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Abstract: Molecular analysis of the RNA transcriptome from a putative tissue fragment should 

permit the assignment of its source to a specific organ, since each will exhibit a unique pattern of 

gene expression. Determination of the organ source of tissues from crime scenes may aid in 

shootings and other investigations. We have developed a prototype massively parallel sequencing 

(MPS) mRNA profiling assay for organ tissue identification that is designed to definitively identify 

10 organ/tissue types using a targeted panel of 46 mRNA biomarkers. The identifiable organs and 

tissues include brain, lung, liver, heart, kidney, intestine, stomach, skeletal muscle, adipose, and 

trachea. The biomarkers were chosen after iterative specificity testing of numerous candidate genes 

in various tissue types. The assay is very specific, with little cross-reactivity with non-targeted 

tissue, and can detect RNA mixtures from different tissues. We also demonstrate the ability of the 

assay to successful identify the tissue source of origin using a single blind study. 

Keywords: massively parallel sequencing; human organ tissue; mRNA; tissue identification; 

forensic science 

 

1. Introduction 

A number of criminal cases requiring forensic investigation involve significant trauma to the 

human body, in which internal organ tissue is transferred from the injured party to another 

individual, item, or location [1]. Examples include tissue adhering to bullets that have exited the 

body, tissue present on the clothing of an individual responsible for causing the trauma through 

his/her proximity to the victim through the use of a firearm, knife or other implement, tissue present 

on a suspected murder weapon, and tissue present on the walls, ceilings, or furnishings of the scene 

of a suspected homicide or serious assault in which the body of a missing person has been removed. 

The nature of the transferred tissue would be dependent upon the circumstances of the crime, but 

could include adipose, skeletal muscle, lung, liver, heart, brain, kidney, stomach, and intestine. In 

combination with standard DNA analysis to identify the individual source of the transferred 

biological material, the positive identification and differentiation of the organ tissue from blood or 

other secreted body fluids can provide important probative information. 

The identification of traces of desiccated organ tissue can be problematic, and normally requires 

the expertise of a cellular pathologist and/or histologist, and the use of immunohistochemistry 

methods [2]. Investigators and/or forensic scientists often have limited, if any, access to such 

personnel and facilities. In any case, many such tissues are intractable to such analysis due to limited 

material, and/or the fact that the cellular structures are non-canonical in appearance due to 

dehydration, and are difficult to discern due to limited quantity or crushing damage. Thus, at 

present, many case situations involving organ tissue are resolved at the DNA level alone without the 
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investigator being able to ascertain potentially important contextual information about the organ 

tissue source of the DNA on the person, weapon, or other item. 

The goal of the present work was to develop molecular methods that forensic geneticists can 

use routinely when appropriate to identify internal organ tissue using massively parallel sequencing 

methodology. The ready availability of molecular methods would supplement or in some cases 

supplant microscopic methods used by cellular pathologists or histologists to identify the tissue, and 

allow the positive identification of tissue present in trace amounts and/or sufficiently damaged to 

preclude standard microscopic identification. A molecular analysis of the RNA transcriptome, the 

proteome, or the epigenome from a putative tissue fragment should permit assignment of its source 

to a specific tissue and organ, since each differentiable cell type will exhibit unique patterns of gene 

and protein expression, as well as DNA methylation [3,4]. These “-omes” are currently the subject of 

investigation for the purposes of secreted body fluid identification for forensic purposes, and show 

great promise in that regard [5–37]. The authors are unaware of any published or presented work yet 

on organ tissue identification for forensic purposes using DNA methylation, although this might be 

expected in the future. A recent publication using mass spectrometry-based proteome analysis 

reported the identification of specific markers for a limited number of bovine tissues, with the 

cognate human biomarkers being inferred [38]. 

Our preferred approach to organ tissue identification, as described in this paper, is based upon 

an analysis of selected regions of the transcriptome using targeted RNA expression analysis. 

Terminally differentiated cells in organs and tissues have a unique pattern of gene expression, with 

approximately 10% of the transcripts being encoded by tissue-enriched genes, with some genes 

being enriched to such an extent that the mRNA levels in one tissue type are at least five times the 

maximum levels of all other analyzed tissues [39]. Lindenbergh and colleagues at the Netherlands 

Forensic Institute (NFI) developed a first-generation capillary electrophoresis (CE)-based mRNA 

profiling multiplex assay for the inference of the presence of organ tissue in forensic casework [24]. 

The NFI assay comprises a 17-biomarker set designed to identify six internal organ tissues (brain, 

lung, liver, skeletal muscle, heart, and kidney). However, since it is a multiplexed CE-based system, 

the number of incorporated biomarkers per tissue is necessarily limited (two genes per tissue in 

general, plus housekeeping genes, blood, and skin). Although of great utility, CE-based systems 

cannot positively associate a tissue marker with a DNA profile in mixed samples [40], unlike 

sequence-based systems such as massively parallel sequencing (MPS), which could use single 

nucleotide polymorphisms (SNPs) present in mRNA transcripts (RNA–SNPs) to associate the body 

fluid specific transcript with one of the admixed DNA profiles. Here, we report the development of a 

prototype MPS mRNA profiling assay for organ tissue identification designed to definitively 

identify 10 organ/tissue types using a targeted panel of 46 mRNA biomarkers. The identifiable 

organs and tissues include brain, lung, liver, heart, kidney, intestine, stomach, skeletal muscle, 

adipose, and trachea. 

