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Abstract: To complete the duplication of large genomes efficiently, mechanisms have evolved that
coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to
cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of
the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the
initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-
minichromosome maintenance complex proteins 2-7 (Mcm?2-7)-go-ichi-ni-san GINS complex proteins,
as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork
stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment
of DNA polymerase-a and proliferating cell nuclear antigen. Based on its multivalent properties,
Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication
stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and /or
overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor
survival. These findings are compatible with a heightened requirement for Mcm10 in transformed
cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review,
we highlight advances in our understanding of when, where and how Mcm10 functions within the
replisome to protect against barriers that cause incomplete replication.

Keywords: CMG helicase; DNA replication; genome stability; Mcm10; origin activation; replication
initiation; replication elongation

1. Efficient Replication of Large Eukaryotic Genomes

At a speed of 1.5 kb per minute, it would take approximately 60 days to duplicate one copy of
the human genome if a single, unidirectional fork replicated each chromosome. To rapidly generate
a complete copy of the genome, replication is initiated from numerous origins distributed across
each chromosome where the number of initiation sites appears to be related to genome size [1-7].
In budding yeast, ~400 replication origins are activated to copy a genome of ~1.2 x 107 bp, whereas the
significantly larger human genome contains ~5 x 10* origins to duplicate a genome of 3 x 10 bp [1-7].
Importantly, the number of origins licensed for replication initiation exceeds the number utilized
during a normal S-phase [8-10]. These unfired or “dormant” origins serve as backup sites for initiation
in the event of replication stress to ensure that DNA replication can be completed [11,12]. Interestingly,
the average distance between replication origins is only moderately increased in humans in comparison
to yeast, as both are in the range of 30-60 kb [6,13-16]. However, the maximum region replicated by
a single origin, or replicon, in humans (up to ~5 Mb) is orders of magnitude larger than in yeast (up
to 60 kb) [6,13-16]. Therefore, different challenges exist in lower and higher eukaryotes to warrant
replication fidelity and maintain genome integrity.
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In all eukaryotes, replication begins with the loading of the catalytic core of the replicative
helicase, which is composed of the minichromosome maintenance complex proteins 2-7 (Mcm2-7).
Unlike in eukaryotic viruses, helicase loading and activation are temporally separated into two
distinct stages. The first step, origin licensing, occurs via loading of Mcm2-7 double hexamers
onto double-stranded DNA (dsDNA) [17-20]. This is achieved during late mitosis and G1-phase
through the coordinated action of the origin recognition complex (ORC), cell division cycle 6 protein
(Cdc6), and Cdcl0-dependent transcript 1 (Cdtl) to complete assembly of the pre-replication complex
(pre-RC) [19-22]. Once a sufficiently high number of replication origins have been licensed [23],
cells prohibit formation of additional pre-RCs and commit to the second stage of DNA replication,
origin firing and DNA synthesis [18,24-26]. To this end, the helicase co-factors cell division cycle
45 (Cdc45) and go-ichi-ni-san (GINS) are recruited to chromatin [18,24-28]. Finally, to initiate DNA
synthesis, Cdc45-Mcm2-7-GINS (CMG) helicase dimers are activated and physically separate to
proceed in a bidirectional manner [18,24-26]. Minichromosome maintenance protein 10 (Mcm10)
participates in this activation process and remains physically attached to the Mcm?2-7 complex
throughout DNA replication [29-37]. In this review, we focus on Mcm10 and how it ensures timely
and accurate completion of DNA replication.

2. Discovery and Biochemical Characterization of Mcm10

Mcm10 is an evolutionarily conserved component of the eukaryotic replication machinery [38,39].
The MCM10 gene was identified in two independent genetic screens in Saccharomyces cerevisiae.
Initially uncovered over 30 years ago as a temperature sensitive allele of DNA43 defective in both
entry and completion of S-phase [40,41], a second screen revealed additional mcm10/dna43 mutants
that were unable to maintain minichromosomes [42,43]. Investigations in many eukaryotic model
organisms including fission yeast (Schizosaccharomyces pombe), nematodes (Caenorhabditis elegans),
fruit flies (Drosophila melanoguaster), frogs (Xenopus laevis), zebrafish (Danio rerio), mice (Mus musculus),
and humans (Homo sapiens) have revealed MCM10 homologs [31,44—47]. Much of the core replication
machinery, including Mcml0, is also conserved in plants [48]. Curiously, Drosophila but not
human Mcm10 was able to functionally complement a mcm10 mutant in budding yeast [35,45,46].
These observations imply that despite its conserved structure and role in DNA replication, it is
important to determine organism specific details of Mcm10 function. Finally, Mcm10 homologs
have not been found in bacteria or archaea, showing that MCM10 is unique within eukaryotic
genomes [38,39,49-51].

Despite the lack of catalytic domains indicative of enzymatic function, Mcm10 associates with
replication origins, facilitates their activation and becomes part of the replisome [30,35,37,52-54].
Several studies have identified structural motifs in Mcm10 that associate with linear single-stranded
(ss-) and dsDNA, as well as more complex topological structures [33,51,55-57]. Furthermore,
distinct regions direct interactions between Mcm10 and several replication factors, including the
Mcm?2-7 complex [32,34,43,45,58-60], Cdc45 [45,55,61], DNA polymerase alpha (Pol-«) [30,57,62-65],
ORC [45,46,58,60], proliferating cell nuclear antigen (PCNA) [67], Chromosome transmission fidelity
4 (Ctf4) [65,68] and RecQ like helicase 4 (RecQL4) [69]. These data support a model in which Mcm10
coordinates helicase activity with DNA synthesis through interactions with different protein complexes
at the replication fork [39,50,51]. Below, we review the current understanding of Mcm10’s functional
domains that facilitate these interactions.

