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Abstract: Large numbers of quantitative trait loci (QTL) affecting complex diseases and other
quantitative traits have been reported in humans and model animals. However, the genetic
architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait
genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based
on techniques such as positional cloning does not always enable identification of a single candidate
gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the
QTL to a very small interval harboring only one gene. A combination of gene expression analysis
and statistical causal analysis can greatly reduce the number of candidate genes. This integrated
approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL.
Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to
obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies
as an example.
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1. Introduction

Most traits of biological and economic importance, including traits for human complex diseases
(e.g., autoimmune, metabolic and psychiatric diseases), traits for agricultural and livestock products
(e.g., crop yield, meat quality and egg production) and molecular traits (e.g., gene expression, protein
expression, DNA methylation, histone modification and metabolites), are quantitative in nature and
are hence called complex or quantitative traits. Quantitative traits are intricately regulated by many
genetic loci, referred to as quantitative trait loci (QTL), environmental factors and their interactions.
QTL mapping is an unbiased phenotype-driven method that detects statistical associations between
genotypes of genetic markers and phenotypic values for a quantitative trait of interest, and it is used
to localize QTL affecting the trait to chromosomal regions containing marker loci that are significantly
associated with the trait in an attempt to understand the genetic architecture of trait variation. There are
two common approaches for QTL mapping. One approach is a genome-wide association study (GWAS)
used in outbred populations such as humans and large livestock animals. The other approach is a
so-called genome-wide QTL analysis based on linkage analysis in three-generation pedigrees or
designed crosses of model animals and small livestock animals such as chickens and pigs [1].

Large numbers of QTL affecting complex disease traits and other quantitative traits have been
mapped to almost all chromosomal regions of humans, livestock animals and model animals, and they
have been deposited in databases that can be used freely such as the NHGRI-EBI GWAS Catalog [2],
the Animal Quantitative Trait Loci Database (Animal QTLdb) [3] and the Mouse Genome Database
(MGD) [4]. However, for two main reasons, it remains a great challenge to identify causal quantitative
trait genes (QTGs) and further causal genetic variants, called quantitative trait nucleotides (QTNs),
for common QTL with relatively small phenotypic effects. First, by a conventional approach using
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techniques such as positional cloning (see the Appendix A for definition), it is difficult to narrow down
a target genomic interval of a QTL to a very small interval ultimately harboring only one gene that
is a potential positional candidate QTG for the QTL. For example, genome-wide QTL analysis with
a backcross or intercross population in mice generally localizes a QTL to a large genomic interval of
10–50 centimorgan (cM) in length [5], in which hundreds or thousands of genes are usually contained.
To reduce the large interval to a level amenable to positional cloning, additional fine mapping is
performed using congenic and subcongenic mouse strains with overlapping and non-overlapping
introgressed intervals (see Appendix A) [6,7]. However, it is not easy to narrow the large QTL interval
down to a very small interval because of low recombination frequencies within the introgressed
interval. This is also true for GWAS fine mapping of multiple single nucleotide polymorphisms (SNPs),
associated with a phenotype on a linkage disequilibrium interval, to resolve a single candidate QTN [8].
Second, candidate QTNs with small phenotypic effects are frequently found in non-coding regions of
the genome, including promoters, introns and transcription factor binding sites, in humans [9] and
mice [10].

The laboratory mouse has long been used worldwide as a pilot model animal for elucidating the
genetic basis of complex disease traits and quantitative traits in humans and livestock because of its
small body size, cost-effective rearing, easy development of knockout and transgenic mice, and large
amount of genomic information that is freely available [11]. We previously revealed many QTL
affecting postnatal body weight and growth from an untapped resource of wild Mus musculus castaneus
mice trapped in the Philippines, by genome-wide QTL analysis in an intersubspecific backcross
population between the wild M. m. castaneus mice and C57BL/6JJcl (B6), a common inbred strain prone
to obesity and type-2 diabetes (Figure 1a) [12–14]. Fine mapping using congenic and subcongenic
strains carrying a major body weight QTL (named Pbwg1 (postnatal body weight growth 1)) on mouse
chromosome 2 revealed two unique QTL affecting body weight (Pbwg1.12) [15] and the weight of
white fat pads (Pbwg1.5) [16]. The wild-derived allele at Pbwg1.12 increases body weight despite the
fact that the wild mouse has a smaller body size than that of B6 (Figure 1a) [15], whereas at Pbwg1.5 it
shows resistance to obesity [17]. Exome sequencing (exome-seq) and bioinformatics analysis revealed
two candidate genes for each of Pbwg1.12 and Pbwg1.5 [18]. Finally, by using an integrated approach
of mRNA expression analysis and causal analysis inferring causal relationships between genotypes,
gene expression and trait values, we succeeded in revealing that Ly75 (lymphocyte antigen 75) is a
putative QTG for Pbwg1.5, though we did not succeed in finding a QTG for Pbwg1.12 [19].

In this review, I outline a strategy from QTL to QTG identification using an integrated approach
of gene expression analysis and causal analysis. I also discuss the usefulness of the integration strategy
using our studies in mice as an example. The strategy can greatly reduce the number of candidate
QTGs and it provides statistical evidence that candidate QTG expression causally mediates between
genotype and trait variation.