2. Materials and Methods 

2.1. Preparation of Body Fluid Stains 

Tissue total RNA samples (brain (N = 5), lung (N = 3), liver (N = 4), skeletal muscle (N = 4), heart 

(N = 4), kidney (N = 3), adipose (N = 2), small intestine (N = 4), stomach (N = 3), trachea (N = 3), colon 

(N = 1), and spinal cord (N = 1) were purchased from commercial sources (ThermoFisher Scientific, , 

CA, USA; BioChain®, Newark, CA, USA; Clontech, Mountain View, CA, USA; Zyagen, San Diego, 

CA, USA). All tissue total RNA samples were stored at -40 °C until needed. 

Body fluids were collected from volunteers using procedures approved by the University of 

Central Florida’s Institutional Review Board (SBE-14-10768; approved 11/2014). Informed written 

consent was obtained from each donor. Blood samples (N = 4) were obtained from commercial 

sources (Bioreclamation IVT (Long Island, NY, USA), ethlyenediaminetetraacetic acid 

(EDTA)-containing vacutainers) and 50 μL aliquots were dried onto cotton cloth. Freshly ejaculated 

liquid semen (N = 4) was provided in sealed plastic tubes and stored frozen until being dried onto 
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sterile cotton swabs (IntegriSwabs, Lynn Peavey, Lenexa, KS, USA). Buccal samples (saliva, N = 4) 

were collected from donors using sterile cotton swabs by swabbing the inside of the donor’s mouth. 

Semen-free vaginal secretions (N = 4) and menstrual blood (N = 4) were collected using sterile cotton 

swabs. 

2.2. RNA Isolation 

Total RNA was extracted from blood, semen, saliva, vaginal secretions, and menstrual blood 

with guanidine isothiocyanate-phenol:chloroform (Ambion by ThermoFisher Scientific, Austin, TX, 

USA) and precipitated with isopropanol [18]. Briefly, 500 μL of pre-heated (56 °C for 10 min) 

denaturing solution (4 M guanidine isothiocyanate, 0.02 M sodium citrate, 0.5% sarkosyl, 0.1 M 

β-mercaptoethanol) was added to a 1.5 mL Safe Lock extraction tube (Eppendorf, Westbury, NY, 

USA) containing the stain or swab. The samples were incubated at 56 °C for 30 min. The swab or 

stain pieces were then placed into a DNA IQTM spin basket (Promega, Madison, WI, USA), 

re-inserted back into the original extraction tube, and centrifuged at 14,000 rpm (16,000× g) for 5 min. 

After centrifugation, the basket with swab/stain pieces was discarded. The following was added to 

each extract: 50 μL 2 M sodium acetate and 600 μL acid phenol:chloroform (5:1), pH 4.5 (Ambion by 

ThermoFisher Scientific). The samples were then centrifuged for 20 min at 14,000 rpm (16,000× g). 

The RNA-containing top aqueous layer was transferred to a new 1.5 mL microcentrifuge tube, to 

which 2 μL of GlycoBlueTM glycogen carrier (ThermoFisher Scientific) and 500 μL of isopropanol 

were added. RNA was precipitated for 1 h at −20 °C. The extracts were then centrifuged at 14,000 

rpm (16,000× g) for 20 min. The supernatant was removed, and the pellet was washed with 900 μL of 

75% ethanol/ 25% diethylpyrocarbonate (DEPC)-treated water. Following centrifugation for 10 min 

at 14,000 rpm (16,000× g), the supernatant was removed, and the pellet dried using vacuum 

centrifugation (56 °C) for 3 min. Twenty microliters of pre-heated (60 °C for 5 min) nuclease-free 

water (ThermoFisher Scientific) was added to each sample, followed by incubation at 60 °C for 10 

min. Extracts were used immediately or stored at −20 °C until needed. 

2.3. DNase I Digestion 

DNase digestion was performed using the TURBOTM DNA kit (ThermoFisher Scientific) 

according to the manufacturer’s protocol. Briefly, 1X TURBOTM DNase Buffer and 1 μL TURBO 

DNase was added to the 20 μL RNA extracts and incubated at 37 °C for 30 min and 75 °C for 10 min. 

2.4. RNA Quantification 

RNA extracts were quantificated with Quant-iTTM RiboGreen® RNA Kit (ThermoFisher 

Scientific) according to the manufacturer’s protocol. Fluorescence was determined using a 

SynergyTM 2 Multi-Mode microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). 

2.5. TruSeq® Targeted RNA Library Preparation 

MPS libraries of targeted body fluid gene candidates were prepared using the TruSeq® Targeted 

RNA kit (January 2016 protocol version; Illumina Inc., San Diego, CA, USA) and a TruSeq® Targeted 

RNA custom oligonucleotide pool (referred to here as TOP) designed using Illumina Design Studio 

(see Table 1 for final 46-plex assay). All 48- or 96-sample thermal cycler reactions were performed on 

the Mastercycler® pro S thermal cycler (Eppendorf, Hauppauge, NY, USA) using thin-walled skirted 

Microseal® Polymerase Chain Reaction (PCR) plates (BIO-RAD, Hercules, CA, USA) sealed with 

Microseal® B or A (for the amplification reaction) film (BIO-RAD). All 48- or 96-sample purification 

reactions (requiring the use of magnetic beads) were performed in 0.8 mL 96-well storage plates 

(ThermoFisher Scientific) and sealed with Microseal® B film (BIO-RAD) and a magnetic stand-96 

(ThermoFisher Scientific). 



Genes 2017, 8, 319  4 of 24 

 

 

Table 1. Biomarker Composition of the 46-plex Targeted RNA Massively Parallel Sequencing (MPS) 

Multiplex for Human Organ Tissue Identification. 

