Australia) according to the 
manufacturer’s instructions. RNA concentration was measured using NanoDrop Microvolume 
spectrophotometer (ND-1000, ThermoFisher, New South Wales, Australia) and purity and integrity 
of RNA ensured based on both the A260 nm/A280 nm ratio (close to 2) and formaldehyde-agarose 
gel electrophoresis. TRIzol extracted total RNA was DNase treated with 5 units of RQ1 RNase-free 
DNase (Promega, New South Wales, Australia) for 30 min at 37 °C followed by phenol/chloroform 
extraction and ethanol precipitation. RNA was reverse-transcribed with SuperScript III Reverse 
Transcriptase (Invitrogen, Victoria, Australia) using oligo dT priming following the manufacturer’s 
instructions. 
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2.3. Expression Analysis by Semi-Quantitative RT-PCR and RT-qPCR 

Semi-quantitative RT-PCR and RT-qPCR were performed using Taq F1 DNA Polymerase 
(Fisherbiotech, West Australia, Australia) and EXPRESS SYBR GreenER (Invitrogen, Victoria, 
Australia), respectively, following the manufacturer’s instructions. RT-PCR was performed in 30 
cycles using primers shown in Table S5. Amplicon products from RT-PCR were visualized on a 2% 
agarose/TBE gel. RT-qPCR was performed using Rotor Gene 6000 (Qiagen, Victoria, Australia). 
Relative transcript abundance was measured against the reference gene FDH using the comparative 
quantification method of the Rotor Gene Q Series software. All measurements were performed in 
technical triplicates. Student’s t-test was performed to determine significant (p-value < 0.05) 
differences in gene expression levels between control (Col-0 or Ler) and mutants or between mock 
and Fusarium oxysporum-infected samples. All primer sequences are supplied in Table S5. 

2.4. Sequence-Specific RT-PCR 

One to two micrograms of total RNA was subjected DNase treatment using one unit of RQ1 
RNase-free DNase followed by cDNA synthesis using both 0.2 µM forward and reverse primers in a 
50 µL reaction containing (1X PCR buffer, 0.2 mM dNTP’s, 1.5 mM MgCl2, 0.2 µM primer(s), 12 U 
RNase out (Invitrogen), 60 U SuperScript III (Invitrogen) and 1.5 unit Platinum Taq DNA 
Polymerase). Following cDNA synthesis, the reaction was then subjected to PCR for 35 cycles. PCR 
products were visualized on a 3% NuSieve (Lonza, Victoria, Australia)/1X TBE gel. 

2.5. Nuclear RNA-Immunoprecipitation  

Three grams of plant tissues (Aerial tissues of Arabidopsis seedlings) were collected from each 
genotype and subjected to cross-linking by formaldehyde. Cross-linked tissues were ground into fine 
powder in liquid nitrogen using a mortar and pestle, resuspended in Honda buffer (0.44 M Sucrose, 
1.25% Ficoll, 2.5% Dextran T40, 20 mM Hepes KOH pH 7.4, 10 mM MgCl2, 0.5% Triton X-100, 5 mM 
DTT, 1 mM PMSF (Sigma-Aldrich, NSW, Australia), 1% Plant protease inhibitors (Sigma-Aldrich),  
8 U/mL RNase out (Invitrogen)) and filtered through two layers of Miracloth (Calbiochem-Novabiochem, 
New South Wales, Australia) to remove cellular debris and nuclei isolated through centrifugation. 
Isolated nuclei were lysed Nuclei lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS, 1 mM 
PMSF (Sigma-Aldrich), 1% Plant protease inhibitors (Sigma-Aldrich), 160 U/mL RNase out 
(Invitrogen)), followed by sonication on ice four times for 10 s at 25% amplitude with 1 min pauses. 
Nuclear lysate was isolated through centrifugation and diluted 10-fold in IP dilution buffer (1.1% 
Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 350 U/mL RNase out (Invitrogen)). 
The diluted lysate was pre-cleared for one hour with 25 µL of Salmon Sperm DNA/Protein A agarose 
beads (Millipore, New South Wales, Australia) and immunoprecipitation was performed by 
incubating the pre-cleared lysate with 5 µg monoclonal anti-FLAG M2 antibody (F1804, Sigma-
Aldrich) and 25 µL of Salmon sperm DNA/Protein A agarose beads (Millipore) for three hours at 4 °C. 

Following immunoprecipitation, agarose-antibody-FLAG:AGO4/RNA complexes were washed 
three times in Wash buffer (150 mM NaCl, 20 mM Tris-HCl pH 8.0, 2 mM EDTA, 1% Triton X-100, 
0.1% SDS, 1 mM PMSF (Sigma-Aldrich), 40 U/mL RNase out (Invitrogen), 5 U/mL RQ1 DNase 
(Promega, New South Wales, Australia)). FLAG:AGO4/RNA complexes were eluted with RNA-IP 
elution buffer (100 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS, 40 U RNase out (Invitrogen)) at 65 
°C for one hour in the presence of 20 µg Proteinase K (Sigma-Aldrich). 

Pulled-down RNA was purified by extraction with an equal volume of acidic phenol/chloroform 
(Ambion, Applied Biosystems, Victoria, Australia), followed by overnight ethanol precipitation in 
the presence of acidic sodium acetate and 20 µg Glycogen (Fermentas, Thermo fisher scientific, 
Victoria, Australia) at −80 °C, and resuspended in DEPC-treated H2O. RNA concentration was 
determined at 260 nm using NanoDrop Microvolume spectrophotometer (ND-1000, ThermoFisher). 
The quality of pulled-down RNA, as indicated by strong enrichment of AGO4-specific small RNA, 
was verified using 5’-end labeling with 32P-ATP and T4 polynucleotide kinase followed by  
sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis as shown in Figure 1C. 
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2.6. Chromatin-Immunoprecipitation Assay  

Chromatin-Immunoprecipitation (ChIP) was performed on 3-week old seedlings (1.5 g of aerial 
tissues) similar to RNA-IP except that no RNase inhibitor (RNaseOut) was used in all steps. Nuclear 
lysates were prepared as described above. Following nuclei lysis, nuclear lysates were saved in 25 µL 
aliquots at −80 °C. For immunoprecipitation, each lysate was diluted by 10-fold using IP dilution 
buffer and were pre-cleared for one hour with 50 µL of Salmon Sperm DNA/Protein A agarose beads 
(Millipore). Immunoprecipitation was performed by incubating the pre-cleared lysate with 2 µg  
anti-H3K27me3 (Millipore), 1.5 µg anti-H3K4me3 (Millipore) or 1.3 µg combination of anti-RNA Pol 
II (0.1 µg of 8WG16, 0.6 µg of phospho S5 and 0.6 µg of 4H8, Abcam) antibody and 50 µL of Salmon 
sperm DNA/Protein A agarose beads (Millipore) overnight at 4 °C. 

Following immunoprecipitation, the immunoprecipitated complexes were washed five times in 
Wash buffer (150 mM NaCl, 20 mM Tris-HCl pH 8.0, 2 mM EDTA, 1% Triton X-100, 0.1% SDS, 1 mM 
PMSF (Sigma-Aldrich)) and twice with TE buffer. Immunoprecipitated complexes were reverse cross-
linked in elution buffer (1% SDS, 0.1 M NaHCO3) at room temperature for 15 min under constant 
rotation, followed by incubation at 65 °C for four hours in the presence of 200 mM NaCl, and at 45 °C 
for one hour in the presence of 10 mM EDTA and 40 mM Tris-HCL pH 6.5 and 20 µg Proteinase K 
(Sigma-Aldrich). Pulled-down DNA was purified using the Qiagen PCR purification kit (Qiagen). 