2. Quantitative Trait Loci Analysis

In mice, genome-wide QTL analysis is performed in a backcross population or an intercross
population obtained from crosses between two inbred strains to map QTL for a given trait to large
genomic intervals. It is generally recommended to use an F2 intercross population because three
possible genotypes for QTL mapped are segregated in the F2 population, allowing estimation of the
mode of inheritance of the QTL. However, in our QTL analysis, a backcross population was developed
as a QTL mapping population because the population was used for another research purpose as well.
That is, wild male mice obtained from a cross between a pair of wild-caught M. m. castaneus mice
of unknown ages were mated with B6 females to produce F1 hybrids, and the F1 hybrids obtained
were backcrossed to their own wild male parents. Genome-wide QTL analysis in the backcross
population obtained revealed 24 QTL for body weight and growth on 13 chromosomes including X
chromosomes [12–14]. Among the 24 loci, Pbwg1 on mouse chromosome 2 is the most potent QTL
affecting body weight from 3 to 10 weeks after birth (Figure 1a) [13,14].
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Figure 1. Overview of a strategy from quantitative trait loci (QTL) and quantitative trait genes (QTGs) 
identification using our studies as an example. (a) QTL analysis in an intersubspecific mouse 
population between wild Mus musculus castaneus and the C57BL/6JJcl (B6) inbred strain. The picture 
shows adult wild and B6 male mice at 20 weeks after birth (photographed by Keita Makino, Graduate 
School of Bioagricultural Sciences, Nagoya University, Japan). Twenty-four QTL for body weights at 
3 weeks (Wt3) to 10 weeks (Wt10) of age are mapped [12–14], and among the QTL the most potent 
QTL (named Pbwg1) on mouse chromosome 2 is depicted as logarithm of odds (LOD) score plots. The 
figure was remade from previous data [14]; (b) Fine mapping of Pbwg1 using the founder congenic 
strain (B6.Cg-Pbwg1) and subsequent subcongenic strains (B6.Cg-Pbwg1/Nga#, abbreviation: SR#). 
The black and grey bars show minimum intervals derived from the wild and B6 mice, respectively. 
The hatched bar shows an interval where recombination occurred. The map positions (mega base 
pairs (Mb)) of DNA markers (D2Mit# and rs#) are approximately shown on the horizontal line. The 
horizontal double-headed arrows indicate the intervals of QTL for body weight and body 
composition traits [15,16,18,20], and among the QTL the intervals of Pbwg1.5 and Pbwg1.12 are 
highlighted by red [18]. The effects of the QTL alleles derived from the wild mouse are indicated with 
the arrows. The green triangle indicates the position of the Ly75 (lymphocyte antigen 75) gene, a 
putative QTG for Pbwg1.5 [19]; (c) Candidate gene prioritization using DNA sequence analysis, 
bioinformatics analysis, transcriptome analysis and causal analysis. In our previous studies, exome-
seq analysis of the funder congenic interval [18] and RNA-seq analysis of the SR1 subcongenic interval 
[19] were performed. Furthermore, bioinformatics analyses (see Table 1) and the causal inference test 
(see Figure 2) using gene expression data were carried out; (d) QTG identification. To identify a QTG, 
the quantitative complementation test is performed as shown in Figure 3. To validate the QTG, a 
transgenic overexpression experiment is performed. Furthermore, to identify a QTN within the QTG, 
allelic substitution experiments using gene editing techniques such as the CRISPR/Cas9 system are 
performed. See text for details of each analysis. 
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After QTL analysis, fine mapping is performed using congenic and subcongenic strains in order 
to (1) confirm the presence of the QTL detected by the initial genome-wide QTL analysis and (2) make 
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Figure 1. Overview of a strategy from quantitative trait loci (QTL) and quantitative trait genes
(QTGs) identification using our studies as an example. (a) QTL analysis in an intersubspecific
mouse population between wild Mus musculus castaneus and the C57BL/6JJcl (B6) inbred strain.
The picture shows adult wild and B6 male mice at 20 weeks after birth (photographed by Keita Makino,
Graduate School of Bioagricultural Sciences, Nagoya University, Japan). Twenty-four QTL for body
weights at 3 weeks (Wt3) to 10 weeks (Wt10) of age are mapped [12–14], and among the QTL the
most potent QTL (named Pbwg1) on mouse chromosome 2 is depicted as logarithm of odds (LOD)
score plots. The figure was remade from previous data [14]; (b) Fine mapping of Pbwg1 using the
founder congenic strain (B6.Cg-Pbwg1) and subsequent subcongenic strains (B6.Cg-Pbwg1/Nga#,
abbreviation: SR#). The black and grey bars show minimum intervals derived from the wild and
B6 mice, respectively. The hatched bar shows an interval where recombination occurred. The map
positions (mega base pairs (Mb)) of DNA markers (D2Mit# and rs#) are approximately shown on the
horizontal line. The horizontal double-headed arrows indicate the intervals of QTL for body weight
and body composition traits [15,16,18,20], and among the QTL the intervals of Pbwg1.5 and Pbwg1.12
are highlighted by red [18]. The effects of the QTL alleles derived from the wild mouse are indicated
with the arrows. The green triangle indicates the position of the Ly75 (lymphocyte antigen 75) gene,
a putative QTG for Pbwg1.5 [19]; (c) Candidate gene prioritization using DNA sequence analysis,
bioinformatics analysis, transcriptome analysis and causal analysis. In our previous studies, exome-seq
analysis of the funder congenic interval [18] and RNA-seq analysis of the SR1 subcongenic interval [19]
were performed. Furthermore, bioinformatics analyses (see Table 1) and the causal inference test
(see Figure 2) using gene expression data were carried out; (d) QTG identification. To identify a
QTG, the quantitative complementation test is performed as shown in Figure 3. To validate the QTG,
a transgenic overexpression experiment is performed. Furthermore, to identify a QTN within the QTG,
allelic substitution experiments using gene editing techniques such as the CRISPR/Cas9 system are
performed. See text for details of each analysis.
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3. Fine Mapping