Biochemical analyses and sequence alignment of Mcm10 homologs have revealed three major
structural regions. Referred to as the N-terminal (NTD), internal (ID) and C-terminal domains (CTD),
each contains distinct functional regions involved in DNA binding and/or protein-protein contacts
(Figure 1) [38,39,51]. The ID is the most highly conserved region of Mcm10 and mediates both
protein-DNA and protein-protein interactions (Figures 1 and 2). DNA binding occurs via two motifs:
a canonical oligonucleotide/oligosaccharide-binding fold (OB-fold) and a single CCCH zinc-finger
(ZnF1) (Figures 1 and 2) [57,62,63,70]. Unlike other proteins carrying these motifs, the Mcm10 OB-fold
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and ZnF1 are in a unique configuration and form a continuous interaction surface [57], capable of
binding ss- and dsDNA [33,51,57,70-72]. Mcm10 does not have a preference for particular DNA
sequences or topological structures, but its affinity for ssDNA is higher than for dsDNA [33,51,55-57].
In addition to DNA binding motifs, the ID contains specific sites that contact Pol-o, PCNA and
Mcm?2-7 (Figure 1) [30,43,45,46,51,57-60,63,67,70]. Association with Pol-« occurs via a hydrophobic
patch termed the heat shock protein 10 (Hsp10)-like domain [30,57,63,70], whereas PCNA binds to
a noncanonical PCNA interacting peptide (PIP) box, QxxM/I1/LxxE/YE/Y (Figure 2) [39,67]. Notably,
the putative PCNA interaction motif in higher eukaryotes bears close resemblance to the QLsLF
consensus binding site for the prokaryotic 3-clamp, which functions similarly to PCNA in promoting
polymerase processivity [39,50,73]. Both the Hsp10-like domain and PIP box lie within the OB-fold
on perpendicular (3-strands (Figure 1), suggesting that Pol-o« and PCNA compete with each other.
However, Pol-« can be easily displaced by ssDNA [57].

The NTD is common among Mcm10 proteins from yeast to humans, but is not essential and less
well conserved than the central ID (Figures 1 and 3) [74,75]. Functionally, the NTD contributes to
self-oligomerization and partner protein interaction [39,50]. Homocomplex formation of Xenopus and
human Mcm10 clearly depends on the NTD [55,72,75]. A conserved coiled-coil (CC) domain within
the NTD mediates dimer and trimer formation of purified Xenopus Mcm10 (Figures 1 and 3) [51,75].
Human Mcm10 was proposed to form trimers or a hexameric ring, with the latter reinforced by
electron microscopy reconstructions and model fitting based on the archaeal Mcm helicase and simian
virus 40 large T-antigen [55,72]. However, the electron density map of the high-resolution crystal
structure of Xenopus Mcm10 is not fully compatible with ring formation, leaving the true nature of
the Mcm10 homo-oligomer open for further exploration [38,55,70,72]. Furthermore, current data lack
insight regarding how a hexameric Mcm10 ring would be loaded onto DNA. These discrepancies
notwithstanding, oligomerization of Mcm10 agrees with the characterization of S. cerevisiae Mcm10
complexes that associate with DNA [30,56]. The stoichiometry of DNA binding by Mcm10 is 1:1 on
dsDNA, but 3:1 on ssDNA [56], suggesting that oligomerization may be triggered by DNA unwinding.
Mcm10 oligomerization would thus present an elegant solution to the problem that ssDNA evicts
Pol-o from the OB-fold [57]. Finally, the NTD promotes resistance to replication stress, as failure
to oligomerize dramatically increases sensitivity to hydroxyurea in checkpoint deficient cells [74].
Independent of its role in oligomerization, the first 150 amino acids of the NTD interact with mitosis
entry checkpoint 3 (Mec3), a component of the yeast radiation sensitive 9 (Rad9), hydroxyurea sensitive
1 (Hus1), radiation sensitive 1 (Rad1) checkpoint clamp referred to as 9-1-1 [74]. It appears that Mcm10
promotes resistance to UV irradiation in budding yeast through direct binding of the 9-1-1 clamp,
whereby it might stabilize stalled replication forks [74].

The Mcm10 CTD, although not present in unicellular eukaryotes, is conserved among metazoan
species from nematodes to humans (Figures 1 and 4). The CTD contains a winged helix domain
(WH) and two zinc chelating motifs, a CCCH zinc-finger (ZnF2) and a CCCC zinc-ribbon (ZnR)
(Figures 1 and 4). ZnF2 is required for the CTD to bind DNA, but the function of the ZnR has not
been clearly defined, although it shares homology with the ZnRs found in archaeal and vertebrate
Mcm proteins [39,51,55,57,76]. Mutation of the ZnR disrupts archaeal double hexamer formation,
whereas alteration of the ZnR in budding yeast Mcms reduces viability [76-79], suggesting that it
may mediate protein-protein interactions important for proper helicase function. Recent analysis of
Drosophila Mcm10 demonstrated that the CTD directs interaction with heterochromatin protein la
(HP1a) in vitro, a finding that is further supported by in situ proximity ligation [80]. This interaction
is deemed important for cell cycle regulation and cell differentiation [80]. Furthermore, the CTD of
human Mcm10 is necessary for nuclear localization although a bona fide NLS has not been defined [81].
Interestingly, the budding yeast C-terminus carries two bipartite nuclear localization signals (NLSs)
that are each sufficient for directing Mcm10 to the nucleus (Figure 1), however, a homologous region is
not present in metazoan Mcm10 [82]. Recent work from two independent groups has also mapped
the major Mcm2-7 interaction surface, via Mcm2 and Mcmé, to a portion of Mcm10’s C-terminus in
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budding yeast. Again, this particular region is not conserved in higher eukaryotes [32,34]. Functionally,
the CTD is similar to the ID, specifically in mediating interactions with DNA and Pol-« [51,55,62].
The DNA binding surfaces in the ID and CTD can be utilized simultaneously, as Xenopus Mcm10
binds in vitro with approximately 100-fold higher affinity than either domain individually [51]. Finally,
DNA binding of the ID and CTD can be modulated by acetylation and this will be further discussed
below [62].