2.7. 5’ End Labeling and SDS-PAGE 

RNA was labeled with 32P-ATP by incubation at 37 °C for 1 hour in a 20 µL reaction containing: 
15–20 ng RNA, 1X T4 polynucleotide kinase (PNK) buffer, 5 µL of γ-ATP (250 uCi, Perkin Elmer, 
Victoria, Australia) and 10 U T4 PNK (Roche, NSW, Australia). Sample was purified through a 
Microspin G-25 column (GE Healthcare, NSW, Australia). Half (10 µL), one quarter (5 µL) and one 
tenth (2 µL) of the labeled and purified reaction was loaded and separated on a 20% SDS-PAGE. 
Radioactive signals were detected by phosphoimaging. 

2.8. Template-Switch cDNA Library Preparation and Expression Analysis of AGO4- and AGO1-Associated 
RNA by PCR 

150 ng of immunoprecipitated RNA (FLAG:AGO4 IP or –ve IP) or nuclei extracted RNA was 
converted to a cDNA library using the template-switch cDNA library preparation method according 
to Zhao et al. [24]. 1 µL from each cDNA library was used as template in a 30-cycle PCR reaction to 
detect AGO4-associated and unrelated AGO1-associated RNA. IGN5A, IGN5B and IGN6 primers 
were derived from Wierzbicki et al. [16]. Pho2 and MYB65 primers (Table S5) were used to detect 
AGO1-associated RNA. Because of the low-level non-specific RNA in the negative control nuclear 
RNA-IP, the negative control IP library was amplified for an additional 15 cycles to generate adequate 
cDNAs for deep sequencing. As this study focused on longer noncoding RNA species, the higher 
molecular weight fraction of the cDNA library (200–500 bp) was gel purified (Figure S3) using 
Ultraclean DNA purification kit (MO BIO laboratories, Geneworks, South Australia, Australia) and 
used for Illumina deep sequencing, which should exclude the small RNA including the 24-nt siRNA 
sequences. 

2.9. Deep Sequencing 

All three cDNA libraries (FLAG:AGO4-RIP, negative RIP and nuclei RNA), prepared using the 
Template-switch cDNA preparation method (above), were subjected to single end 100 bp deep 
sequencing using the Illumina genome analyzer GAIIx (ACRF Biomolecular Resource Facility at John 
Curtin’s institute of medical research, Australian Capital Territory, Australia). 

2.10. Bioinformatics 

RNA-IP or RNA-seq reads were trimmed for adaptor sequences and low quality bases on ends 
and reads less than 30 nt were removed to prevent mapping 24 nt small RNA using the CLC genomics 
workbench (version 4.9) pipeline. Trimmed and filtered reads were mapped using the CLC genomics 
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workbench RNA-seq analysis application allowing a minimum of 80% similarity in at least 70% of 
the read in order to account for single nucleotide polymorphism (SNP) differences between the 
experimental ecotype (Landsberg erecta or Ler) against the sequenced Arabidopsis reference genome 
(Col-0, The Arabidopsis Information Resource version 10 or TAIR10); mapping up to 20 locations was 
allowed to avoid removing reads that map to repeat sequences. Reads density across chromosomes 
were generated using the MACS (Model-based Analysis of ChIP-Seq) peaks calling software [25] and 
visualized on Galaxy [26]. Because template-switch library construction and sequencing generate 
sequence from the opposite strand of the original RNA bound to FLAG:AGO4, all reads were 
considered as reverse complemented in subsequent analyses. Annotated sequences of protein-coding 
gene, transposons, pseudogenes, ncRNAs, miRNAs, snoRNAs, tRNAs were retrieved from the 
Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Plant Industry 
Bioinformatics Group Genome Browser. Repeat sequences were retrieved from The Institute of 
Genome Research (TIGR) Arabidopsis Repeats database version 2.0.0. Analysis of read counts between 
annotations, gene features and 2 kb flanking regions were performed using Map2locifeatures 
application (Dr. Stephen Stuart, CSIRO Plant industry, Canberra, Australia) in which parameters 
were set to prioritize functional regions so that each read is accounted only once. Heat maps were 
generated using R (Version 2.14.2) using the ggplot2 package. Cufflinks was used for transcript 
assembly [27]. Identification of overlapping annotations between datasets was performed using the 
findsame script with Perl. Characterization of annotations was performed by gene ontology (GO) 
annotations and statistical analysis of gene group over-representation was performed using the Gene 
Ontology Analysis Toolkit for Agricultural Community (agriGO) [28]. 

2.11. Western Blot Analysis 

Tissues were ground to fine powder under liquid nitrogen and resuspended in protein 
extraction buffer (50 mM NaPO4 pH 7.0, 10 mM EDTA, 0.1% Triton X-100, 0.1% Sarkosyl  
(N-laurylsarcosine) and 10 mM β-mercaptoethanol). Protein concentration was measured using the 
Bradford assay. 10 µg of proteins were separated on an 8% SDS polyacrylamide gel, transferred to 
Immobilon P membrane (Millipore) and detected by chemiluminescence using 1/1000 monoclonal 
anti-FLAG M2 antibody (F1804, Sigma-Aldrich) and 1/5000 anti-mouse Ig HRP conjugate (Chemicon, 
Victoria, Australia). 

2.12. Bisulphite Sequencing 

Genomic DNA extracted from Col-0 and nrpe1 plants were subjected to bisulphite conversion 
using the method described in Wang et al. [29]. Nested PCR using specific primers (Table S5) was 
used to amplify the genomic fragment corresponding to Cuff.5107 and Cuff.705, PCR products were 
gel purified using Ultraclean DNA purification kit and transformed into pGEM-T-Easy vectors 
(Promega). 15 to 16 clones for each PCR product were sequenced and analyzed using CyMATE 
(Cytosine Methylation Analysis Tool for Everyone) [30]. 

2.13. 5’Rapid Amplification of cDNA Ends 

5’ Rapid amplification of cDNA ends (RACE) was performed using the 5’RACE System (version 
2, Invitrogen) using random priming cDNA synthesis of three micrograms of total RNA extracted 
from Col-0 or ago4-2 3-week old seedlings, following the manufacturer’s instructions. Briefly, total 
RNA was reverse-transcribed using random primers followed by RNAse treatment and cDNA was 
purified using S.N.A.P. Column Purification. TdT Tailing of cDNA was used to add primer targets 
at the 5’ end of cDNA. Nested gene-specific primers (Table S5) were designed at the 3’end of genes 
for PCR amplification of short truncated transcripts in combination with 5’RACE primers provided 
by Invitrogen. For long transcripts (>1.5 kb), additional nested gene-specific primers were designed 
at the center of transcript. 
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2.14. Infection of Arabidopsis Plants with Fusarium Oxysporum 

Growth of F. oxysporum f. sp. conglutinans was performed as previously described [31]. Three 
week-old plants were infected by dipping the roots in an 1 × 106 spores/mL inoculum and replacing 
the plants on MS agar without sucrose. Plants were then grown under 16 h light–8 h dark photoperiod 
at 22 °C. 

2.15. Data Access 

Complete RNA-IP and RNA seq data sets generated from this publication have been deposited 
in NCBI’s Gene Expression Omnibus and are accessible through accession number GSE48617. 