After QTL analysis, fine mapping is performed using congenic and subcongenic strains in order to
(1) confirm the presence of the QTL detected by the initial genome-wide QTL analysis and (2) make the
initial large QTL interval as small as possible. In our studies, we firstly developed a congenic strain with
a 44.1 mega base pairs (Mb), wild-derived genomic interval carrying Pbwg1 on the genetic background
of the B6 strain (Figure 1b). We further constructed more than 20 subcongenic strains with overlapping
and non-overlapping introgressed intervals which together span the entire congenic interval, some of
which are shown in Figure 1b as examples. Next, using the congenic and subcongenic strains developed,
we took two strategies for fine mapping of Pbwg1: a unique strategy that I here call interval-specific QTL
analysis for the first time, and a modified method of traditional congenic/subcongenic analysis. In the
unique strategy, an F2 population of 269 mice was developed by an intercross between the original
congenic strain with an approximately 28 cM (44.1 Mb) introgressed interval and the background B6
strain, and then a genetic linkage map for 14 microsatellite markers on mouse chromosome 2 was
constructed with an average marker spacing of 1.6 cM and a total length of approximately 20 cM.
Interval-specific QTL analysis was performed with the 269 F2 mice and the limited linkage map and it
revealed that nine QTL, accounting for 4.4–9.6% of total phenotypic variance in body weight and body
composition traits, are clustered in the congenic interval [16]. Including our other studies, a total of
12 linked QTL were mapped to the congenic interval [15,16,18,20,21], as some of the loci are shown
in Figure 1b. Among the loci, a unique QTL Pbwg1.5 was found. The wild-derived allele at Pbwg1.5
decreased gonadal fat pad weight [16] and showed resistance to obesity in mice fed both standard and
high-fat diets [17]. Thus, our studies suggested that initially, a large genomic interval of a single QTL
identified by genome-wide QTL analysis can be dissected into small intervals containing additional
linked QTL for a given trait and related traits. Furthermore, it is considered that, if consomic strains
(see Appendix A) are available, then interval-specific QTL analysis can be used as a possible option to
fine-map QTL.

In traditional congenic/subcongenic analysis, phenotypic values are compared between
homozygous congenic/subcongenic strains and the background strain and/or among homozygous
congenic/subcongenic strains. These traditional congenic/subcongenic analyses frequently fail to
confirm the phenotypic effect of the QTL. To overcome the failure in traditional congenic/subcongenic
analyses, I propose a modified method of the traditional analysis, in which segregating F2 populations
obtained from intercrosses between each of the subcongenic strains and the background strain are
used. The use of the segregating F2 animals can randomize environmental effects, such as litter size
and micro-rearing conditions, and genetic effects of contaminating donor and recipient alleles on
unwanted small genomic regions. Furthermore, it can minimize effects of genetic factors, including
maternal genetic effects, genomic imprinting effects, epigenetic effects and other genetic effects, as
much as possible because genetically identical F1 dams and F1 sires are used to produce the F2 animals.
Using the traditional and modified methods, we were in fact able to find two closely linked QTL
(Pbwg1.11 and Pbwg1.12) with opposite effects on body weight. The wild-derived allele at Pbwg1.11
reduced body weight, whereas at Pbwg1.12 it surprisingly increased body weight [15], despite the
fact that the wild mouse has a smaller body size than that of the B6 mouse (Figure 1a). To further
define the genomic interval of two unique QTL (Pbwg1.5 and Pbwg1.12) as small as possible, four
different populations of F2 mice were produced from intercrosses between the B6 strain and each of
four subcongenic strains (SR1, SR2, SR12 and SR21) (Figure 1b). Finally, Pbwg1.5 and Pbwg1.12 were
fine mapped to a 3.6 Mb interval and the neighboring 2.1-Mb interval, respectively [18], as shown in
Figure 1b. These examples indicate that the modified method may work well to dissect an interval
of closely linked QTL into different intervals. It is very likely that this success depended on the
introgressed intervals of subcongenic strains created.