N-terminal domain Internal domain C-terminal domain
(NTD) (ID) (CTD)
p OB-fold _PIP ZnF1 WH ZnR
H. sapiens 238:388 32733 350-415 710-769  816-836

1 Hsp10 ZnF2 875
348-355 783-802

S. cerevisiae A Zn|

0B-fold F1 NLS
201-297 239-45  309-335 435-451

1 Hsp10 NLS 571
261-268 512-527

Figure 1. The domain structure of minichromosome maintenance protein 10 (Mcm10). Full-length
Mcm10 is depicted for Homo sapiens (875 amino acids (aa)) and Saccharomyces cerevisiae (571 aa).
Mcm10 functional domains and the amino acid regions they span depicted. The N-terminal domain
(NTD) contains a coiled-coil (CC, orange) motif responsible for Mcm10 self-interaction. The internal
domain (ID) mediates Mcm10 interactions with proliferating cell nuclear antigen (PCNA) and DNA
polymerase-alpha (Pol-«) through a PCNA-interacting peptide (PIP) box (red) and Hsp10-like domain
(purple), respectively. These motifs reside in the oligonucleotide/oligosaccharide binding (OB)-fold
(light gray). The OB-fold along with zinc-finger motif 1 (ZnF1, green) serve as a DNA-binding domain.
The C-terminal domain (CTD) is specific to metazoa and interacts with DNA primarily through ZnF2
(green). The CTD also includes the zinc ribbon (ZnR, blue) and winged helix motif (WH, dark gray);
however their functions are currently unknown. A bipartite nuclear localization sequence (NLS) has
been identified in S. cerevisiae.
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Figure 2. Evolutionary conservation of functional domains in the Mcm10 ID. (A-D) Comparison
of the amino acid sequences from Homo sapiens, Mus musculus, Danio rerio, Xenopus laevis,
Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces pombe and Saccharomyces cerevisiae of
the OB-fold (A), PIP box (B), Hsp10-like (C) and Zinc-Finger 1 (D) domains. The full sequence
alignment for the OB-fold is not shown due to size constraints, but can be found in Warren et al., [70].
The percent conservation (% cons.), defined as the percentage of amino acid positions identical (in
red) or strongly similar (in blue) to those of human Mcm10, is listed for each domain sequence.
The total region aligned for each sequence listed in gray. (E) The crystal structure of the Xenopus
Mcm10 (xMcm10) OB-fold (gray), PIP box (red), Hsp10-like (purple) and Zinc-Finger 1 (green)
domains is shown. The structure was generated using pdb data file 3EBE and the Chimera program
(http:/ /www.cgl.ucsf.edu/chimera) [83].
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A Coiled-coil % cons. B xMcm10 Coiled-coil (trimer)
H.sap. 105 PRREKTNEELQEELRNLQEQMKALQEQLKVTTIKQ 138 -
M.mus. 102 PSQEKTSEELQDELKKLQEQMKSLQEQLKAASIKQ 135 91%

D.rer. 75 ---NKSKEDLEAELKLMQEKMQKLQQQLEASQ--- 103 67%
X.lge. 95 VCQEKSKDELEDELRKMQAQMKKLQEQLQKTALAK 129 83%
D.mel. 98 ---ERKYNEYGSDINK---RLKQQQENAYESKVAR 126 48%
C. ele. N MDPLDDLLTQLEGVEEE-ELKPVNR 24 48%

S.cer. 18 -SDEEDEQAIARELEFMERKRQALVERLKRKQEFK 51 55%

Figure 3. Evolutionary conservation of functional domains in the Mcm10 NTD. (A) Comparison of the
amino acid sequences from H. sapiens, M. musculus, D. rerio, X. laevis, D. melanogaster, C. elegans, S. pombe
and S. cerevisiae of the coiled-coil domain. The percent conservation (% cons.), defined as the percentage
of amino acid positions identical (in red) or strongly similar (in blue) to those of human Mcm10, is listed
for each domain sequence. The total region aligned for each sequence listed in gray. (B) The crystal
structure of the Xenopus Mcm10 (xMcm10) coiled-coil domain is shown. The structure was generated
using pdb data file 4]BZ and the Chimera program (http://www.cgl.ucsf.edu/chimera) [83].

A
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D.mel. 609 EDDRELMRKSR—————————— IEKIMAATSSHTNLVEMREREAQEEYFNKLERKEAMEEK 658 52%
C.ele. 532 TAPEPEAKKPRSQ----KMDEIRAMLARKSTHHKEAEKAEHDMLQRHLTGMEEREKVETF 587 52%
B Zinc Finger 2 % cons. D xMcm10 ZnF2 and ZnR
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X.lae. 768 CKTCKYTHFKPKETCVSENH 787 80%
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Figure 4. Evolutionary conservation of functional domains in the Mecm10 CTD. (A—-C) Comparison of
the amino acid sequences from H. sapiens, M. musculus, D. rerio, X. laevis, D. melanogaster and C. elegans
of the Winged Helix (A), Zinc-Finger 2 (B) and Zinc-Ribbon (C). The percent conservation (% cons.),
defined as the percentage of amino acid positions identical (in red) or strongly similar (in blue) to
those of human Mcm10, is listed for each domain sequence. The total region aligned for each sequence
listed in gray. (D) The crystal structure of the Xenopus Mcm10 (xMcm10) Zinc-Finger 2 (green) and
Zinc-Ribbon (blue) domains is shown. The structure was generated using pdb data file 2KWQ and the
Chimera program (http:/ /www.cgl.ucsf.edu/chimera) [83].