Tissue Gene Name Chromosome Transcript ID Illumina Assay ID 

Brain SNAP25 20 NM_130811 6650651 

 RTN1 14 NM_021136 6597471 

 GABRA1 5 NM_001127643 6769405 

 OPALIN 10 NM_001040103 6690750 

 GFAP 17 NM_002055 6760207 

 NEUROD6 7 NM_022728 6608149 

Lung SFTPB 2 NM_198843 6822231 

 SFTPD 10 NM_003019 6635044 

 SFTPA1 10 NM_005411 6736962 

Trachea BPIFB1 20 NM_033197 6804173 

Liver AMBP 9 NM_001633 6846165 

 F2 11 NM_000506 6834705 

 SPP2 2 NM_006944 6646626 

 CFHR2 1 NM_005666 6824671 

 F9 X NM_000133 6813125 

 MBL2 10 NM_000242 6748563 

 AHSG 3 NM_001622 6842654 

 C9 5 NM_001737 6711440 

Skeletal TNNI2 11 NM_003282 6650981 

Muscle MYLK2 20 NM_033118 6800284 

 ATP2A1 16 NM_004320 6782675 

 MYH2 17 NM_017534 6700111 

 NEB 2 NM_001164508 6690232 

 MYLPF 16 NM_013292 6688633 

Heart Muscle ITGB1BP3 19 NM_170678 6650498 

Heart MYBPC3 11 NM_000256 6685046 

 NPPB 1 NM_002521 6847931 

 NPPA 1 NM_006172 6634864 

 TNNI3 19 NM_000363 6715646 

Kidney UMOD 16 NM_003361 6842087 

 SLC12A1 15 NM_001184832 6692344 

 SLC34A1 5 NM_003052 6850242 

 SLC22A12 11 NM_153378 6678522 

Adipose TUSC5 17 NM_172367 6779317 

 ADIPOQ 3 NM_001177800 6795292 

 PLIN1 15 NM_002666 6654705 

Intestine FABP6 5 NM_001130958 6641583 

 LCT 2 NM_002299 6648509 

 CCL25 19 NM_005624 6726865 

 DEFA5 8 NM_021010 6669611 

 DEFA6 8 NM_001926 6625127 

Stomach PGA5 11 NM_014224 6775995 

 PGA3 11 NM_001079807 6973516 

 PGA4 11 NM_001079808 6983051 

 GIF 11 NM_005142 6675517 

 GKN1 2 NM_019617 6798784 

RNA was first transcribed into first strand complementary DNA (cDNA) following the TruSeq® 

Targeted RNA kit intact RNA protocol. The 10 μL reaction consisted of 5 μL of reaction mix: 4 μL 

reverse transcription cDNA synthesis master mix (RCS1) (Illumina Inc., San Diego, CA, USA), 1 μL 

ProtoScript® II reverse transcriptase (New England Biolabs Inc., Ipswich, MA, USA), and up to 5 μL 
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of total RNA (target input 50 ng, except for sensitivity studies in which 25, 10, and 5 ng of total RNA 

was used). The appropriate amount of nuclease-free water (ThermoFisher Scientific) was added for a 

total of 5 μL between sample and water for those samples in which less than 5 μL of sample was 

needed to achieve the target input. For two tissue mixture samples, 25 ng of total RNA from each 

tissue was used. For three tissue mixtures, 17 ng of total RNA from each tissue was used. Reaction 

plates were sealed and vortexed at 1600 rpm for 20 s and centrifuged at 280× g for 1 min. Reverse 

transcription was performed as follows: 25 °C for 5 min, 42 °C for 15 min, 95 °C for 10 min, and an 

infinite hold at 4 °C. The cDNA samples were used immediately or stored at -20 °C overnight 

(thawed at room temperature before subsequent use). 

The custom TOP was next hybridized to the cDNA. The 10 μL hybridization reaction mix 

consisted of 5 μL TOP (Illumina Inc.) and 5 μL TE buffer pH 8.0 (ThermoFisher Scientific). Reaction 

plates were sealed and vortexed at 1600 rpm for 20 s. Following a 1-min incubation at room 

temperature, 30 μL of OB1 (paramagnetic streptavidin beads, Illumina Inc.) was added to each well. 

The plate was sealed and vortexed at 1600 rpm for 1 min. The 50 μL hybridization reactions were 

performed as follows: 70 °C for 5 min, 68 °C for 1 min, 65 °C for 2.5 min, 60 °C for 2.5 min, 55 °C for 4 

min, 50 °C for 4 min, 45 °C for 4 min, 40 °C for 4 min, 35 °C for 4 min, 30 °C for 4 min, and a hold at 30 

°C. The bound oligos were then washed, extended, and ligated according to the manufacturer’s 

protocol (TruSeq® Targeted RNA, January 2016 protocol version; Illumina Inc.). The 

extension–ligation products were then amplified, and Index 1 (i7) adapters and Index 2 (i5) adapters 

were added in the process. Each sample received a unique combination of i7 and i5 adapters to 

permit the pooling of finished libraries prior to sequencing. Twenty microliters of the purified 

extension–ligation products were used in the 50 μL amplification reaction. The reaction plate was 

sealed, vortexed at 1600 rpm for 30 s, and centrifuged at 280× g for 1 min. The amplification reaction 

was performed as follows: 95 °C for 2 min, 34 cycles of 98 °C for 30 s, 62 °C for 30 s, 72 °C for 60 s, 72 

°C for 5 min, and an infinite hold at 10 °C. Amplification products were used immediately or stored 

at 4 °C overnight if needed. The individual sample libraries were next purified according to the 

manufacturer’s protocol (TruSeq® Targeted RNA, January 2016 protocol version; Illumina Inc.), 

resulting in a final sample library volume of 12.5 μL. Five microliters of each sample library were 

combined into a single pooled library per sequencing reaction. Pooled libraries and remaining 

individual libraries were stored at -20 °C until needed. 