Alternative approaches, allowing fine mapping of QTL to a few cM intervals through the
accumulation of recombination events over many generations, are to use either outbred populations
such as advanced intercross lines (AILs) [22] or multi-parental populations such as the heterogeneous
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stock (HS) [23,24], the collaborative cross (CC) [25] and the diversity outcross (DO) [26]. See the
Appendix A for definition of these outbred and multi-parental populations. By QTL analysis in these
populations, QTL can be mapped at high resolution. However, the QTL mapped are only loci involved
in a gene pool limited to the founder inbred strains of the populations used. For example, whole
genome sequencing of 69 CC inbred strains developed from 8 founder inbred strains (see Appendix A)
revealed that most of the genomes of the 69 strains is derived from M. m. domesticus subspecies and
that the genomic contribution of two wild-derived strains (CAST/EiJ and PWK/PhJ originating in
M. m. castaneus and M. m. musculus subspecies, respectively) to the 69 strains is very low [25]. It is
unlikely that the genetic variation of the founder strains covers completely vast genetic variation in
human diseases that have naturally occurred. If unique animal models derived from different founder
strains in origin are used, genes found in the unique animal models will not be always involved in
the gene pool of the founder inbred strains of the outbred and multi-parental populations. Hence,
researchers will often have to develop original congenic and subcongenic strains to fine map QTL.

4. Candidate Gene Prioritization

4.1. Strategy

After fine mapping, DNA sequence analysis, bioinformatics analyses, transcriptome analysis,
causal analysis and other analyses are used to prioritize candidate genes in a small genomic interval
of a fine-mapped QTL (Figure 1c). Since it is becoming clear that a single analysis is not enough
to prioritize candidate genes for a QTL, integration of different analyses is generally employed to
efficiently find a putative QTG.

In our studies, we employed four analyses, as shown in Figure 1c. First, since DNA sequence
data is not available for our wild mouse captured in the Philippines, exome-seq analysis of 153 genes
in the 44.1 Mb interval of the original B6.Cg-Pbwg1 congenic strain was performed and revealed a
large number of DNA variants between the wild mouse sequence and the mouse reference sequence
(RefSeq mm9) of the C57BL/6J strain. That is, 840 synonymous SNPs (sSNPs), 334 nonsynonymous
SNPs (nsSNPs), 9 deletions, 10 insertions and 3 stop codons were found in 2205 exons of 153 genes
in the congenic interval. Among these variants, in a 5.9 Mb fine-mapped interval carrying Pbwg1.5
and Pbwg1.12, only sSNPs and nsSNPs were found as shown in Table 1. Alternatively, whole-genome
sequencing of two parental strains used for QTL analysis may be performed because (1) it has become
cheaper and more easily available than a decade ago, and (2) it provides comprehensive sequence
information about coding and non-coding regions in one sequencing. As our exome-seq analysis
showed, next-generation DNA sequencing will reveal a huge number of DNA variants between
two parental inbred strains used for QTL analysis in coding and non-coding regions of the genome.
In fact, when two genetically similar mouse substrains, C57BL/6J and C57BL/6N, were sequenced,
they differed by 34 SNPs, 2 indels and 15 structural variants [27]. In addition, in mice, whole-genome
assemblies of 16 key inbred strains [10] and high-density SNP maps of multiple common inbred
strains [28] are available.

Table 1. Numbers of synonymous single nucleotide polymorphisms SNPs (sSNPs) and
nonsynonymous SNPs (nsSNPs) detected by exome-seq analysis of 23 genes in a 2.1 Mb interval
of Pbwg1.5 and the neighboring 3.8 Mb interval of Pbwg1.12, ranking of the genes, and damage of
protein functions caused by the nsSNPs.

QTL Gene sSNP nsSNP Gene Ranking 1 Damage of Protein 2

PolyPhen-2 SIFT

Pbwg1.5 Dapl1 1 0
Tanc1 21 4

Wdsub1 6 1
Baz2b 15 6
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Table 1. Cont.

QTL Gene sSNP nsSNP Gene Ranking 1 Damage of Protein 2

PolyPhen-2 SIFT

March7 6 0
Cd302 1 0
Ly75 27 9 1 Benign Tolerated

Pla2r1 18 8
Itgb6 11 3 2 Benign Affected

Rbms1 2 0
Tank 1 5

Psmd14 1 0

Pbwg1.12 Tbr1 2 1
Slc4a10 6 0
Dpp4 6 0
Gcg 0 1 1 Benign Tolerated
Fap 2 2
Ifih1 17 5
Gca 3 1

Kcnh7 6 1
Fign 4 1

Grb14 7 2 2 Benign Tolerated
Cobll1 14 18

The data are modified from [18]. 1 The top two genes were prioritized as candidate genes for each of the two QTL
by Endeavour [29]; 2 The damage caused by nsSNPs was investigated for the ranked genes by PolyPhen-2 [30] and
SIFT [31].