3. The Multifaceted Regulation of Mcm10 Function

Mcm10 is regulated via changes in expression, localization and post-translational modification.
The E2F/Rb (retinoblastoma) pathway, which is central to normal cell cycle control and proliferation,
regulates transcription of MCM10 in human HCT116 cells [84,85]. Furthermore, an essential E3
ubiquitin ligase, retinoblastoma binding protein 6 (RBBP6), ubiquitinates and destabilizes the
transcriptional repressor zinc finger and BTB domain-containing protein 38 (ZBTB38) thereby relieving
inhibition of MCM10 transcription [86,87]. Interestingly, RBBP6 (also known as PACT or P2P-R)
interacts with the critical cell cycle regulators Rb and p53 to modulate cell cycle progression [86,88,89].
Furthermore, the zinc-finger transcription factor GATA-binding factor 6 (GATA6) promotes MCM10
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expression in highly proliferative mouse follicle progenitor cells by stimulating Ectodysplasin-A
receptor-associated adapter protein (Edaradd) and NF-kB signaling [90]. MCM10 expression levels are
also controlled by microRNAs, such as miR-215, which directly regulates MCM as well as other cell
cycle genes, including MCM3 and CDC25A [91,92]. This suggests coordinated suppression of genes
that promote proliferation. Finally, MCM10 expression is often increased in rapidly proliferating tumor
cells (discussed in more detail below), pointing to a potential role in not just facilitating but actively
driving cell cycle progression.

In addition to controlling MCM10 expression, several post-translational modifications regulate
Mcm10 turnover or modulate the activity of functional domains. Cellular levels of human Mcm10
increase as the cell cycle approaches the G1/S boundary and decrease in late G2/M-phase [93-95].
In HeLa and U20S cell lines, Mcm10 depletion during mitosis is proteasome dependent [93,95].
The oscillation of Mcm10 levels is similar to other cell cycle regulators whose degradation is mediated
by the ubiquitin-proteasome pathway [96]. Mcm10 is a substrate of the cullin 4 (Cul4), damaged DNA
binding 1 (DDB1), viral protein R binding protein (VprBP) E3 ubiquitin ligase (Table 1) [81,95,97,98].
These observations are consistent with the role of the cullin-RING E3 ligase family in regulating
multiple cell cycle and DNA replication related proteins [99]. Although Mcm10 contains substrate
recognition motifs for the anaphase promoting complex/cyclosome (APC/C), it is not an APC/C
target [95]. The described degradation mechanism is also activated in response to high doses of
UV-radiation, likely to stall DNA replication instantaneously [81]. Furthermore, in response to
human immunodeficiency virus 1 (HIV-1) infection, viral protein R (VPR) enhances the proteasomal
degradation of endogenous Cul4-DDB1-VprBP substrates, including Mcm10, which causes G2/M
arrest [98]. Lastly, ubiquitination of Mcm10 has also been observed in budding yeast, although this
modification does not appear to drive protein degradation, but rather regulates Mcm10 function
during S-phase (Table 1) [67,100].

Besides ubiquitination, phosphorylation of Mcm10 is also important for its functional regulation.
In HeLa cells, the phosphorylation of Mcm10 is proposed to facilitate release from chromatin [93].
Subsequently, several high-throughput proteomics studies have identified a large number of putative
phosphorylation sites on Mcm10 [101-112]. To date there has not been additional validation
or functional characterization of these phosphorylation sites, although 23 have been reported in
multiple datasets (Table 1) [101]. Interestingly, Xenopus Mcml0 is phosphorylated on various
S-phase cyclin-dependent kinase (S-CDK) target sites [113]. Of the seven sites identified (Table 1),
only serine 630 is conserved in other metazoa [113]. Recombinant Xenopus S630A mutant protein
that cannot be phosphorylated supports chromatin loading and bulk DNA synthesis but significantly
reduces replisome stability in vitro [113]. Decreased fork stability also leads to increased DNA damage
following treatment with the topoisomerase inhibitor camptothecin [113]. The homologous site in
human Mcm10 (S644) has been reported in the human phosphoproteome database, and warrants
further investigation [101,102,106]. Future studies will be important to clarify our understanding of
how phosphorylation may regulate Mcm10 in different biological systems.

In addition to Mcm10 regulation by phosphorylation and ubiquitination, acetylation modulates
the DNA binding properties of human Mcm10. In vitro assays and in vivo analyses (in HCT116 cells)
provide evidence that the ID and CTD of Mcm10 can be acetylated by the p300 acetyltransferase at
more than 20 lysines (Table 1) [62]. Sirtuin 1 (SIRT1), a member of the sirtuin family of deacetylases and
homolog of yeast Sir2, can deacetylate a subset of these residues [62]. Intriguingly, acetylation increases
the DNA binding affinity of the ID but decreases affinity of the CTD in vitro [62]. Furthermore,
the depletion of SIRT1 leads to increased levels of total and chromatin-bound Mcm10, disruption of the
replication program, DNA damage and G2/M arrest [62]. Taken together, these observations suggest
that acetylation of Mcm10 might regulate protein levels and dynamically controls the overlapping
functions of the ID and CTD in DNA association or protein binding.
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Table 1. Post-translational modifications of Mcm10.