2.6. TruSeq® Targeted RNA Library Quantification 

Pooled libraries were quantificated using the 2200 TapeStation (Agilent Technologies, Santa 

Clara, CA, USA) and High Sensitivity D1000 Screen tape according to the manufacturer’s protocol. 

Neat and 1:10 diluted libraries were run, and the average concentration obtained from the 100–300 

bp region was used to determine the library concentration (in nM). 

2.7. MiSeq® Sequencing 

Pooled libraries were diluted to 4 nM and denatured according to the manufacturer’s 

recommended protocol. Briefly, 5 μL of the 4 nM library was mixed with 5 μL 0.2 N NaOH and 

incubated at room temperature for 5 min. To the 10 μL denatured library sample, 990 μL of 

pre-chilled HT1 buffer (Illumina Inc.) was added, resulting in a 20 pM sample. A 600 μL 6 pM 

sample was then prepared by further diluting the 20 pM library (180 μL 20 pM denatured sample 

and 420 μL pre-chilled HT1). The 600 μL 6 pM sample was immediately pipetted into the MiSeq® v3 

150 cycle reagent cartridge for sequencing on the MiSeq® instrument (Illumina Inc.) using a v3 flow 

cell. The sequencing runs consisted of 51 single-end sequencing cycles. 

2.8. Data Analysis 

After sequencing, local sequencing software on the MiSeq analyzed the data (base calling, 

demultiplexing, and alignment to the provided manifest file using a banded Smith Waterman 

algorithm), resulting in a target hits file that displays total reads per amplicon per sample. A 

minimum sample total read count (MTR) of 5000 was used as an individual sample threshold, and 



Genes 2017, 8, 319  6 of 24 

 

samples below the MTR were excluded from analysis. In addition, a minimum biomarker read count 

(MBR) count of 500 was used as an individual biomarker threshold, with any counts below this 

threshold removed. A third threshold was then used in which individual biomarker read count 

values that were less than 0.5% of the total reads for the sample were also removed. 

After filtering of samples in accordance with the above thresholds, the raw total read count data 

was plotted in Microsoft® Excel (Office 2016, Microsoft, Redmond, WA, USA) in order to view the 

total raw counts per sample, and bar graphs were created to evaluate raw counts by sample and by 

gene. The percent contribution of total reads (biomarker read count/total count for sample) was 

determined for each biomarker. The percent contribution of reads was next calculated to provide the 

percentage of total reads for each individual sample that was attributable to the various tissue- or 

body fluid-specific markers, and displayed as stacked bar graphs. 

Agglomerative hierarchical clustering analysis is an alternative complementary method for 

data analysis that employs the raw hit counts as input without the use of the ad hoc thresholds 

described above [41]. Clustering was performed using the BaseSpace® TruSeq® Targeted RNA v1.0 

app (Illumina Inc.), which jointly clusters samples and biomarker amplicons. Briefly, the software 

uses a minimum count threshold of 1, log transforms the counts, and performs median 

normalization across all the samples. After clustering, the data are median absolute deviation 

(MAD)-normalized so that the expression values for each gene are on the same scale. Biomarker 

amplicon, sample dendrogram files, and a clustering heat map are used to visualize the similarities 

and differences in biomarker expression between samples. 

3. Results 

3.1. Assay Development 

3.1.1. Candidate Selection 

Putative tissue-specific genes were identified through literature and database searches using a 

priori knowledge of the physiology and biochemistry of the tissue of interest. Additionally, attempts 

were made to include the tissue-specific biomarkers from Lindenbergh et al. [24] for consistency in 

forensic tissue identification assays for the six tissues (brain, lung, liver, skeletal muscle, heart, and 

kidney) in common between the two assays. Of the 13 candidates from the Lindenbergh assay [24], 

all genes were evaluated for use in the targeted RNA sequencing assay except the kidney biomarker 

FXYD2 (FXYD domain containing ion transport regulator 2), as no commercial off-the-shelf assay 

was readily available for this biomarker. Of the 12 biomarkers tested, nine biomarkers were 

included: brain–SNAP25 (synaptosomal-associated protein 25), RTN1 (reticulon-1); lung—SFTPB 

(surfactant protein B), SFTPD (surfactant protein D); liver—AMBP (alpha-1-microglobulin/bikunin 

precursor); skeletal muscle—TNNI2 (troponin I2); heart—MYBPC3 (myosin binding protein C); 

heart muscle—ITGB1BP3 (integrin beta 1 binding protein 3, or NMRK2 (nicotinmide riboside kinase 

2), which was identified as a general muscle candidate by Lindenbergh et al., but demonstrated 

heart muscle specificity in the current assay); kidney–UMOD (uromodulin). The targeted RNA 

sequencing assay sought to include biomarkers for several additional tissues, including trachea, 

adipose, intestine, and stomach. We designed and evaluated three targeted oligonucleotide primer 

pools (TOPs; TOP1—64-plex; TOP2—48-plex; and TOP3—46-plex), which resulted in the evaluation 

of a total of 77 gene candidates for appropriate specificity (brain—nine candidates; lung—eight 

candidates; trachea—one candidate; liver—nine candidates; skeletal muscle—14 candidates; 

heart—seven candidates; kidney—eight candidates; adipose—seven candidates; intestine—nine 

candidates; stomach—five candidates). 