3. Results 

3.1. Transgenic FLAG:AGO4 Functions Like Endogenous AGO4 

In order to identify the population of RNAs associated with AGO4, a FLAG:AGO4 transgene, 
driven by the cauliflower mosaic virus 35S promoter, was transformed into ago4-1 (A. thaliana ecotype 
Landsberg erecta or Ler) mutant plants, resulting in transgenic lines that gave consistent expression 
of the FLAG:AGO4 protein (Figure 1A). To examine if the FLAG:AGO4 protein expressed from the 
heterologous 35S promoter followed a similar pattern of accumulation to the endogenous AGO4 
protein, we first compared the expression pattern of the 35S promoter with that of the AGO4 
promoter using the β-glucuronidase (GUS) gene as a reporter. GUS expression from the 35S promoter 
followed a similar pattern to the AGO4 promoter although with a higher expression level (Figure 
S1and [13]). Furthermore, western blot analysis showed that FLAG:AGO4 protein accumulated in a 
tissue-specific manner despite being driven by the 35S promoter, with the highest level in flowers 
(Figure S2A) where 24-nt siRNA levels are relatively abundant [32,33]. This is in contrast to the 
accumulation of FLAG:AGO4 mRNA or the GUS protein, which showed relatively uniform levels 
across the different tissues (Figure S2B–E). This is consistent with the previous report suggesting that 
AGO4 protein accumulation depends on 24-nt siRNAs [13], and implies that the pattern of 
FLAG:AGO4 accumulation mimics that of the endogenous AGO4 protein, despite being expressed 
from the heterologous 35S promoter. 

To establish whether the FLAG:AGO4 fusion protein maintains the function of endogenous 
AGO4, RT-qPCR was performed on three AGO4-regulated intergenic transcripts which were silenced 
in WT Arabidopsis but de-repressed in ago4-1 mutant plants. As shown in Figure 1B, all the three 
known AGO4-targeted intergenic (IG) transcripts, IG1, IG/LINE and IG5, were re-silenced in the ago4-
1 FLAG:AGO4 plants, with their expression returned to the WT level. These results indicate that the 
FLAG:AGO4 fusion protein accumulates and functions like endogenous AGO4, and is capable of 
directing functional RdDM.  



Genes 2017, 8, 198  7 of 24 

 

 
Figure 1. Analysis of transgenic FLAG:AGO4 expression and function, and specificity of FLAG:AGO4 
RNA-immunoprecipitation (IP). (A) Western blot analysis of FLAG:AGO4 protein expression in 
transgenic ago4-1 FLAG:AGO4 lines. ago4-1 AGO4 and ago4-1 plants were used as negative controls; 
(B) Real-time RT-qPCR analysis of the relative expression level of AGO4-regulated genes IG1, IG/LINE 
and IG5 in wild type (Ler), ago4-1 mutant and transgenic ago4-1 FLAG:AGO4 plants. Expression level 
with standard error (SE) shown is the average of 3 biological replicates, normalized to FDH (Formate 
dehydrogenase) and relative to Ler; (C) Analyses of RNA quality derived from nuclear RNA-IP. RNA 
isolated by RNA-IP was labeled with radioactive 32P-ATP and separated by PAGE. ½, ¼ and 1/10 
represent the amount of labeled sample loaded; (D) Expression analysis of specific AGO4-associated 
RNA (IGN5A, IGN5B and IGN6) and AGO1-associated RNA (Pho2 and MYB65) in samples pulled 
down using nuclear RNA-IP. 

3.2. Anti-FLAG:AGO4 RNA Immunoprecipitation Gives Highly Enriched AGO4-Specific RNA Species 

Nuclear-specific function of AGO4 [34,35] enabled us to perform nuclear  
RNA-immunoprecipitation (RNA-IP), an improved RNA-IP method that minimizes background 
derived from cytoplasmic RNA [16,36]. The quality of the immunoprecipitated  
FLAG:AGO4-associated RNA was visualized by 5’ end labeling with radioactive γ-ATP and PAGE. 
As shown in Figure 1C, 24-nt AGO4-binding siRNAs were readily detectable in the FLAG:AGO4 
immunoprecipitated samples, but were undetectable in control samples. Also, no signals of 21- or  
22-nt sRNAs, associated with posttranscriptional gene silencing, were detectable in the FLAG:AGO4 
IP. In addition to the 24-nt siRNA, high-molecular-weight RNA signals (>100 nt) were detected in the 
RNA-IP near the loading wells (Figure 1C); such larger RNA species could represent the lncRNAs 
that act as a scaffold to recruit RdDM machinery including the AGO4-siRNA complex to the target 
DNA [3,17]. Consistent with this, a semi-quantitative RT-PCR analysis showed clear enrichment of 
RdDM-associated lncRNAs over mRNAs in the RNA-IP (Figure 1D). 
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3.3. Establishment of an AGO4-Associated Non-Coding RNA Landscape by RNA-IP Seq 

RNA-IP seq cDNA libraries were prepared using the template-switch cDNA library preparation 
method derived from Zhao et al. [24]. To enrich for lncRNAs and minimize the cloning of 24-nt 
siRNAs, PCR product of 200–500 bp in size (Figure S3) was selected for sequencing using the Illumina 
platform. As shown in Table 1, the FLAG:AGO4-IP library gave approximately 19 million reads after 
adaptor trim and size filtering, of which 84% were mapped to the Arabidopsis chromosomes 1 to 5, 
with only 0.3% mapped to the chloroplast and mitochondrial genomes. The negative control IP 
library had approximately 11 million reads, but in contrast to the FLAG:AGO4-IP library, the majority 
of the reads (75%) were mapped to the chloroplast/mitochondrial genome. This confirmed the high 
purity of the RNA-IP. Our additional control library, the nuclear RNA library, generated from total 
RNA extracted from isolated nuclei of ago4-1 FLAG:AGO4 plants and used as the input RNA control 
did not show such dramatic bias for either the nuclear or the organelle genome. This suggests that all 
RNA species were well represented in the input library and the enrichment for RNAs derived from 
specific regions of the nuclear genome in the FLAG:AGO4 RNA-IP was a direct consequence of the 
pull-down. A clear enrichment in coding sequence reads in the input nuclear RNA-seq data over that 
of the FLAG:AGO4 RNA-IP seq data (Figure S4) further validates the reliability of our data.  

The high density regions of the FLAG:AGO4 RNA-IP reads showed a clear overlap with those 
of AGO4-associated 24-nt small RNAs derived from Qi et al. [15] (Figure 2A and Figure S5). These 
regions are low in genes but rich in repeats, which are known targets of RdDM. Indeed, 56.6% of the 
total mapped reads from the FLAG:AGO4 RNA-IP seq data match with repeat sequences (TIGR 
Arabidopsis Repeats database Version 2.0.0). By contrast, only 0.05% of the reads from the negative 
control RIP-seq library were repeat associated. Analysis of the mapped reads from FLAG:AGO4 
RNA-IP seq against gene models showed that 75.9% originated from intergenic regions (including 
regions immediately upstream or downstream of genes), 19.7% from protein-coding genes and 3.9% 
from transposons (Figure 2B). This profile of read distribution is consistent with those derived from 
AGO4-associated small RNA libraries [33]. 