7 of 22

Modification Role Species/System Region/Residue(s) Enzyme Reference(s)
provsome Human Meni0 75 408
Ubiquitination dependent (Heil;la‘,/i[‘J,iOS) 843-875 Cul4-DDB1-VprBP [93,95,97,98]
degradation (regions that can mediate degradation)
Functional Yeast Mcm10
Ubiquitination regulation (Saccharomyces K85, K122, K319, K372, K414, K436 Not identified [67,100]
during S-phase cerevisiae)
T85, 593, 5150, S155, A182, S203, 5204,
A210, S212, T217, R286, T296, S488, Not identified, except
. Unknown Human Mcm10 5548, 5555, 5559, S577, S593, Y641, )
Phosphorylation function (HeLa) S644, T663, 5706, 5824 T%ﬁ‘gg‘ fnﬁgtor [93,101-112]
(* only sites identified in more than 2 P ’
datasets are listed)
Phosphorylation R;gﬁisl‘i’ge Xenopus extract S154, $173, S206, S596, S630, S690, S693 S-CDK [113]
K267, K312 *, K318, K390 *, K657, 300 (acetylase)
Protein stability K664, K668, K674 *, K681 *, K682 *, SIRTI * donce Slise)
Acetylation and DNA Human Mcm10 K683 *, K685 *, K737 *, K739 *, K745 *, * indicat g}’ tof [62]
binding K761 *, K768 *, K783, K847 *, K849 *, cates subse’ 0
SIRT1 target residues

K853, K868, K874

Listed are the modifications identified for Mcm10 in different model systems, their functional role, protein region
or specific residues modified, and the enzyme responsible, if determined. Abbreviations in this table include:
minichromosome maintenance protein 10 (Mcm10), cullin 4-damaged DNA binding 1-viral protein R binding
protein (Cul4-DDB1-VprBP), ataxia telangiectasia and Rad3-related protein (ATR), ataxia-telangiectasia mutated
(ATM), S-phase cyclin dependent kinase (S-CDK), Sirtuin 1 (SIRT1).

4. Mcm10 is a Central Player in Multiple Steps of DNA Replication

Mcm10 is an essential regulator of DNA replication initiation. Early evidence for this came from
2D gel analyses in yeast that reported decreased firing of two specific origins (ORI1 and ORI121) in
temperature-sensitive mcm10-1 mutants [43]. In S. cerevisiae, Mcm10 is loaded onto chromatin in G1
and remains bound during S-phase [30]. One clear pre-requisite for Mcm10 chromatin binding is
pre-RC assembly, as association of Mcm10 with origins of replication is dependent on the Mcm2-7
complex [29-34]. Studies utilizing a Mcm10-degron system found that depletion during G1-phase
prevented a significant number of cells from initiating DNA synthesis [30,114,115]. Building on
these reports, the timing and mechanism of Mcm10'’s role in replication initiation remains a topic of
active research.

At licensed origins, DNA replication is initiated through a multi-step process. Helicase activation
requires that the Dbf4-dependent kinase Cdc7 (DDK) and S-CDK phosphorylate several
targets [116-119]. DDK-dependent phosphorylation of Mcm2-7 initiates recruitment of synthetically
lethal with dpb11 3 (S1d3), its binding partner SId7, and the helicase co-activator Cdc45 [116,117,120,121].
Similarly, S-CDK-dependent phosphorylation of Sld2 and SId3 initiates recruitment of helicase
co-activator GINS and the pre-loading complex (pre-LC), consisting of Sld2, DNA polymerase B
II11 (Dpb11) and DNA polymerase epsilon (Pol-¢) [116,117,119-121]. Next, the origin is unwound
to allow recruitment of Pol-«/primase to ssDNA [52,122,123] and as the CMG helicase progresses,
it generates larger ssDNA regions that are protected by the replication protein A (RPA) complex [24,124].
DNA synthesis begins with the production of RNA-DNA primers by Pol-a/primase on both
strands [122,123] and requires frequent re-priming for Okazaki fragment synthesis [18,125,126].
During replication elongation, these primers are extended on the leading strand by Pol-¢ and on the
lagging strand by DNA polymerase delta (Pol-0) [24,122,123], in association with PCNA, the trimeric
replication clamp [24,127]. The process of replication requires Mcm10 at several steps, and three
major functions have been proposed. First, Mcm10 is necessary for recruitment of GINS and Cdc45
to complete assembly of the CMG helicase. Second, following CMG assembly Mcm10 is needed for
activation of the helicase. Third, after origin unwinding Mcm10 is required for polymerase loading to
initiate DNA synthesis. The following paragraphs will evaluate these roles in more detail.
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5. Mcm10 Promotes Assembly of the Replicative Helicase

Investigations of Mcm10’s role in CMG complex assembly have largely focused on stable
association of Cdc45. Early studies in Xenopus egg extracts reported that Cdc45 binding was
significantly reduced following depletion of Mcm10 [31]. A similar observation was made in fission
yeast, as Mcm10 degradation in vivo resulted in the loss of nuclear Cdc45 following detergent
wash [61,128]. In agreement, stable association of the CMG complex was reduced and chromatin
loading of Cdc45 and SId5 were not detected following small interfering RNA (siRNA) knockdown
of Mcm10, RecQL4 or Ctf4 in HeLa cells [129]. These data imply that Mcm10 might be integral for
CMG assembly. However, there is evidence that loss of Mcm10 does not abolish Cdc45 recruitment,
as CMG formation in S-phase eventually recovers to wild type levels [33,61,128]. Taken together,
these studies support the hypothesis that Mcm10 deficiency delays recruitment and/or decreases
stability of Cdc45 interaction with the replicative helicase. However, there are also several reports
consistent with a model in which Mcm10 is dispensable for CMG assembly. Two independent groups
utilizing inducible Mcm10 degradation in budding yeast found no effect on chromatin association of
Cdc45 [30,115]. These data are in agreement with the finding that depletion of Mcm10 from purified
S-phase extracts does not reduce Cdc45 recruitment [130]. This also holds true in a reconstituted
system with 16 purified yeast replication factors [131].