Individual gene candidates were evaluated for specificity (e.g., ideal candidates with high read 

counts in target tissues and low or no read counts in non-target tissues, and other forensically 

relevant biological fluids (blood, semen, saliva, vaginal secretions, and menstrual blood)) and 

abundance (e.g., ideal candidates with consistently moderate to high read counts amongst different 

donors of the target tissue). Expression heat maps (Figure 1) were generated for each TOP design 

after initial testing. The heat maps provided easy visualization of gene expression to select suitable 
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candidates. Numerous gene candidates were not selected for use in the targeted RNA sequencing 

assay due to various factors such as poor performance (amplification efficiency), low abundance, or 

cross-reactivity with non-target tissues (Table S1). 

 

Figure 1. Gene Expression Heat Map of 48 Tissue-Specific Markers in 10 Tissues (Skeletal muscle, 

Trachea, Lung, Kidney, Intestine, Heart, Adipose, Brain, Liver, and Stomach). Y-axis—biomarkers 

(genes); X-axis—tissue samples. Green represents higher expression, red represents lower 

expression. Clusters of up-regulated gene expression of a group of biomarkers specific to the target 

tissue are highlighted with blue circles. 

The iterative selection process resulted in the development of a final 46-plex assay (Table 1) that 

was determined to be suitable for further testing and evaluation. This assay contained six brain 

biomarkers, three lung biomarkers, one trachea biomarker, eight liver biomarkers, six skeletal 

muscle biomarkers, five heart biomarkers (with one potentially more specificity to heart muscle), 

four kidney biomarkers, three adipose biomarkers, five intestine biomarkers, and five stomach 

biomarkers. 

3.1.2. Specificity of the 46—Plex Targeted RNA Sequencing Assay 

The initial performance of the 46-plex tissue identification assay was evaluated in 35 total RNA 

samples (brain (N = 5), lung (N = 3), trachea (N = 3), liver (N = 4), skeletal muscle (N = 4), heart (N = 

4), kidney (N = 3), adipose (N = 2), small intestine (N = 4), and stomach (N = 3)) obtained from 

commercial sources. Fifty ng of input total RNA was used for all samples. Raw read count data was 
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evaluated using previously developed ad hoc thresholds for RNA MPS data analysis: (1) MTR of 

5000 for individual samples, and (2) minimum MBR of 500 and a minimum 0.5% total read count 

threshold for individual biomarkers. Samples with total read counts below the MTR (5000) were not 

analyzed. Read counts that were below the MBR and that did not represent at least 0.5% of the total 

read counts for the sample were removed (read counts converted to 0). All of the 35 tissue samples 

well exceeded the MTR, and were therefore all included in the analysis. 

The read count values for each biomarker were averaged for each tissue type amongst the 35 

samples to evaluate the specificity of the included biomarkers (Table 2). It is important to note that 

the read count values used in the averages are not normalized to total sample counts. Therefore, the 

observed variation in read counts between samples will be quite large. This does not negatively 

affect interpretation of the tissue source, as other analysis metrics will be described in subsequent 

sections using normalized data. 

Amongst the five brain donors tested, the average read count for brain biomarkers ranged from 

167,707 (SNAP25, 1 standard deviation (S.D.) = 47,884) to 9698 (OPALIN (oligodendrocytic myelin 

paranodal and inner loop protein), 1 S.D. = 5125). Expression was not observed for all of the other 

non-brain biomarkers, except for liver biomarkers AMBP and AHSG (alpha 2-HS glycoprotein. 

Expression of these biomarkers was only observed in one of the five donors, and therefore was not 

reproducible. Therefore, it is not likely that these biomarkers will confound the ability to definitively 

identify brain tissue. 

For lung, amongst the three donors tested, the average read count for lung biomarkers ranged 

from 145,365 (SFTPB, 1 S.D. = 97,488) to 56,487 (SFTPD, 1 S.D. = 51,113). Expression of the trachea 

biomarker BPIFB1 (BPI fold containing family B member 1) was present in two of the three lung 

samples tested, with expression levels only ~8% that of the highest expressing lung biomarker 

SFTPB and ~6% that of BPIFB1 in trachea samples. Additionally, lung and trachea are connected 

tissue, and the lung samples may contain small amounts of trachea tissue. Expression was not 

observed for any other non-lung biomarker with the exception of RTN1 (brain), in which a low read 

count (3784) was observed in only one of the three samples tested. This latter level of expression 

should not have any impact on the ability to identify lung tissue. 

For trachea, BPIFB1 was detected with high abundance in the three trachea samples tested, with 

a total read count of 190,738 (1 S.D. = 135,931). Low expression levels of several non-trachea genes 

were observed in the trachea samples, with the most substantial expression observed for heart 

candidate NPPA (natriuretic peptide A), with a total read count of 7182. This NPPA expression level 

was only observed in one of the three trachea samples, and therefore was not reproducible amongst 

the small sample set tested. The low-level expression in trachea from a small number of 

‘non-trachea’ biomarkers were not reproducible across all trachea samples examined, with the 

exception of RTN1 (brain biomarker) and PLIN1 (perilipin 1, adipose biomarker). Future work will 

seek to identify additional specific trachea markers. Trachea was not originally one of the target 

tissues intended for the assay, with BPIFB1 originally identified as a possible lung biomarker. 

However, after initial testing, it was evident that it demonstrated specificity for trachea tissue, and 

therefore the assay was expanded to include trachea as a target tissue. 

For liver, amongst the four donors tested, the average read count for liver biomarkers ranged 

from 165,375 (AMBP, 1 S.D. = 31,427) to 4649 (MBL2 (mannose binding lectin 2), 1 S.D. = 2320). 