Table 1. Summary of read distribution across the Arabidopsis genome in FLAG:AGO4 RNA-IP seq, 
negative control RNA-IP seq and input control nuclear RNA seq libraries. Negative control RNA-IP 
seq library was amplified by an additional 15 PCR cycles. Chr C, chloroplast genome; Chr M, 
mitochondria genome. 

 FLAG:AGO4 RNA-IP Negative RNA-IP (+15 Cycles) Nuclear RNA
# reads after adaptor trim 18,878,339 10,799,912 17,537,595 

# reads map to Chr 1-5 15,905,349 (84%) 1,071,294 (13%) 6,307,354 (36%) 
# reads map to Chr C & M 50,238 (0.3%) 8,087,305 (75%) 3,467,242 (20%) 

% total mapped reads 84.3% 88% 56% 
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Figure 2. Bioinformatics analysis of FLAG:AGO4 RNA-IP seq data. (A) Chromosome wide density 
analysis of FLAG:AGO4 RNA-IP seq reads on Chromosome 3. Each peak represents a region on the 
chromosome with up to 5000 reads. A clear overlap in peaks between FLAG:AGO4 RNA-IP seq reads 
(>30 nt) and a published AGO4-associated 24 nt small interfering RNAs (siRNAs) data (Qi et al.) [15] 
is observed, particularly in regions that are high in repeats but low in genes; (B) Pie Chart illustration 
of read distribution across genomic features; (C) Analysis of read distribution across gene features 
(from 2 kb upstream to 2 kb downstream of annotated genes) shows preferential distribution of reads 
to non-coding regions; (D) Heatmap analysis of read distribution across gene features for 100 putative 
AGO4 target genes that carry at least 50 reads in the analyzed region (2 kb upstream to 2 kb 
downstream of an annotated gene). Values were transformed to Log10 scale and further normalized 
by ggplot2 package in R. 

3.4. FLAG:AGO4 RNA-IP Seq Data Show Enrichment in RNA Reads from Noncoding Regions of Genes 

To identify ncRNAs that might have a direct role in gene regulation, we scanned the 
FLAG:AGO4 RNA-IP seq reads that map to gene body and to the 2 kb upstream and downstream 
flanking regions. Parameters were set to prioritize functional regions so that each read is counted 
only once. Thus, if gene A is located within 2 kb upstream of gene B, reads that overlap with the body 
of gene A but also within the 2 kb upstream region of gene B are preferentially allocated to gene A. 
Reads in the intergenic region between gene A and gene B are separated from the mid-point and 
allocated to the 3’ downstream of gene A and the 5’ upstream of gene B, respectively. 

Using this approach, we found that the reads, calculated as the percentage of the total number 
of mapped reads, were predominantly mapped to 2 kb 5’ upstream (43.1%) or 2 kb 3’ downstream 
(19.9%) flanking regions of genes and to the untranslated regions of the gene body (5’ UTR (5.1%), 3’ 
UTR (3.4%), introns (14.6%)), with only 1% of reads mapped to coding sequences (Figure 2C). In order 
to show that this distribution was not due to bias caused by abundant reads of only a few genes, a 
heatmap was generated to illustrate the distribution of reads across these genic and non-genic 
features at a single gene resolution. As shown in Figure 2D, read distribution was strongly biased to 
non-genic features. Thus, our FLAG:AGO4-RNA-IP seq is highly enriched for non-coding RNA 
reads, which suggests that RdDM regulates gene expression by targeting primarily non-coding 
regions. Furthermore, the majority of the RNA-IP seq reads is located in gene flanking regions, which 
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is consistent with a previous study showing strong enrichment for 24-nt siRNAs and CHH 
methylation in gene ends in maize [37]. 

3.5. AGO4-Associated lncRNAs Overlap with AGO4 and POL V ChIP-Seq Data, TEs and AGO4-IP sRNAs 

Cufflinks was employed to assemble the reads into ncRNA transcripts. This tool generated 
18,953 genomic regions (Supplemental File 1) that produced AGO4-associated lncRNAs. Overlap of 
our AGO4-ncRNA data with previously published AGO4 [38] and POL V [39] ChIP DNA-seq data 
showed that 37% and 26% of ChIP peaks were identified in our data, respectively. To validate that 
this overlap was not due to chance, we generated a random dataset that mimics the size of both AGO4 
and POL V ChIP peaks and found that only 15% of the random peaks overlap with our AGO4-
associated lncRNAs library. Interestingly, only 9% and 12% of POL V and AGO4 ChIP peaks overlap 
with each other, respectively; this could be due to relatively high stringency of the Pol V and AGO4 
ChIP datasets or alternatively, it could suggest that our data have identified a wider range of RdDM 
regulated regions that overlap with both ChIP data sets. To validate whether these lncRNAs could 
be involved in repressing transposable elements (TEs), we mapped TE sequences (obtained from 
TAIR) to the Arabidopsis genome to generate genomic TE coordinates. Then, we overlapped our data 
with these TE coordinates and found that 18% of these lncRNAs overlapped with TEs. However, 
when these AGO4-lncRNA contigs were extended by 500 bp in each direction, this overlap increased 
to 31% indicating that a substantial proportion of AGO4-associated lncRNAs are generated from 
genomic loci located in or in close proximity to TEs, consistent with the known role of RdDM in the 
repression of TEs. These extended contigs also overlap with 26%, 28%, 31% and 28% of drm1/2 CHH, 
drm1/2 CHG, nrpdb2 CHH and nrpdb2 CHG hypomethylated regions, respectively; and between 26 
to 28% of ago4, nrpd1 and nrpe1 CHH or CHG hypomethylated regions [40]. To determine if these 
lncRNA transcripts are associated with AGO4 pull-down sRNAs, we downloaded deep sequencing 
data derived from AGO4-IP sRNAs in leaf, flower and seedling [33]. We mapped these AGO4-IP 
sRNAs (allowing up to two mismatches) to our AGO4-associated lncRNAs and found that 41.8%, 
38.7% and 32.5% of our lncRNAs contain mapped AGO4-IP sRNAs derived from seedling, leaf and 
flowers, respectively. Collectively, 62.3% of our 18,953 AGO4-lncRNAs carry mapped AGO4-IP 
sRNAs generated by Wang et al. [33]. 

3.6. AGO4-Associated lncRNAs Show Partial Dependence on POL V for Transcription 

In order to validate the lncRNAs, primers were designed to validate expression of lncRNAs in 
Col-0, RdDM mutants (ago4, nrpd1, nrpe1, dcl3, rdr2) and the non-RdDM mutant rdd (ros1 dml2 dml3 
triple demethylase mutant) using sequence-specific RT-PCR. lncRNAs were selected based on their 
level of enrichment in the Cufflinks dataset and their length (>150 bp) allowing better primer design. 
IGN5B, a known AGO4-associated and POL V-dependent lncRNA, was included as a control. As 
shown in Figure 3, nine of the 10 lncRNAs were expressed in WT Col-0, and three of these (Cuff.5107, 
705, 11036) were clearly downregulated in the POL V mutant nrpe1, with another three (4887, 12078, 
12798) also showing reduced amplification in nrpe1 in comparison to the six control samples. This 
result suggests that Pol V is required for the transcription of these lncRNAs. However, the continued 
presence of low-level amplification for the six lncRNAs, and the lack of down-regulation for the 
remaining three lncRNAs, in the POL V mutant raise the possibility that some AGO4-associated 
lncRNAs are transcribed by other RNA polymerases such as POL II. This possibility is also suggested 
by the overlap between our AGO4-IP lncRNA sequences and the nrpb2-associated CHH and CHG-
hypomethylated regions [40] as described above. Thus, full transcription of AGO4-associated 
lncRNAs may require not only Pol V but also other RNA polymerases. 
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Figure 3. Expression analysis of FLAG:AGO4-associated long noncoding RNA (lncRNA). Semi-
quantitative sequence-specific RT-PCR analysis of ncRNA expression in Col-0, RNA-directed DNA 
methylation (RdDM) mutants ago4-2, nrpd1, nrpe1 and non-RdDM mutant rdd (triple demethylase 
mutant). IGN5B (a known POL V dependent lncRNAs), Actin2 and –RT using Cuff.5107 primers were 
included as controls. 