Second, bioinformatics analyses using the information about the nsSNPs detected and genes
located in the QTL intervals were performed with three web-based software programs, Endeavour,
SIFT and PolyPhen-2, which generate a prioritized list of positional and functional candidate genes.
Endeavour prioritizes candidate genes on the basis of similarity to training genes that have already
been shown to be involved in regulation of body weight and obesity [29]. PolyPhen-2 predicts possible
impact of an amino acid substitution on the structure and function of a protein using straightforward
physical and comparative considerations [30]. SIFT predicts tolerated and deleterious substitutions for
nsSNPs based on the evolutionary conservation of amino acids within protein families [31]. Endeavour
ranked Ly75 (lymphocyte antigen 75) with nine nsSNPs and Itgb6 (integrin beta 6) with three nsSNPs
as the top two candidate genes for Pbwg1.5 affecting resistance to obesity, and it ranked Gcg (glucagon)
with one nsSNP and Grb14 (growth factor receptor-bound protein 14) with two nsSNPs as the top two
candidate genes for Pbwg1.12 affecting increased body weight. PolyPhen-2 predicted that none of the
nsSNPs found in Ly75, Itgb6, Gcg and Grb14 were harmful to protein functions. SIFT predicted that
none of the nsSNPs in the four genes caused possible damage to protein function, whereas it predicted
that one nsSNP in Itgb6 (A>C at the position of 2:60,491,216 leading to Sel302Ala) is harmful to protein
function (Table 1).

Third, to find differentially expressed genes in the SR1 subcongenic interval carrying Pbwg1.5
and Pbwg1.12 (Figure 1b), RNA-seq analysis was carried out in F2 mice obtained from an intercross
between SR1 subcongenic and B6 strains, and then real-time PCR analysis was performed to validate
the gene expression differences. In the F2 mice, three possible diplotypes are segregating in a litter for
the subcongenic region. That is, two of the three diplotypes are homozygous for either a haplotype
(C) derived from the wild mouse or a haplotype (B) from the B6 mouse. The other is heterozygous
for both haplotypes. As summarized in Table 2, in a 5.8 Mb target QTL interval, four and three genes
were differentially expressed in the liver and gonadal fat pad, respectively. The expression of Ly75 and
Fap (fibroblast activation protein) was upregulated in the liver and/or gonadal fat of mice with the
C/C diplotype. According to the results, all of the differentially expressed genes are considered as
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candidate QTGs for Pbwg1.5 and Pbwg1.12. However, this number of genes would be too large and it
would be too laborious to do biological studies using genetically engineered animals.

Table 2. Differentially expressed genes in a 5.8 Mb genomic interval harboring Pbwg1.5 and Pbwg1.12
detected by RNA-seq analysis followed by real-time PCR analysis.

Organ Gene
Relative Expression Level 1

Differences 2

B/B B/C C/C

Liver Ly75 1.00 1.81 3.19 C/C>B/C>B/B
Pla2r1 1.00 −1.58 0.58 B/B≥C/C≥B/C

Fap 1.00 5.89 8.03 C/C>B/C>B/B
Gca 1.00 0.79 0.34 B/B≥B/C≥C/C

Gonadal fat Fap 1.00 1.43 2.11 C/C>B/C>B/B
Ifih1 1.00 −0.47 −0.53 B/B>B/C≥C/C

Grb14 1.00 0.73 0.50 B/B≥B/C≥C/C

The data are modified from [19]. 1 The relative gene expression levels were investigated in segregating F2 mice with
three diplotypes (B/B, B/C and C/C) and are shown as a ratio to B/B. B and C denotes haplotypes derived from B6
and wild mice, respectively; 2 Significantly different between the diplotypes at p < 0.05.

Fourth, it can be generally assumed that the genotypic difference in alleles at a given QTL leads to
the phenotypic difference in a quantitative trait through changes in gene expression. Causal analysis
is used to determine whether a candidate QTG causally mediates between genotype and phenotype.
Several methods for causal analysis have been reported [32–36], though the basic statistical concept
of conditional dependence is the same in all the methods [37]. In our studies, we performed a causal
analysis termed the causal inference test (CIT), which has the simplest statistical principle among
the reported methods [32]. CIT analysis is used to assess causal relationships between genotype (G),
mRNA expression (E) and phenotype (P), where G is considered as a cause, E is considered as a
mediator, and P is considered as the outcome. CIT analysis consists of four component tests that
are carried out on the basis of conditional correlation analysis as shown in Figure 2a. Three possible
relationship models among G, E and P, i.e., causal, reactive and independent relationships, are obtained
as a result of CIT analysis (Figure 2b). In the causal relationship model, G acts on P through E. In the
reactive relationship model, E changes as a result of changes in P. In the independent relationship
model, G acts on E and P independently. To declare a causal relationship, all four component tests must
be satisfied. Researchers search for a gene that fits the causal relationship model. Such a gene must be
a putative QTG causally mediating between the genotype and phenotype. There are two advantages
of using CIT analysis. One advantage is that the four component tests can filter out genes showing true
causal relationships from consequential genes with reactive and independent relationships. The other
advantage is that CIT analysis has no priori assumption at the time of testing because the component
tests are based on conditional correlation analysis [32]. Thus, CIT analysis can greatly reduce the
number of candidate QTGs and it may provide a chance for discovery of novel genes or known genes
with unknown functions on the phenotype.

Using 3 genotypes, data for 48 quantitative traits (body weight, body composition and biochemical
levels), and data for differentially expressed genes (Table 2) measured in a segregating F2 population
obtained from an intercross between SR1 subcongenic and B6 strains, CIT analysis was performed [19].
None of the four genes differentially expressed in the gonadal fat pad passed all four CIT component
tests. None of the genes differentially expressed in the liver and gonadal fat had causal relationships
with body weight and growth traits, suggesting failure to identify a putative QTG for Pbwg1.12
affecting increased body weight. On the other hand, the CIT provided statistical evidence that only the
Ly75 gene in the liver mediates between genotype and white fat pad weight, suggesting that Ly75 is a
putative QTG for Pbwg1.5 with a preventive effect on obesity.