Expression was not observed for any of the other non-liver biomarkers. Expression of MBL2 and 

SPP2 (secreted phosphoprotein 2) was observed in only three of the four liver samples. Due to the 

lower expression of these biomarkers and the reasonable number of liver biomarkers exhibiting 

moderate to high expression, MBL2 and SPP2 will likely be removed in subsequent assay iterations. 

For skeletal muscle, amongst the four donors tested, the average read count for skeletal muscle 

biomarkers ranged from 125,702 (MYLPF (myosin light chain, phosphorylatable, fast skeletal 

muscle), 1 S.D. = 48,208) to 19,082 (MYLK2 (myosin light chain kinase 2), 1 S.D. = 11,341). Expression 

was not observed for any of the other non-skeletal muscle biomarkers, with the exception of 

ITGB1BP3 (heart muscle), which was detected in only one of the four skeletal muscle samples at a 

low expression level (2403), and therefore not reproducible. 
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For heart, amongst the four donors tested, the average read count for heart biomarkers ranged 

from 168,146 (TNNI3 (troponin I3), 1 S.D. = 27,231) to 14,539 (NPPB (natriuretic peptide B), 1 S.D. = 

12,336). Expression was not observed for any of the other non-heart biomarkers, with the exception 

of PLIN1 (adipose biomarker), which was detected in only one of the four heart samples at a low 

expression level (2251). Expression of this biomarker in heart samples was therefore not 

reproducible (present in only one donor), and should have no impact on the ability to definitively 

identify lung tissue. 

For kidney, amongst the three donors tested, the average read count for kidney biomarkers 

ranged from 53,914 (UMOD, 1 S.D. = 32,933) to 9133 (SLC22A12 (solute carrier family 22 member 12), 

1 S.D. = 5206). Expression was not observed for any of the other non-kidney biomarkers. 

For adipose, amongst the two donors tested, the average read count for adipose biomarkers 

ranged from 21,176 (PLIN1, 1 S.D. = 10,898) to 6842 (TUSC5 (tumor suppressor candidate 5), 1 S.D. = 

366). Adipose was the most challenging tissue to identify during the development of this assay. 

While the adipose biomarkers demonstrated a high degree of specificity for adipose tissue (i.e., no 

substantial expression in other tissue types), the expression of skeletal muscle, stomach, and liver 

biomarkers was observed in one of the two samples. The expression profiles for the two adipose 

samples were slightly different, with expression of the skeletal muscle biomarkers observed in one 

of the samples, and expression of the liver and stomach biomarkers in the other sample. The 

anatomical location from which the adipose tissue samples were taken was not known, but could 

account for these differences in expression profiles. Further work with additional adipose samples is 

needed to better determine the extent to which the anatomical location affects the combinatorial 

expression signatures of included biomarkers. The expression observed in the skeletal muscle 

biomarkers is relatively low, with more substantial expression observed for the stomach biomarkers. 

Despite these challenges, adipose tissue was identifiable throughout the study due to its unique 

expression pattern (e.g., adipose–muscle–stomach biomarkers). The expression level of the skeletal 

muscle biomarkers was 17%–40% higher in skeletal muscle tissue compared with adipose tissue. The 

expression of the stomach biomarkers PGA3 (pepsinogen 3, group 1) and PGA4 (pepsinogen 4, 

group 1) was only 11%–13% higher, respectively, in stomach tissue. Expression levels similar to that 

of stomach tissue were observed for PGA5 (pepsinogen 5, group 1), although expression was found 

only in one of the two adipose samples tested. 

For small intestine, amongst the four donors tested, the average read count for intestine 

biomarkers ranged from 165,872 (DEFA5 (defensin alpha 5), 1 S.D. = 61,087) to 4333 (CCL25 (C-C 

motif chemokine ligand 25), 1 S.D. = 2896). Low expression was observed for stomach biomarkers 

PGA5, PGA3, and PGA4, again demonstrating the future possibility of removing and replacing 

these biomarkers from the current assay. LCT (lactase) was only detected in one of the four samples, 

and CCL25 in only three of the four samples. The low read counts suggest that these biomarkers may 

be low abundance biomarkers, although both still demonstrated a high degree of specificity for 

intestine tissue. 

For stomach, amongst the three donors tested, the average read count for stomach biomarkers 

ranged from 155,582 (PGA4, 1 S.D. = 47,938) to 7311 (GIF (gastric intrinsic factor), 1 S.D. = 960). Two 

of the lower expressing stomach biomarkers, GIF and GKN1 (gastrokine 1), were nevertheless 

highly specific to their target tissue. 

The threshold-filtered read count data was also visualized with the use of simple bar graphs 

that were constructed either ‘by sample type’ (Figure 2) or ‘by gene biomarker’ (Figure 3). Figure 2 

shows expression data from a single brain (A), lung (B), liver (C), skeletal muscle (D), and heart (E) 

tissue sample amongst the 46 included biomarkers. As can be seen from these graphs, highly specific 

expression patterns were observed for the tissues. Figure 3 shows the expression data from 35 tissue 

samples graphed ‘by gene’, with one representative gene selected for kidney (A, UMOD), adipose 

(B, ADIPOQ (adiponectin, C1Q and collagen domain containing), intestine (C, DEFA5), stomach (D, 

PGA4), and trachea (E, BPIFB1). The target specific biomarkers are highly expressed in their 

respective target tissues. 
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Table 2. Tissue Specificity of 46 Gene Candidates.  