3.7. nrpe1 Plants Show CHH Hypomethylation in Genomic Loci that Generate AGO4-Associated and POL V 
Dependent lncRNAs 

To validate the role of these POL V-dependent AGO4-lncRNAs in DNA methylation, bisulphite 
sequencing was performed to analyze the methylation status of genomic loci that generate Cuff.5107 
and Cuff.705, in Col-0 and nrpe1 plants. Methylation analysis using CyMATE [30] identified seven 
(CG), three (CHG) and 81 (CHH); and two (CG), zero (CHG) and 91 (CHH) potential cytosine 
methylated sites in the genomic region covering Cuff.5107 and Cuff. 705, respectively. This suggests 
that these regions are enriched in CHH methylation sites, consistent with the dominant CHH 
methylation characteristic of RdDM. While no change in CG methylation was observed between WT 
Col-0 and nrpe1 (data not shown), CHG and CHH methylation was reduced in nrpe1 plants. As shown 
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in Figure 4, loss of POL V resulted in hypomethylation, predominantly at the CHH context (the 
hallmark of RdDM) in both genomic loci. Overall, 59 of the 81 CHH sites in Cuff.5107 and 55 of the 
96 CHH sites in Cuff.705 showed reduced levels of methylation up to 87.5% in nrpe1 plants. Some 
CHH sites showed a higher level of methylation in nrpe1 in the two loci, but the number of such sites 
(17 and 23 CHH, respectively) is much smaller. This data validates the quality of our data in the 
identification of RdDM targeted loci. 

 
Figure 4. Analysis of bisulphite sequencing of Cuff.5107 and Cuff.705 loci. (A) CHG (arrowheads, three 
sites) and CHH (all other peaks, 81 sites) methylation level at potentially cytosine methylated 
positions across Cuff.5107; (B) CHH methylation (96 sites) level at potentially cytosine methylated 
positions across Cuff.705. Efficient bisulfite conversion was verified by amplifying a 157 bp chloroplast 
psaA protein gene sequence and digesting the PCR product with MseI restriction enzyme (Figure S6). 

3.8. The FLAG:AGO4 RNA-IP Seq Data Reveal Novel RdDM Target Genes 

A total of 5699 annotated genes were identified that had 50 or more reads corresponding to the 
gene body and 2 kb flanking regions; 5179 of these were protein-coding genes (Table S1). The 
presence of AGO4-associated ncRNAs suggests that these genes could be targeted by RdDM. To 
identify further RdDM targets from this list of genes, we searched an existing microarray gene 
expression dataset of two RdDM mutants nrpd1 (POL IV mutant) and nrpe1 (POL V mutant) 
(microarray data accession: GSE60508) [41] to identify genes that showed at least two-fold up-
regulation over wild type Col-0. This analysis identified 45 genes (Figure 5A and Figure S7A, and 
Table S2) that had AGO4-associated ncRNAs and showed up-regulation in both of the RdDM 
mutants. A search of their expression pattern in the AtGeneExpress Visualization Tool database [42] 
showed that 35 of these genes are expressed across multiple tissue types in Arabidopsis (Table S2), 
suggesting that they are not pseudogenes. 
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To verify that these 45 genes are targeted and repressed by RdDM, we selected 12 genes and 
performed semi-quantitative RT-PCR and real time RT-PCR (RT-qPCR) to examine their expression 
in WT and RdDM mutant plants. Ten of the 12 genes showed no detectable expression in wild type 
(Col-0) plants but clear expression in at least two of the four RdDM mutants tested (nrpd1, nrpe1, rdr2 
and ago4-2) (Figure 5B), suggesting that these genes are usually repressed by RdDM. Of the ten genes, 
only AT3G29639 is a known target of RdDM [9]. We analyzed the expression of three of these genes 
using RT-qPCR in additional RdDM mutants (nrpd2 and dcl3), in plants of the Ler ecotype (WT,  
ago4-1, transgenic ago4-1 FLAG:AGO4), and in non-RdDM mutants (dcl2 and rdr6) as controls (Figure 
5C). Gene expression was de-repressed in all the RdDM mutants in comparison to wild type plants 
(Ler and Col-0) except in dcl3, which may be attributed to functional redundancy of DCL3 with other 
dicer-like (DCL) proteins. In contrast to the RdDM mutants, expression of the three genes did not 
change in non-RdDM mutants, confirming that these genes are specifically regulated by RdDM 
(Figure 5C). Furthermore, the RT-qPCR analysis showed that these three genes, which were de-
repressed in ago4-1, were re-silenced by the expression of FLAG:AGO4 in the transgenic plants, 
suggesting that FLAG:AGO4 functions like endogenous AGO4 to repress these novel  
RdDM-regulated genes and further confirming that these genes are specifically targeted by RdDM. 

 
Figure 5. Identification and validation of putative RdDM-repressed genes. (A) Venn diagram 
illustration of overlapping common annotations between putative AGO4-targets identified based on 
the FLAG:AGO4 RNA-IP seq, and genes upregulated in RdDM mutants nrpd1 (POL IV mutant) and 
nrpe1 (POL V mutant) (>2-fold relative to Col-0) based on microarray data; (B) Semi-quantitative RT-
PCR analysis of gene expression in wild type (Col-0) versus RdDM mutants (nrpd1, nrpe1, rdr2 and 
ago4-2); (C) Real-time RT-qPCR analysis of three RdDM-repressed genes in plants of the Ler ecotype 
(Wild type Ler, ago4-1, transgenic ago4-1 FLAG:AGO4) and Col-0 ecotype (Wild type Col-0; RdDM 
mutants: ago4-1, nrpd1, nrpe1, nrpd2, rdr2, dcl3; and non-RdDM mutants: dcl2 and rdr6). Expression level 
with SE shown is the average of 3 biological replicates, normalized to FDH and relative to Col-0. 



Genes 2017, 8, 198  14 of 24 

 

3.9. RdDM Is Involved in the Activation of Stress-Responsive Genes 

When comparing our FLAG:AGO4 RNA-IP seq data with the nrpd1 and nrpe1 microarray data, 
we identified 156 genes that had corresponding AGO4-associated ncRNA reads and were 
downregulated in nrpd1 and nrpe1 mutants by at least 2-fold (Figure 6A and Figure S7B, and Table 
S3). This number (156) is significantly larger than that of genes (45) upregulated in the RdDM 
mutants. This was surprising as RdDM is known to repress gene expression and RdDM-targeted 
genes are expected to be upregulated but not downregulated in the RdDM-deficient mutants. This 
result raises the possibility that RdDM may play a role in maintaining or activating the expression of 
protein-coding genes. Interestingly, a survey of expression patterns of these genes in the 
AtGenExpression Visualization Tool database [42] revealed an enrichment for preferential expression 
in the reproductive tissues. Of the 131 genes recorded in the database, 63 (48%) show strong 
preferential expression in floral tissues and seed compared to root and aerial vegetative tissues (Table 
S3). Such enrichment was not observed for the 45 genes upregulated in the nrpd1 and nrpe1 mutants 
(Table S2). 