Delineating the timing of Mcm10 loading with respect to DDK and S-CDK activities has provided
additional insights regarding Mcm10’s placement in CMG assembly. After formation of the pre-RC,
origin activation requires DDK phosphorylation of Mcm2-7, followed by S-CDK phosphorylation
of SId2 and S1d3 [130,132,133]. Experiments using whole cell extracts from yeast reported that the
action of DDK followed by S-CDK was essential for Mcm10 recruitment, as Mcm10 was undetectable
when S5-CDK treatment was performed first [130]. However, in a minimal in vitro system with purified
proteins, CMG formation and DNA synthesis occurred regardless of which kinase was added to the
reaction first [131]. It seems possible that S-CDK targets may become rapidly dephosphorylated by
phosphatases present in the yeast extracts used by Heller and colleagues [130], and that therefore
S-CDK activity is required immediately before Mcm10 recruitment. In fact, there is supporting evidence
for this notion [131,134]. Overall, these studies agree that robust Mcm10 recruitment occurs following
kinase activated CMG assembly. However, they are not in agreement with experiments in fission yeast
that reported Mcm10-dependent stimulation of DDK activity, thereby placing Mcm10 at the replisome
early in CMG assembly [60]. These latter findings are consistent with recent results in budding
yeast in which Cdc45 recruitment to DNA is facilitated by DDK-dependent (via phospho-Sld3) and
DDK-independent (via Mcm10) mechanisms [33]. A possible solution to this apparent discrepancy is
presented below.

Studies by the Diffley and Lou laboratories investigating Mcm10 recruitment to the CMG complex
may provide the best compromise to reconcile the conflicting data discussed above [32,34]. Both reports
highlight the requirement for the C-terminal ~100 amino acids of yeast Mcm10 to directly bind to
Mcm2-7 double hexamers [32,34]. This interaction permits both a low affinity “G1-phase-like” and high
affinity “S-phase-like” binding of Mcm10 to Mcm?2-7. The “G1-phase-like” binding seems consistent
with mass spectrometry analysis of replication reactions that detect Mcm10 on DNA independently of
DDK activity, but at levels 10-100 fold lower than other firing factors [134]. Therefore, Mcm10 may
initially associate with the pre-RC prior to Cdc45 addition, and then bind more robustly at later stages
of CMG assembly (Figure 5) [32,34].
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Figure 5. Model of the association of Mcm10 with the replisome in initiation and elongation.
(A) A Mcm2-7 double hexamer is loaded onto dsDNA and represent a licensed replication origin.
(B) Mcm10 directly interacts with the Mcm2-7 with low affinity in G1-phase-like binding prior to CMG
assembly. (C) High affinity binding of Mcm10 to the Mcm2-7 complex in S-phase like binding takes
place with formation of the CMG complex. (D) Following helicase activation, replication forks progress
in opposite directions from each origin. Mcm10 binds and stabilizes ssDNA (right fork) and is later
replaced by RPA. Mcm10 loading of DNA polymerase-alpha (Pol-«) (left fork) is repeatedly needed to
generate RNA /DNA primers (black DNA regions) for Okazaki fragment synthesis. Processive DNA
polymerization is executed by DNA polymerase-epsilon (Pol-¢) (extending the blue leading strand)
and DNA polymerase-delta (Pol-5) (extending the red lagging strand).

6. Activation of the CMG Helicase Relies on Mcm10

Replication initiation begins with origin unwinding to generate ssDNA that is encircled by one
CMG helicase complex, which then translocates in 3’ to 5’ direction [18,24,39,135]. Early studies found
that depletion of Mcm10 from Xenopus extracts resulted in the inability to unwind a double stranded
plasmid and recruit RPA to chromatin [31]. A similar deficiency in RPA recruitment was demonstrated
following depletion of Mcm10 in budding and fission yeast [33,114,115,136]. As RPA is the major
ssDNA-binding complex in eukaryotes, this provides strong evidence that dsDNA unwinding is
impaired in the absence of Mcm10. This is generally in agreement with the notion that Mcm10 is one
of the key origin “firing factors” identified via mass spectrometry in yeast replication complexes [134].
Importantly, in a reconstituted budding yeast replication system, Mcm10 both promotes RPA loading
and is essential for DNA synthesis [131]. Two independent but not mutually exclusive mechanisms
exist for Mcm10 in CMG activation. First, Mcm10 may actively promote remodeling of the replicative
helicase from a double to a single CMG complex. Observations that Mcm10 stimulates DDK
activity prior to CMG assembly (discussed above) and recruits replisome components required for
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initiation, such as the human Sld2 homolog RecQL4 support this model [69,129,137-139]. Second,
Mcm10 may stabilize ssDNA following DNA unwinding prior to RPA association. This idea is
strengthened by numerous experimental observations. Mcm10 preferentially binds to ssDNA rather
than dsDNA [51,55-57,71], and the disruption of ZnF1 in fission yeast impaired RPA recruitment to
replication origins [136]. Furthermore, analysis of a S. cerevisize mcm10 mutant defective in DNA
binding showed significantly decreased RPA association at specific origin sequences, and a severe
decline in viability [71]. Moreover, viability of this mcm10 mutant could not be enhanced by
a mem5 mutation (mcm5%01) that bypasses the requirement for DDK-dependent phosphorylation
of Mcm?2 [140-142]. These observations strongly support a critical role for Mcm10 in stabilizing the
replisome during origin firing through binding of newly exposed ssDNA, rather than a stimulatory
function in DDK-dependent Mcm2 phosphorylation. In this model, Mcm10 holds on to ssDNA first,
but is later evicted by RPA, which protects longer regions of ssDNA behind the progressing helicase.
This is also consistent with the fact that that RPA has an apparent 40-fold higher affinity for ssDNA
than Mcm10 [143]. This mechanism would then allow Mcm10 to remain anchored to the Mcm?2-7
complex and travel with the replisome [30,35,37,52,53].