The above CIT analysis was performed for the limited number of genes located in a congenic
interval. This analysis is generally performed at the genome-wide level. In mice, by CIT analysis
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and validation studies using genetically engineered animals, Zfp90 (zinc finger protein 90), C3ar1
(complement component 3a receptor 1) and Tgfbr2 (transforming growth factor, beta receptor II)
have been identified as new QTGs involved in susceptibility to obesity [33]. In chickens, LOC770352
(uncharacterized LOC770352), ADAM10 (ADAM metallopeptidase domain 10) and C1orf107/DIEXF
(digestive organ expansion factor homolog, zebrafish) have been newly reported as putative QTGs
underlying anxiety behavior [38]. In humans, causal analysis including the CIT and related methods
has been widely used in the past decade to reveal causal epigenetic relationships between gene
expression and diseases [39–41].
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Figure 2. Criteria for the causal inference test (CIT). (a) Four component tests of the CIT [32] assessing
whether changes in genotype (G) lead to variation in a phenotype (P) through changes in mRNA
expression (E); (b) Possible relationship models estimated from CIT results. In the causal model, G acts
on P through E. In the reactive model, E changes as a result of changes in P. In the independent model,
G acts on E and P independently.

4.2. Limitations

As an alternative approach for RNA-seq analysis, genome-wide expression QTL (eQTL) analysis,
in which mRNA expression levels of genes are used as quantitative traits, is often performed in the
same mapping population as that for the initial genome-wide QTL analysis of a phenotypic trait.
The genomic positions of eQTL mapped by genome-wide QTL analysis are compared to those of the
QTL for the phenotypic trait. When the positions coincide, the gene for which expression has been
detected as the eQTL is considered to be a possible candidate gene for the QTL affecting the phenotypic
trait. However, the confidence intervals of multiple eQTL are often overlapped with that of a QTL for
the trait. Furthermore, the confidence intervals of the eQTL are not always perfectly matched with that
of the trait QTL.

There are two main limitations for CIT analysis. The first limitation is that a mediator that
results in showing causality may in fact be acting as a spurious mediator being tightly linked with an
unmeasured true causal mediator [32]. The incidence of spurious causal relationships may increase
when CIT analysis is performed at the genome-wide level. To overcome this problem, validation
studies using genetically engineered animals will eventually be needed. The second limitation is
that population stratification, as seen in humans, may lead to spurious causal relationships between
genotypes and gene expression and between gene expression and disease [36]. In contrast, generation
of population stratification is unlikely in model animals, for which a segregating population such as an
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F2 population has been developed, and hence such a population never shows population stratification.
Other minor limitations for CIT analysis are described in detail elsewhere [36,37].

In addition, we failed to find a candidate QTG for the body weight QTL Pbwg1.12 by CIT analysis.
A possible reason for the failure may be that the expression level of Gcg was not included in CIT
analysis. Gcg, a key gene controlling glucose metabolism and homeostasis [42], is prioritized as the top
candidate gene (Table 1). However, Gcg is mainly expressed in digestive organs such as the pancreas
and intestine in mice but not in the liver and fat we examined. It is well known that to choose main
organs is an important first step for transcriptome analysis. To overcome this problem and to reduce
the costs and increase the efficiency of transcriptome analysis, the use of a public database such as
GEO (Gene Expression Omnibus) may be a possible alternative method for obtaining gene expression
data. In fact, it is shown that Mendelian randomization analysis can be undertaken using publicly
available data [43].

5. Quantitative Trait Genes Identification

5.1. Strategy

The above prioritization of candidate genes using CIT analysis reduces the number of candidate
genes down to one or a few genes. The next step is QTG identification (Figure 1d), which is established
by a quantitative complementation test, or a QTL-knockout interaction test. This complementation
test is used to determine whether the genetic locus of the candidate gene is the same as the QTL [44].
Here, I propose a modified method of the complementation test using a common genetic background
(Figure 3). In the modified method, two experimental inbred strains, a congenic strain carrying a
mutant-type allele at a QTL and its background inbred strain with a wild-type QTL allele, are crossed
with each other to produce F1 hybrid animals. Likewise, two tester inbred strains, a strain with a
knockout (KO) allele at a candidate gene locus within the congenic interval and its background strain
with a wild-type allele at the candidate locus, are crossed with each other to produce F1 animals.
Two types of F1 animals obtained from experimental and tester crosses are crossed with each other
to produce F2 animals. Trait values for the F2 animals are measured. There are two advantages
for the use of F2 animals. One advantage is that all F2 animals have the same genetic backgrounds
in which all genes are heterozygous except for the congenic region segregating in the F2 animals
(Figure 3a). The other advantage is that, as described earlier, the use of F2 animals whose genotypes
are segregating in a litter can randomize environmental effects and contaminating genetic effects
of donor and recipient alleles on unwanted chromosomal regions and can minimize the effects of
genetic factors such as maternal genetic effects and epigenetic effects as much as possible [18]. In the
quantitative complementation test, an interaction effect of the KO allele and the QTL allele on the trait
is investigated by a two-way analysis of variance (ANOVA). If the interaction effect is not statistically
significant, showing quantitative complementation, then it is interpreted as genetic evidence that
the candidate gene locus is not a QTL (Figure 3b). If the interaction effect is significant, showing a
quantitative failure to complement, then it can be concluded that the candidate locus is the same as
the QTL (Figure 3c), i.e., the candidate gene is a true QTG. However, the possibility that the presence
of nearby genes in the congenic interval may result in a spurious significant effect cannot be ruled
out. To overcome this problem, biological studies using genetically engineered animals, in which the
mutant phenotype is rescued in the congenic strain or is produced in the background strain, will be
needed to finally confirm that the gene that has been knocked out is a true QTG. These confirmation
studies will be performed together with biological studies for QTN identification as mentioned in a
later section.