Functional classification of these 156 genes indicated a significant over-representation of genes 
associated with stress-response, with 28 of the 156 genes having a known or potential function in 
stress response (Figure S7B and Table S4). To examine if these genes are positively regulated by 
RdDM, we performed semi-quantitative or RT-qPCR on 12 of these stress-responsive genes in WT 
versus RdDM mutants. Eleven of the 12 stress-responsive genes showed reduced expression in the 
ago4 mutant compared to WT plants, and six of them also showed downregulation in the RdDM 
mutants nrpd1, nrpe1 and rdr2 (Figure 6B,C), suggesting that they are under positive regulation by 
RdDM. One of these six genes was ROS1 (REPRESSION OF SILENCING, or also known as DML-1, 
DEMETER-LIKE PROTEIN 1), a demethylase gene that is known to be positively regulated by RdDM 
[4,43]. In addition, RT-qPCR of four genes showed that the reduced gene expression level in ago4-1 
plants can be largely rescued by FLAG:AGO4 in ago4-1 FLAG:AGO4 plants (Figure 6C), confirming 
that these genes are specifically targeted by AGO4-mediated RdDM. 

As non-RdDM controls, we also tested the expression of the four genes in non-RdDM mutants 
including dcl2 and rdr6. Expression of ROS1 was not affected in dcl2 and rdr6, suggesting that it is 
strictly regulated by RdDM. However, this was not the case for the other three genes (AT5G59820, 
AT3G61190, AT1G72900), which are also downregulated to various degrees in the non-RdDM 
mutants (Figure 6C). Currently we cannot explain how DCL2 and RDR6 might be involved in the 
regulation of these genes. However, there is new evidence that other non-canonical RdDM factors 
such as RDR6 and DCL4 can also function in concert with AGO4 to mediate RdDM [44]. An 
involvement of such AGO4-mediated non-canonical RdDM could explain why the stress response 
genes were in general more downregulated in the ago4-2 mutant than in the nrpd1, nrpe1 and rdr2 
mutants (Figure 6B–D). 
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Figure 6. Identification and validation of putative RdDM-activated genes. (A) Venn diagram 
illustration of overlapping common annotations between putative AGO4-targets identified based on 
the FLAG:AGO4 RNA-IP seq, and genes downregulated in RdDM mutants nrpd1 (POL IV mutant) 
and nrpe1 (POL V mutant) (>2-fold relative to Col-0) based on the microarray data; (B) Semi-
quantitative RT-PCR analysis of gene expression in wild type (Col-0) versus RdDM mutants (nrpd1, 
nrpe1, rdr2 and ago4-2); (C) Real-time RT-qPCR analysis of four RdDM-activated genes in plants of 
the Ler ecotype (Wild type Ler, ago4-1 and transgenic ago4-1 FLAG:AGO4) and Col-0 ecotype (Wild 
type Col-0; RdDM mutants: ago4-1, nrpd1, nrpe1, nrpd2, rdr2, dcl3; and non-RdDM mutants: dcl2 and 
rdr6); (D) Validation of three AGO4-regulated genes by Real-time RT-qPCR in Col-0 versus  
ago4-2. Expression level with SE shown is the average of 3 biological replicates, normalized to FDH 
and relative to Col-0. 

3.10. RdDM/AGO4-Activated Stress-Response Genes Are Induced upon Fusarium Oxysporum Infection  

To understand the significance of these 28 stress response genes on plant immunity, an  
RNA-seq dataset generated by Zhu et al. [45], which investigated transcriptome changes in Col-0 
plants at 1, 3 and 6 days post infection by the fungal wilt pathogen, F. oxysporum, was used to examine 
the changes in expression level of these stress-response genes upon Fusarium infection. As shown in 
Figure S8A, the majority (18) of the 28 genes were upregulated by at least 2-fold at one or more of the 
three time points, six genes did not show significant changes in gene expression, and five were 
downregulated particularly at 3 days post infection; some data were not available for all three time 
points. We used semi-quantitative RT-PCR to confirm the induction for 12 of the 15 stress-response 
genes by Fusarium infection (Figure S8B). The expression of five of these 12 genes was also analyzed 
using RT-qPCR, which again showed significant induction at the later infection stage (5 days post 
infection, Figure S8C).  
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3.11. Repression or Activation of Gene Expression by RdDM May Depend on the Location of the Target Site 
in the Gene 

A comparison of ncRNA read distribution across gene features between the putative RdDM 
repressed (45 genes) and activated genes (156 genes) revealed a different pattern in ncRNA 
distribution. The repressed genes had more reads mapped to the upstream flanking sequence than 
the activated genes. In contrast, activated genes showed more ncRNA reads than the repressed genes 
along the gene body, particularly in the intronic region where the difference is almost three fold 
(Figure 7A). There was increased read distribution in the gene body for the activated genes as 
indicated by a more evenly distributed heatmap between the genic and non-genic region (Figure 7B). 
This is in contrast with the heatmap shown in Figure 2D where genes were not selected based on 
expression phenotype. Additionally, heatmap analysis of RdDM repressed genes continued to show 
a preference for the non-genic region (Figure 7C), although the relatively small number of genes 
makes the comparison difficult to interpret. 

An enrichment of ncRNA reads in the upstream region in the repressed genes is consistent with 
promoter methylation being involved in transcriptional repression of gene expression. The 
enrichment of ncRNA reads in the gene body region of activated genes, on the other hand, could 
suggest that RdDM occurs in the gene body to maintain or activate gene expression. This scenario 
would be consistent with previous reports showing a positive correlation between gene body 
methylation and gene expression levels in Arabidopsis [46]. Shibuya et al., recently showed that in the 
flowering plant Petunia hybrida, targeting the intron of the MADS3 gene for methylation by RdDM 
can result in up-regulation of gene expression [47]. 

 
Figure 7. Read distribution in gene features of putative RdDM repressed and activated genes. (A) 
Comparison of overall read distribution in gene features between putative RdDM repressed and 
activated genes. Values are shown as the percentage of reads located in each gene feature over the 
total number of reads for that particular gene group; (B,C) Heatmap analysis of read distribution 
across gene features in 156 putative RdDM activated and 45 RdDM repressed genes. Values were 
transformed to Log10 scale and further normalized by ggplot2 package in R. 
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3.12. AGO4-Associated lncRNAs Derived from Gene Body Are Associated with H3K4me3 Marks 