  Brain Lung Trachea Liver Sk.Mus Heart Kidney Adipose Sm.Int Stomach 

 N 5 3 3 4 4 4 3 2 4 3 

 Avg Total 342,617 353,031 210,086 331,286 415,965 383,774 118,472 104,731 324,757 515,896 

BRN SNAP25 167,707          

 RTN1 83,980 * 1927     2045   

 GABRA1 14,584          

 OPALIN 9698          

 GFAP 53,931          

 NEUROD6 9872(4)          

LUN SFTPB  145,365 *        

 SFTPD  56,487         

 STFPA1  142,360 *        

TRA BPIFB1  11,338(2) 190,738        

LIV AMBP *   165,375    *   

 F2    13,915       

 SPP2    6787(3)       

 CFHR2    21,586       

 F9    9090       

 MBL2    4649(3)    *   

 AHSG *   93,723       

 C9    19,021       

SKM TNNI2   *  106,756   *   

 MYLK2     19,082      

 ATP2A1     53,200   *   

 MYH2   1586(2)  43,511   *   

 NEB   2491(2)  67,115   *   

 MYLPF   1583(2)  125,702   *   

HRT ITGB1BP3     * 20,005     

 MYBPC3      17,803     

 NPPB      14,539     

 NPPA   *   162,719     

 TNNI3   *   168,146     

KID UMOD       53,914    

 SLC12A1       39,341    
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 SLC34A1       16,085    

 SLC22A12       9133    

ADI TUSC5        6842   

 ADIPOQ        11,854   

 PLIN1   2533   *  21,176   

INT FABP6         36,487(3)  

 LCT         *  

 CCL25         4333(3)  

 DEFA5         165,872  

 DEFA6         114,731  

STM PGA5        * * 23,954 

 PGA3        * * 103,475 

 PGA4        * * 155,582 

 GIF          7311(2) 

 GKN1          18,557(2) 

Average (avg) read counts of each biomarker in tissue samples (calculated from N donors). For each tissue set, the avg total read counts (avg total) are listed. Numbers in 

parentheses represent the number of samples in which the biomarker was detected (provided only for biomarkers that were not detected in all samples). Average counts 

below 1000 were not considered significant and are not shown. * = expression observed in only one sample (avg value not possible). Shading: dark grey >10,000 read 

counts; light grey 5001–9999 read counts; no color <5000 read counts. Brain (BRN), lung (LUN), trachea (TRA), liver (LIV), skeletal muscle (SKM or Sk.Mus), heart (HRT), 

kidney (KID), adipose (ADI), small intestine (SMINT or Sm.Int.), intestine (INT), stomach (STM). 
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Figure 2. Gene Expression Profiles for Different Individual Tissue Types Using the 46-plex Targeted RNA Sequencing Assay. Read counts for 46 tissue specific genes are 

shown for individual tissue samples (A) brain; (B) lung, (C) liver, (D) skeletal muscle, (E) heart. Colored bars represent expression of tissue-specific biomarkers within the 

target tissues (grey—brain, pink—lung, purple—liver, blue—skeletal muscle, red—heart). Y-axis—read counts, X-axis—tissue-specific genes (order of markers left to right 

is the same as shown in Table 1 from top to bottom). 
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Figure 3. Tissue-Specific Gene Expression Exemplified by Individual Gene Candidates amongst 35 Tissue Samples. Read counts for individual biomarkers (A) UMOD, 

kidney specific; (B) ADIPOQ, adipose specific; (C) DEFA5, intestine specific; (D) PGA4, stomach specific; (E) BPIFB1, trachea specific, are shown amongst a set of 35 tissue 

samples (Brain (BRN), N = 5), lung (LUN, N = 3), liver (LIV, N = 4), skeletal Muscle (SKMUS, N = 4), heart (HRT, N = 4), kidney (KID, N = 3), adipose (ADI, N = 2), small 

intestine (SMINT, N = 4), stomach (STM, N = 3), trachea (TRA, N = 3). Colored bars represent biomarker expression (i.e., read counts) in the target tissue: light 

green—kidney, yellow—adipose, brown—intestine, blue—stomach, dark green—trachea). Y-axis—read counts, X-axis—tissue samples. 
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3.1.3. Tissue Inference 

In order to infer the presence of a particular tissue based on quantitative gene expression from 

the targeted RNA sequencing assay, we have investigated the use of ad hoc binary approaches to 

tissue prediction. The output from these approaches is a simple categorical statement of the presence 

or absence of a particular tissue. The two complementary approaches include (1) assigning the 

percentage of reads in a sample that are due to each of the 10 tissue-specific biomarker classes 

included in the assay, and (2) the inter-sample differential gene expression revealed by 

agglomerative hierarchical clustering. 

In order to generate tissue-specific read percentages, threshold-filtered read counts for 

individual biomarkers were divided by the total reads for the sample. The sum of the individual 

biomarker percentages in the sample comprising each tissue class were totaled to provide the total 

percentage of reads attributable in the sample to the different tissue classes. The average percent 

contribution of each biomarker class, as well as the range of percentages observed in the different 

tissue samples, is shown in Table 3, further demonstrating the high degree of specificity of the 

included biomarkers for all tissues, with the exception of adipose. For most of tissues, the percentage 

of reads attributable to their respective tissue-specific biomarkers ranged from 90%–100%. A slightly 

larger range was observed amongst trachea samples, with the percent composition attributable to 

the trachea biomarker ranging from 79%–98%. As described above, the most challenging tissue type 

was adipose, with the adipose biomarker class found to comprise 25%–59% of the biomarkers 

present in adipose tissue. The lower proportion of the expected biomarker class was primarily due to 

the co-expression of skeletal muscle and stomach biomarkers in adipose tissue samples. The unique 

expression profile for adipose tissue (expression from skeletal muscle, adipose, and stomach 

biomarkers) is clearly discerned based on the percent composition values. As stated previously, 

adipose tissue was identifiable in these initial studies using only single source tissue samples based 

on this unique expression profile. 