We are now performing the quantitative complementation test using the SR24 subcongenic strain
(Figure 1b), the Ly75 knockout strain and respective background strains. Ly75 encodes dendritic and
epithelial cells, 205 kDa (DEC-205). Ly75 knockout mice exhibit abnormalities in CD8-positive T cell
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morphology and cytotoxic T cell physiology [45]. Hence, it is clear that Ly75 contributes to immune
function. However, the effect of the gene on obesity and related traits has not yet been clarified.Genes 2017, 8, 347  10 of 14 
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Figure 3. Quantitative complementation test. (a) Mating designs using two tester inbred strains (a strain
with a knockout (KO) allele (dotted open circle) at a candidate gene locus and its background strain
with a wild-type allele (closed circle) at the candidate gene locus and two experimental inbred strains
(a congenic strain with a mutant-type allele (green triangle) at a QTL and its background strain with
a wild-type allele (purple square) at the QTL. The two tester strains have all the same chromosomes
(blue vertical bars) except for the chromosomal position of the KO locus. In the two experimental
strains, all chromosomes (red vertical bars) are the same except for the congenic region in which alleles
at some loci may be different between the two experimental strains. In the F2 animals, four types
of genotypes are segregating on a uniform genetic background; (b) Quantitative complementation
(KO locus 6= QTL), indicated by no statistical interaction between KO and QTL alleles; (c) Quantitative
failure to complement (KO locus = QTL), indicated by a significant interaction between KO and
QTL alleles.

5.2. Limitations

By quantitative complementation tests, Pappa2 (pregnancy-associated plasma protein A2) was
previously shown to be as a QTG for a QTL with a small general effect on body size (tail length,
bone length and body weight) in mice. However, an interaction effect between Pappa2 and QTL
genotypes was only significant for tail length and body weight at three weeks of age, whereas it
was not significant for skull lengths, long bone lengths and body weights at six and 10 weeks [46].
That report indicates that even if a gene that has been knocked out is a QTG for a QTL with a small
effect, the results of quantitative complementation tests would not always reach levels of statistical
significance. One solution for this problem is to use a simple transgenic overexpression of a candidate
gene, which has recently been shown to be efficient for positional cloning of a tail suspension QTL [47]
and an adiposity QTL [48] in mice.
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6. Future Perspective

The number of QTGs identified will continue to increase by use of the approach proposed here,
which is backed by several consistent and systematic experimental analyses being performed on
a common genetic background controlled by analysis. Most of the QTGs identified would be for
QTL having the main effects on phenotypic traits, each of which independently exerts its effect on
the phenotypic value. Such QTL can be easily identified by QTL analysis and further development
of congenic strains carrying the QTL is straightforward as described in the Appendix A. Recently,
it is becoming clear that QTL with epistatic interaction effects on phenotypes make an important
contribution to quantitative variation. To identify QTGs for such epistatic QTL remains challenging
because of the difficulty of fine mapping the epistatic QTL by congenic/subcongenic analysis. This is a
probable limitation for the present approach.

The ultimate goal is to identify a QTN underlying the phenotypic difference in a quantitative trait
and to further determine the biological mechanisms linking the genotype and phenotype. The most
rigorous proof of QTN identification is to show evidence for an allelic substitution effect of a candidate
QTN on the phenotype by replacing the allele of the candidate QTN in one strain with the allele in
another strain and vice versa in the same genetic background (Figure 1d). Such an allelic substitution
study has now become possible in model animals using the CRISPR/Cas9 system.

Very recently, a 19 bp indel polymorphism in Rffl-lnc1, a novel predicted long non-coding RNA
gene, has been proven to be a QTN for blood pressure and cardiac QT-interval in rats [49]. That study
is the first study in mammals in which allelic substitution experiments were performed using the
CRISPR/Cas9 system. In that study, targeted rats with deletions of sequences including the 19 bp
target segment from the Rffl-lnc1 gene of the wild-type hypertensive Dahl salt-sensitive (S) strain,
which has the 19 bp segment, exhibited elevated blood pressures and shorter QT-intervals than those in
the wild-type S rats. In contrast, knock-in rats with insertion of the 19 bp segment into the Rffl-lnc1 gene
of the S.LEW congenic strain, carrying a blood pressure QTL allele on rat chromosome 10 derived from
the normotensive Lewis (LEW) strain without the 19 bp segment, exhibited lower blood pressures and
longer QT-intervals than those in wild-type S.LEW congenic rats. These phenotypes of the knock-in
rats in the S.LEW congenic strain were very similar to those in the wild-type S rats. In the near
future, further advances in genetic engineering technologies such as the CRISPR/Cas9 system will
make allelic substitution study more feasible in any mammal, leading to an increase in the number of
QTN identifications.