Next, we searched the TAIR genome browser for evidence of DNA methylation in the gene body 
of RdDM regulated active genes and found that of the six RdDM activated genes verified by RT-PCR 
in Figure 6C, only two (AT2G36490 and AT3G59320) have methylation exclusive to the gene body, 
which is predominantly CG methylation. The remaining four genes (AT5G59820, AT3G61190, 
AT1G72900 and AT1G76650) had no DNA methylation in the gene body or in gene flanking regions 
according to the TAIR genome browser. Bisulphite sequencing of genomic regions in the gene body 
of these four genes that produced lncRNAs again showed no evidence of methylation (data not 
shown). We then searched for evidence of changes in histone modification marks across the body of 
these genes. As shown in Figure 8A–C and Figure S9, the gene bodies of all four genes are associated 
with H3K4me3 marks, the hallmark of active gene transcription, consistent with their expression in 
WT Col-0 plants. Furthermore, these active histone marks increased in ago4-2 mutants specifically in 
or near the regions overlapping with lncRNAs. This appears to contradict the fall in mRNA 
expression level of these genes in ago4-2 as shown in Figure 6B,C, but transcription repression of these 
genes in ago4-2 were further indicated by the reduced RNA Polymerase II (Pol II) occupation at their 
transcription start site as measured by the Pol II ChIP assay (Figure S10). Because H3K4me3 regulates 
gene expression predominantly at the 5’ end of genes [48] and the observed increase in H3K4me3 in 
ago4-2 is far from the 5’end of genes; we speculate that these active histone marks may reflect 
increased expression of cryptic transcription units inside the gene body that interferes with the 
normal transcription of the hosting gene, and that AGO4 may play a role in repressing this cryptic 
transcription thereby maintaining or activating the expression of the gene in which the lncRNA 
occurs. Consistent with this possibility, a 5’ RACE experiment detected short RNA transcripts in ago4-
2 for all three RdDM-activated genes analyzed (AT5G59820, AT1G76650, AT1G72900) (Figure 8D). 
These transcripts were either undetectable (for AT5G59820 and AT1G76650), or accumulated at a 
lower level (for AT1G72900) in the wild-type Col-0 plant. Such increased accumulation of short RNA 
transcripts did not occur in ago4-2 for the control gene (AT4G01850) that does not have AGO4-
associated lncRNAs in the gene body (Figure 8E). Sequencing of the 5’ RACE products showed that 
the short transcripts from two of the RdDM-activated genes started immediately downstream of the 
dominant AGO4 lncRNA peak regions (Figure 8A for AT5G59820 and Figure 8C for AT1G72900; see 
the green arrow for starting sites). This suggests that the lncRNA-overlapping regions may represent 
cryptic promoters and that RdDM may play a role in repressing the cryptic promoters in wild-type 
plants preventing the production of the downstream short transcripts. 

It is worth noting that in contrast to the AGO4 mutant, H3K4me3 was not affected in the POL V 
mutant (nrpe1, Figure 8 and S9). The down-regulation of these genes (AT5G59820, AT3G61190, 
AT1G72900 and AT1G76650) was also stronger in ago4-2 compared to nrpe1 (Figure 6B,C). This 
suggests that disrupting AGO4 function can cause more severe epigenetic changes than mutation of 
other canonical RdDM factors. Consistent with this, recent studies showed that while ago4 mutant is 
susceptible to the bacterial pathogen Pseudomonas syringae [19], nrpe1 is resistant [20], suggesting that 
AGO4 has targets outside of the canonical RdDM pathway. 
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Figure 8. Chromatin immunoprecipitation (ChIP) assay and 5’RACE detect increased H3K4me3 
marks and short transcripts inside the gene body of RdDM-activated genes in the AGO4 mutant. 
Histone H3 Lys 27 (H3K27me3) and Lys 4 (H3K4me3) trimethylation at gene body tiling regions of 
(A) AT5G59820, (B) AT1G76650 and (C) AT1G72900. ChIP signals are normalized to the input signals. 
Error bars are the standard error of the mean from two biological replicates. Green arrows show the 
start site of 5’RACE products cloned from ago4-2 tissues. Student’s t-test is used to detect significant 
differences at the p < 0.05 level (*); (D) 5’RACE product, representing short RNA transcript initiated 
inside the gene body, is readily detectable in ago4-2 (boxed in red), but undetectable or accumulates 
at lower levels in WT Col-0; (E) No such 5’RACE product initiated inside the gene body (long 5’RACE) 
is detectable in either ago4-2 or Col-0 for the control gene AT4G01850. The short 5’RACE product 
represent full-length transcript of the gene. 
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4. Discussion 

The principal aim of the present study was to identify genes that are targeted by RdDM, 
particularly those which may play a role in plant disease resistance. We performed transcriptome 
analysis by RNA-IP pull-down of AGO4-associated lncRNA followed by deep sequencing to identify 
gene loci regulated by RdDM in the Arabidopsis genome. We chose AGO4 as the bait for the RNA-IP 
pull-down instead of POL V because lncRNAs involved in RdDM may not be derived just from POL V 
transcription but could also come from Pol II transcription, as suggested by Zheng et al. [49]. We 
established a highly AGO4-specific lncRNA library as illustrated by low levels of protein-coding 
sequences and high abundance in non-coding sequence reads, most of which map to repeat-associated 
sequences and overlap with an AGO4-siRNA dataset from a separate study. In addition, the specificity 
of the FLAG:AGO4 RNA-IP seq data was evaluated by comparing the genome wide read distribution 
against the control negative RNA-IP seq and the input nuclear RNA library. 

RdDM that occurs in both gene body and flanking regions could potentially regulate the 
expression of the corresponding genes. Therefore, to identify RdDM-targeted genes, we searched the 
RNA-IP seq data for ncRNAs that overlap not only with the gene body but also with 2 kb upstream 
and 2 kb downstream regions. We found that the majority of these ncRNA reads were derived from 
the flanking regions and the untranslated sequences of the gene body; only 1% was mapped to coding 
sequences. These suggest that the regulation of genes through RdDM occurs predominantly in non-
coding regions particularly at promoters. 

A total of 5179 genes were identified associated with the FLAG:AGO4 RNA-IP seq data, 
suggesting that a large number of genes are potentially regulated by AGO4 or RdDM. By overlapping 
the RNA-IP seq data with the microarray expression data of the POL IV (nrpd1) and POL V (nrpe1) 
RdDM mutants, 45 putative RdDM-target protein-coding genes were identified. This relatively small 
number could suggest that not all AGO4-regulated genes share the same dependency on POL IV and 
POL V, and some of the ncRNAs associated with AGO4 may be transcribed by other RNA 
polymerases. Consistent with this possibility, a recent report identified RdDM targets in which POL 
V-dependent lncRNAs can also be transcribed by RNA POL II [49]. This is also evident in our lncRNA 
validation in which not all lncRNAs are downregulated in nrpe1 plants. Furthermore, Kurihara et al., 
identified RdDM repressed genes which show low dependency on RNA POL IV and V but high 
dependency on other RdDM factors RDR2 and DDC (DRM1 DRM2 CMT3) [9]. Thus, it is possible 
that genes that are regulated by AGO4-mediated RdDM but which are independent of RNA POL IV 
or V may have escaped our AGO4 lncRNA-microarray expression overlapping analysis. 

The overlapping analysis between the FLAG:AGO4 RNA-IP seq data and the nrpd1 and nrpe1 
microarray expression data also identified genes that are downregulated in the POL IV and POL V 
mutants. The number of genes in this category, 156, is larger than that of the genes upregulated in the 
mutants. This suggests that AGO4-mediated RdDM may potentially function as a positive regulator of 
gene expression and that genes can either be repressed or activated by RdDM. Interestingly, the 156 
RdDM-activated genes are enriched for preferential expression in the floral tissues (Table S3), which 
coincides with the relatively high abundance of 24-nt siRNAs [32,33] and AGO4 protein (Figure S2A 
and [13]) in the flowers. This further suggests that these genes are positively regulated by RdDM. 