7. Mcm10-Dependent Polymerase Loading

Unperturbed DNA synthesis in eukaryotes relies on three DNA polymerases. The recruitment of
Pol-¢ occurs prior to DNA unwinding, via interactions with the GINS complex, and is independent
of Mcm10 [130,144,145]. However, Mcm10 is an important player in polymerase loading during
replication elongation. Experiments in budding and fission yeast, Xenopus egg extracts and human
cells all demonstrated that Mcm10 facilitates chromatin loading of Pol-« to initiate Okazaki fragment
synthesis [18,30,64,65,130,146]. Mcml10 likely works in concert with the cohesion factor Ctf4,
which forms a homo-trimeric hub [29,65], fitting with the fact that Mcm10 forms a homo-trimeric
scaffold [51,55,75]. It should be noted, however, that budding yeast Ctf4 is dispensable for
DNA replication in vivo and in vitro [131,147], strongly arguing that in S. cerevisize Mcm10 is
the critical connector between DNA polymerization and helicase activities [30]. Furthermore,
Xenopus Mcm10 interacts with acidic nucleoplasmic DNA-binding protein 1 (And-1)/Ctf4 to initiate
DNA replication [65]. In human cells, RecQL4 promotes interactions between Mcm10 and And-1/Ctf4
consequently facilitating efficient DNA replication [129,137,138].

Following Pol-o loading, Mcm10 directly interacts with the replication clamp PCNA. Disruption of
this interaction via a single amino acid substitution within Mcm10’s PIP-motif causes lethality
in S. cerevisiae [67]. This protein-protein interaction is dependent on diubiquitination of Mcm10,
which is proposed to make the internally located PIP motif accessible for PCNA binding [67].
Interestingly, diubiquitination occurs during G1/S-phase and disrupts Mcm10’s interaction with
Pol-« [67]. Therefore, ubiquitination of Mcm10 following primer synthesis by Pol-o could function
to recruit PCNA and facilitate loading onto primed DNA [39,50,67]. Interestingly, recruitment of the
lagging strand polymerase Pol-6 was reduced following Mcm10 depletion in budding yeast [130].
One explanation of these data is that without Mcm10-dependent generation of ssDNA regions
and recruitment of Pol-« to initiate DNA synthesis, PCNA loading is decreased. Impaired PCNA
recruitment could diminish Pol-5 association at the replication fork. Whether the Mcm10-PCNA
interaction occurs in higher eukaryotes is currently unknown, although such an observation would
strongly support a conserved role of Mcm10 in elongation. Of note, it was recently proposed that the
PIP boxes identified in several PCNA interacting proteins may belong to a broader class of “PIP-like”
motifs that have the ability to bind multiple target proteins [148]. In line with this idea, the yeast
Mcm10 PIP motif is also important for direct binding to the Mec3 subunit of the 9-1-1 checkpoint
clamp [74]. Thus, Mcm10’s direct interaction network that stabilizes the fork during normal DNA
synthesis and in response to replication stress could extend beyond factors currently identified.
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8. Replication Fork Progression and Stability Relies on Mcm10

Loss of Mcm10 causes replication stress and increased dependence on pathways that maintain
genome integrity [149-153]. Genetic analyses in yeast have demonstrated that mcm10 mutants
rely on the checkpoint signaling factors mitosis entry checkpoint 1 (Mecl) and radiation sensitive
53 (Rad53) that are activated in response to RPA coated ssDNA [39,50,66,149,150]. Under conditions
of high replication stress, Rad53 hyperactivation blocks S-phase progression [154,155]. However,
moderate chronic replication stress in mcm10-1 mutants under semi-permissive conditions only
elicits low-level Rad53 activity and allows the cell cycle to advance. Under these circumstances,
underreplicated DNA eventually triggers the mitotic spindle assembly checkpoint (SAC) [156,157].
To evade SAC activation when replication stress is tolerable, these cells rely on the E3 small
ubiquitin-like modifier (SUMO) ligase methyl methanesulfonate sensitivity 21 (Mms21) and the
SUMO-targeted ubiquitin ligase complex synthetic lethal of unknown (X) function 5/8 (SIx5/8) in order
to progress through M-phase [157]. Overall, these studies suggest that moderate Mcm10 deficiency
in budding yeast primarily causes defects in replication fork progression. Indeed, experiments using
mem10-1 mutants found that the DNA synthesis and growth defects at non-permissive temperatures
could be alleviated by mutations in mcm2 [39,43,50,59,63,67,150]. In addition, loss-of-function
mutations in mcem5 and mcm?7 also suppressed mcm10-1 mutant phenotypes [59]. The simplest
interpretation of these data is that mcm mutations disrupt helicase activity, slow fork progression and
reduce ssDNA accumulation, thus suppressing checkpoint activation in mcm10 mutants.

In metazoa, Mcml0 is also important for replication fork progression and stability.
Two independent siRNA screens identified Mcm10 as a potent suppressor of chromosome breaks and
incomplete replication [6,152,153]. Knockdown experiments in HeLa cells revealed defects in DNA
synthesis that resulted in late S-phase arrest, suggesting that cells accumulate significant damage if
replication proceeds with reduced Mcm10 levels [158-160]. Recently, investigators have employed
the DNA fiber technique to assess replication dynamics and measure inter-origin distance (IOD) as
well as fork velocity. Interestingly, Mcm10 depletion decreased fork velocity in U20S, but not in
HCT116 cells, during unperturbed cell cycle conditions [62,87]. One explanation is that the intrinsically
faster rate of synthesis in U20S cells causes an increased requirement for Mcm10 to sustain fork
speed. Surprisingly, both studies found that the IOD was decreased following siRNA knockdown of
MCM10, indicative of an actual increase in origin firing [62,87]. Moreover, a recent study using Xenopus
egg extracts also argued that Mcm10 depletion primarily affected elongation and not replication
initiation [113,161]. In these studies, RPA loading occurred in the absence of more than 99% of Mcm10
and the efficiency of bulk DNA synthesis only decreased by 20% [113]. Consistent with a role in
elongation, Mcm10 depletion in this system impaired replisome stability, as levels of PCNA, RPA,
and several CMG components showed drastically reduced chromatin association [113,161]. Loss of
replisome stability caused a markedly increased sensitivity to camptothecin and resulted in fork
collapse and DSBs [113]. Several possibilities exist to reconcile these data with those that argue for
an essential role in replication initiation. For example, origin firing may require very small amounts
of Mcm10. In this scenario, even when Mcm10 is undetectable by western blot enough may remain
on chromatin to facilitate initiation. Alternatively, dormant or backup origins, the majority of which
are not activated during a normal cell cycle, could bypass the requirement for Mcm10. The ability of
these origins to be activated via an alternative mechanism would support a role solely in replication
elongation for Mcm10. It is our opinion that this is unlikely, based on the in vitro reconstruction of
origin firing with purified proteins [131], but the issue is certainly a top priority to be resolved.