In conclusion, our results in mice may be translatable to human obesity research to prevent
obesity, a major health concern worldwide, which is an important predisposing factor for metabolic
syndrome. In addition, the results may be translatable to animal breeding programs to produce healthy
livestock products.
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Appendix

Advanced intercross lines (AILs): Lines of mice, rats and other animals developed from an F2

intercross population between two founder inbred strains. Animals at the following generations are
sequentially produced by randomly intercrossing of animals at the previous generation. The breeding
population size of AILs at each generation theoretically requires an effective number of 100 and
more animals.

Collaborative cross (CC): A large panel of recombinant inbred (RI) strains of mice (more than
1,000 lines) derived from eight founder inbred strains (A/J, C57BL/6J, 129S1SvImJ, NOD/LtJ,
NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) representing the three major Mus musculus
subspecies, M. m. domesticus, M. m. musculus and M. m. castaneus. CAST/EiJ, PWK/PhJ, and WSB/EiJ
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are derived from wild mice of M. m. castaneus in Thailand, M. m. musculus in Lhotka, Czech Republic
and M. m. domesticus in Eastern Shore, MD, USA, respectively. The other five strains are classical
strains mainly originating in M. m. domesticus. Detailed genome architectures of the eight
founder strains can be seen by the Mouse Phylogeny Viewer (MPV), a custom genome browser
(http://msub.csbio.unc.edu).

Congenic strain: An inbred strain of animals traditionally developed by repeated backcrossing of
animals with a specific genomic interval carrying a QTL from a donor strain to an inbred recipient
strain. At each backcross generation, only offspring with the donor interval, which are usually
monitored by genetic markers such as microsatellite and SNP markers flanking to the QTL (called
marker-assisted selection), are selected for further backcrossing to statistically reduce unwanted donor
intervals by 50% per generation. Finally, 10 to 12 generations of backcrossing are required to achieve
the congenic strain that theoretically carries approximately 99.9% recipient genome. After that, the
congenic strain achieved is maintained by brother-sister mating. This traditional method of congenic
production takes approximately three years to complete. Alternatively, the speed congenic method is
used. In the method, a congenic strain can be produced in as little as five backcrossing generations
through monitoring the introgressed donor interval and genetic background of offspring at each
generation by genetic markers. This speed congenic method can establish a congenic strain within
two years.

Consomic (chromosome substitution) strains: A panel of special type of congenic strains, produced
by using the same method as that of congenic strains described above. Each of the consomic strains
has a distinct entire chromosome from an inbred donor strain on the genetic background of an inbred
recipient strain.

Diversity outcross (DO): An outbred population developed by random mating of randomly
chosen, partially inbred CC mice (see above) at 4-12 generations of inbreeding.

Heterogeneous stock (HS): A stock produced from an eight-way cross of divergent founder inbred
strains in mice and rats and then by random mating in a way that minimizes inbreeding.

Positional cloning: A method for identifying a causal gene governing a specific phenotype only
by the genomic location of the gene. Linkage analysis in three-generation pedigrees or crosses initially
defines a broad genomic region containing the causal gene and other nonrelated genes. To positionally
eliminate the nonrelated genes, this broad region is repeatedly narrowed down by genetic analysis
using congenic and subcongenic strains (see below) until achieving a very small region ultimately
carrying only the causal gene associated with the specific phenotype.

Quantitative complementation test: An allelism test extended a classical complementation test
for Mendelian traits to quantitative traits. In the classical complementation test, if two recessive
mutant genes are allelic, F1 hybrids obtained from a cross between two mutant animals display
a mutant phenotype, i.e., the two genes fail to complement each other in the F1 hybrids. If the
F1 show a wild-type phenotype, the two mutant genes are not allelic and complement each other.
Likewise, a quantitative complementation test is used to determine quantitatively whether the locus
of a candidate gene is the same as a QTL using a knockout (KO) strain for the candidate gene. In the
present review, a modified method is proposed to perform the quantitative complementation test on a
uniform genetic background, in which two experimental inbred strains of a congenic strain carrying
a QTL and its background strain and two tester inbred strains of a KO strain and its background
strain are used to obtain two types of F1 animals from experimental and tester crosses. An interaction
effect of the KO and the QTL allele on a phenotype is investigated by a two-way analysis of variance
(ANOVA). See the text and Figure 3 for details.

Subcongenic strain: An inbred strain developed by marker-assisted selection of recombinant
animals obtained from an intercross or a backcross between a founder congenic strain with a donor
interval carrying a QTL and its background recipient inbred strain. Multiple subcongenic strains
are usually developed and have small overlapping and non-overlapping intervals which together
span the entire congenic interval. When a panel of subcongenic strains with small intervals partially

http://msub.csbio.unc.edu
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overlapping by 1 cM step, called interval-specific congenic strains (ISCS), is created, the QTL can be
confidently fine-mapped to an interval of 1-2 cM.
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