A comparison of ncRNA read distribution between genes repressed by RdDM and those 
activated by RdDM show that the latter possess a higher proportion of reads that map to the gene 
body, suggesting that gene body methylation through RdDM may potentially maintain/activate gene 
expression. Gene body methylation has been observed in both plants and many other eukaryotic 
organisms including Ciona intestinalis (sea squirt), the silkworm [50] and human [51–53]. Recent 
genome-wide DNA methylation analysis has shown a positive correlation between high-level gene 
expression and gene body methylation in Arabidopsis [18]. However, analysis of four RdDM-activated 
genes detected no gene body DNA methylation in WT Arabidopsis or ago4 mutant plants. Instead, 
these four genes showed the active histone mark, H3K4me3, in the gene body regions that overlap 
with the lncRNAs, and the level of this active histone mark is increased in the ago4 plants. This raises 
the possibility that AGO4-mediated RdDM can function through histone modification independently 
of DNA methylation, and that the role of RdDM in the gene body is to repress cryptic transcription. 



Genes 2017, 8, 198  20 of 24 

 

It has recently been speculated that cryptic transcription inside gene body can inhibit the proper 
expression of the gene and a function of gene body methylation is to repress such cryptic transcription 
[54]. A recent study on TE sequences inside introns of genes in Arabidopsis showed that intronic TEs 
of actively expressed genes are still targeted by RdDM and the heterochromatic (or repressed) state 
of these gene body TEs is critical for proper transcription of associated genes [55]. These and our 
findings collectively support the idea that RdDM directed against the gene body functions to 
maintain active gene expression by repressing cryptic transcription. Increased levels of cryptic 
transcription around the lncRNA sites in ago4-2 plants is supported by the detection of short RNA 
transcripts in ago4-2 with alternative start sites around or downstream of the lncRNA regions in the 
RdDM-activated genes analyzed. The decrease in mRNA level and Pol II occupation of the genes in 
ago4-2 plants suggests that this cryptic transcription inside the gene body can inhibit gene expression. 
Several recent studies have shown that some RdDM target loci that are devoid of DNA methylation 
footprint show positive changes in active histone marks in RdDM mutants. Lopez et al. [20] showed 
that the promoter of disease defense gene PATHOGENESIS-RELATED GENE 1 (PR-1) has increased 
H3K4 trimethylation and/or H3K9 acetylation marks in RdDM mutants of nrpd1 and nrpe1; but is 
devoid of DNA methylation. Wierzbicki et al. [39] showed that POL V target AT1G26250 that lacks 
the CHH methylation mark is more actively acetylated at the H3K9 and H3K14 residues in nrpe1 
mutants. These and our results suggest that RdDM factors can modulate changes in gene expression 
through changes in histone marks independent of DNA methylation and therefore point to the 
existence of an alternative RNA-directed chromatin modification pathway in plants. 

The putative RdDM-activated genes were enriched for stress-response function, including 
ROS1, a demethylase gene whose expression level is known to be positively regulated by RdDM. 
Surprisingly, three of four of the RdDM-activated genes analyzed using RT-qPCR showed down-
regulation not only in the RdDM mutants but also in the PTGS mutants dcl2 and rdr6. Recent studies 
have indicated that Arabidopsis has a second siRNA-dependent DNA methylation pathway that 
requires the PTGS factors such as RDR1/6 and 21 nt siRNAs, and targets a subset of non-conserved 
genomic loci [56,57]. Therefore, the RdDM-activated genes may be regulated by both the canonical 
and the PTGS-associated RdDM pathways. 

Eighteen of the RdDM-activated stress response genes showed increased expression levels in 
plants infected with F. oxysporum compared with uninfected samples. This result implies that RdDM 
may be enhanced during fungal infection to maintain or activate the expression of important stress-
response genes, conferring an increased level of disease resistance. This scenario would be consistent 
with the RdDM mutants ago4 and nrpe1 being highly susceptible to bacterial or fungal pathogens as 
reported recently [20]. It is also consistent with the enhanced F. oxysporum resistance shown by the 
FLAG:AGO4 and AGO4:FLAG transgenic Arabidopsis plants (Figure S11). Recent evidence suggests 
that upon biotic stress, the Arabidopsis genome undergoes extensive DNA methylation changes [58]. 
Based on our data and those derived from recent publications, we propose that upon biotic stress, 
RdDM, in concert with other methylation and demethylation pathways, functions to fine-tune 
changes at the chromatin level to restore proper gene expression, particularly in stress-response genes 
to confer resistance against various infections. However, if and how RdDM is activated by stresses 
and how RdDM controls gene expression through gene body DNA/chromatin modifications remains 
to be further investigated. 

5. Conclusions 

Using nuclear RNA-IP seq of the AGO4-associated RNA transcriptome, we have generated a high-
quality ncRNA dataset that will serve as a useful resource for identification of novel RdDM-targeted 
genes. We used this dataset to identify a number of novel RdDM target genes that may play a role in 
plant stress response. Furthermore, we present compelling evidence supporting the notion that in 
addition to gene repression, RdDM can positively regulate expression of genes associated with plant 
immunity, which could account for the increased disease susceptibility observed in RdDM mutants. It 
is, however, undeniable that the complexity of RdDM is beyond what we have presented here and more 
effort is required to understand RNA-induced DNA methylation and its function(s) in plants. 
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S1. The 35S and AGO4 promoters show a similar pattern of expression in Arabidopsis. Figure S2. The 
accumulation of FLAG:AGO4 protein is tissue type-dependent. Figure S3. Illustration of template-switch 
generated cDNA library of FLAG:AGO4 and negative RNA-IP RNA on 3% Nusieve 3:1 agarose gel. Figure S4. 
Read distribution across loci features between FLAG:AGO4 RNA-IP and nuclear RNA seq libraries. Figure S5. 
Chromosome wide density analysis of FLAG:AGO4 RNA-IP seq reads on Chromosome 1, 2, 4 and 5. Figure S6. 
MseI digestion confirms efficient bisulfite conversion of cytosines in the Col-0 and nrpe1 samples used for 
bisulfite sequencing methylation analysis in Figure 4. Figure S7. GO annotation analysis of RdDM repressed (A) 
and activated (B) genes according to biological function. Figure S8. Expression analyses of putative RdDM-
regulated stress response genes upon infection by Fusarium oxysporum. Figure S9. H3K27me3 and H3K4me3 
ChIP assay. Figure S10. Pol II ChIP assay shows reduced Pol II occupancy in the transcription start site (TSS) of 
RdDM-activated genes in the AGO4 (ago4-2) mutant. Figure S11. Transgenic Arabidopsis plants over-expressing 
AGO4 show enhanced resistance to Fusarium oxysporum (F. ox). Supplemental file 1. Cufflinks assembled AGO4-
ncRNA transcripts. Table S1. 5699 annotated genes with 50 or more reads in gene body or 2 kb flanking regions. 
Table S2. List of 45 RdDM repressed genes, annotations up-regulated in nrpd1 and nrpe1 by => 2-fold which 
carry AGO4 lncRNA in the gene or 2kb upstream or downstream gene flanking regions. Table S3. List of 156 
RdDM activated genes, annotations down-regulated in nrpd1 and nrpe1 by => 2-fold which carry AGO4 lncRNA 
in the gene or 2kb upstream or downstream gene flanking regions. Table S4. Summary of response to stimulus 
genes down-regulated in nrpd1/nrpe1 and with AGO4-associated ncRNA. Table S5. Primers used in this study. 
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