9. Emerging Connections between Mcm10 and Cancer Development

Several studies have found MCMI10 expression to be significantly upregulated in cancer
cells [92,162-166]. A comparison of MCM10 mRNA levels in normal and tumor samples on
the Broad Institute Firebrowse gene expression viewer consistently shows higher abundance in
cancer samples (www.firebrowse.org). Oncogene driven overexpression of MCM10 was reported in
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a collection of neuroblastoma tumors and cell lines, as well as in Ewing’s sarcoma tumor cells [162,163].
Interestingly, MCM10 overexpression increases with advancing tumor stage in cervical cancer [165]
and correlates with the transition from confined to metastasized renal clear cell carcinoma [92].
Additional cell cycle related transcripts, including other MCM genes, are also upregulated in these
cancer samples [92,162-166], suggesting that enhanced Mcm10 production may simply coincide with
increased DNA synthesis. Contrary to this idea, MCM10 has been proposed to be part of a group of
high-priority genes that promote cell cycle related processes in cancer cells [167]. Moreover, a recent
analysis of urothelial carcinomas found that the level of MCM10 expression, but not of other MCM
genes, was a highly significant predictor of both disease-free and metastasis-free survival [166]. In fact,
increases in MCM10 expression could be detected prior to histological changes [166]. Since high
gene expression and protein production strongly correlates with negative outcomes, the detection of
Mcm10 protein levels could be a valuable early indicator of progression in urothelial carcinomas [166].
Future investigations should determine whether early detection of increased Mcm10 production has
prognostic value in other cancer types.

In addition to transcriptional changes, analyses of cancer genomes have identified chromosomal
amplifications, deletions and mutations in MCM10 [39,50,168-170]. Current data indicate that over
half (~54%) of the genetic alterations are amplifications, whereas ~35% are mutations and only ~11%
are deletions [168,169]. The majority of mutations identified to date are missense mutations (93%),
with the remainder roughly split between splicing (3.7%) and nonsense mutations (3.2%) [168,169].
Notably, a higher number of MCM10 alterations have been identified in breast cancer samples than
in other tumor types (Figure 6) [168,169]. These alterations are generally mutually exclusive with
changes in the breast cancer (BRCA) susceptibility genes BRCA1, BRCA2 or partner and localizer of
BRCA?2? (PALB2) (Figure 6) [168,169]. This trend was maintained in a similar analysis of the Cancer Cell
Line Encyclopedia dataset (Figure 6) [168,169,171]. These data suggest that alterations in two or more
of these genes are not well tolerated. Experiments evaluating this hypothesis could prove valuable
in the treatment of BRCA associated tumors. Taken together, these data clearly show that mcm10 is
altered in cancer genomes. What remains to be determined is whether these changes are causative or
a consequence of oncogenesis, or whether mutations may simply be a byproduct of decreased genome
stability seen in cancer cells.

Given the elevated Mcm10 levels [92,162,163,165,166] and frequency of genomic amplifications
observed in cancer cells [168,169], it seems reasonable to propose that during oncogenesis cells
rely on increased Mcm10 levels to ameliorate replication stress and drive cell cycle progression.
Future evaluations of this hypothesis will be crucial to understanding Mcm10’s contribution to cancer
development. However, this idea does not address the impact of gene deletions or loss-of-function
mutations, such as truncations or amino acids substitutions that might disrupt important functional
domains. Based on experimental observations, it seems possible that these genetic alterations could
increase replication stress and DNA damage. Thus, these lesions likely occur late in oncogenesis
after cells have already deactivated pathways that induce cell cycle arrest or apoptosis in response to
sources of genome instability. Extending data from yeast, it will be interesting to understand whether
there is an increased requirement for Ring finger protein 4 (RNF4), the human homolog of yeast
SIx5/SIx8, [157,172], in order to promote survival under moderate levels of replication stress.

10. Conclusions

In the several decades since Mcm10 was first discovered, significant progress has been made
in understanding its role in eukaryotic DNA replication. Nevertheless, active research across
many laboratories continues to provide mechanistic insights into how Mcm10 stimulates replication
initiation and promotes fork progression during elongation. These important cellular functions,
when compromised, contribute to human disease. Based on recent studies, future investigations
into Mcm10’s relationship with cancer development and progression could lead to discoveries with
significant prognostic and even therapeutic value.
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Figure 6. MCMI0 alterations in human cancer samples and exclusivity with BRCA-associated

mutations. (A) Bar graph showing the number and class of alterations including amplifications
(red), deletions (blue), mutations (green) or a combination (gray) of MCM10 identified in different
cancer types by multiple groups. The tissue/cell type and dataset for each column are listed on
the x-axis. Only datasets with 5 or more MCM10 alterations are shown. (B,C) Plots showing the

overlap of genetic alterations including amplifications (red), deletions (blue) and mutations (green)
in MCM10 or breast cancer (BRCA) associated genes (BRCA1, BRCA2, partner and localizer of BRCA2
(PALB2)) in the Breast Invasive Carcinoma dataset (The Cancer Genome Atlas [TCGA]) (B) or the
Cancer Cell Line Encyclopedia (Novartis/Broad) [171]. The data and depictions shown in this figure
were accessed via and/or modified from information listed on the cBioPortal for Cancer Genomics

(http:/ /www.cbioportal.org/) [168,169].
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