The use of the sample percent composition of each biomarker class expression to identify the 

presence of a particular tissue or tissues is useful, because it takes into account variability in read 

counts between library preparations and sequencing runs. It also is not affected by a possible 

absence of some of the lower expressing biomarkers in a particular sample. The specific biomarker 

composition within the target specific biomarker classes is interesting to evaluate, as some samples 

from the same tissue type show very similar biomarker expression profiles, and some show greater 

variation. Examples of the percent composition from the individual brain and skeletal muscle 

biomarkers are shown in Figure S1. For the skeletal muscle samples (99%–100% of total reads 

attributable to skeletal muscle class biomarkers), similar expression levels of the individual 

biomarkers were observed between samples (Figure S1B). The overall percent composition 

attributable to brain biomarkers was 96%–100% amongst the five brain samples tested. The highest 

contribution for each sample was from SNAP25 (41–61%) followed by RTN1 (11–39%). Interestingly, 

GFAP (glial fibrillary acidic protein) represented 6%–15% of the brain biomarker composition in 

four of the five samples, but accounted for 38% of brain biomarker composition in the fifth brain 

sample. This could indicate the potential to identify different anatomical regions within some of the 

tissue or organ types, particularly the brain. It is possible that the fifth sample was taken from a 

different region of the brain than the other four samples, and hence GFAP showed higher expression 

levels in this region. 
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Table 3. Contribution of Tissue Biomarker Classes to Expression Profiles.  

 Brain Lung Trachea Liver Sk.Mus Heart Kidney Adipose Sm.Int Stomach 

Biomarkers N = 5 N = 3 N = 3 N = 4 N = 4 N = 4 N = 3 N = 2 N = 4 N = 3 

BRN 99(96-99) 0(0-1) 1 0 0 0 0 2(1-3) 0 0 

LUN 0 98(94-100) 1(0-2) 0 0 0 0 0 0 0 

TRA 0 2(1-5) 89(79-98) 0 0 0 0 0 0 0 

LIV 1(0-4) 0 0 100 0 0 0 5(5-10) 0 0 

SKM 0 0 4(0-8) 0 100(99-100) 0 0 19(0-38) 0 0 

HRM 0 0 4(0-13) 0 0 5(2-10) 0 0 0 0 

HRT 0 0 0 0 0 95(90-98) 0 0 0 0 

KID 0 0 0 0 0 0 100 0 0 0 

ADI 0 0 1 0 0 0(0-1) 0 42(25-59) 0 0 

INT 0 0 0 0 0 0 0 0 98(92-100) 0 

STM 0 0 0 0 0 0 0 32(0-63) 2(0-8) 100 

Average percent contributions (bold text) and range of percent contributions (subscript text in parentheses, if applicable) of each tissue biomarker class is shown for each 

tissue (Brain (BRN), biomarker class comprised of six different gene markers; lung (LUN), biomarker class comprised of three different gene markers; trachea (TRA), 

biomarker class comprised of one gene marker; liver (LIV), biomarker class comprised of eight different gene markers; skeletal Muscle (SKM), biomarker class comprised 

of six different gene markers; heart muscle (HRM), biomarker class comprised of one gene marker; heart (HRT), biomarker class comprised of four gene markers; kidney 

(KID), biomarker class comprised of four different gene markers; adipose (ADI), biomarker class comprised of three different gene markers; intestine (INT), biomarker 

class comprised of five different gene markers; stomach (STM), biomarker class comprised of five different gene markers). Skeletal Muscle (Sk.Mus), small Intestine 

(Sm.Int)..The number of donors (N) used to determine the averages are provided. 
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Evaluation of the similarities and differences in gene expression of the 46 targeted genes 

between the tissue samples was performed using agglomerative hierarchical clustering analysis. The 

clustering was performed jointly on samples and biomarker amplicons using unfiltered raw read 

counts. Results further demonstrate the high degree of specificity of the 46-plex assay with samples 

of the same tissue type clustering together due to similarities in gene expression. Figure 4 shows a 

representative dendrogram of the unbiased clustering of tissue samples when samples from liver (N 

= 5), kidney (N = 3), brain (N = 6), stomach (N = 4), lung (N = 3), trachea (N = 3), skeletal muscle (N = 

5), heart (N = 4), and small intestine (N = 4) were analyzed. Adipose was not included for clarity, 

since additional work is needed to improve the identification of adipose tissue. As can be seen from 

the clusters the nine different tissue classes show distinct intra-class differences in gene expression, 

whereas samples of the sample tissue type cluster together. 

 

Figure 4. Dendrogram of Single Source Tissue Samples Clustering According to Similarities in Gene 

Expression. The gene expression correlation distance between samples is indicated by the length of 

the vertical branch points on the Y-axis. 

3.2. Performance Testing 

We have carried out an initial set of performance checks on the prototype 46-plex assay to 

determine its potential efficacy for future use in forensic casework and to identify opportunities for 

improvement. 

3.2.1. Biomarker Sensitivity of Detection 

The current optimal input for the 46-plex assay is 50 ng of total RNA. However, the sensitivity 

of detection of numerous biomarkers included in the assay is likely below 50 ng. To evaluate the 

differing sensitivity of the included biomarkers, we analyzed 25, 10, and 5 ng total RNA inputs for 

brain, lung, trachea, liver, skeletal muscle, heart, kidney, small intestine, and stomach (N = 1 for each 

tissue). The results for the sensitivity study are provided in Table 4. The total read counts for each 

sample, the percent contribution to the sample of the tissue class-specific biomarkers, and the read 

counts for the individual tissue specific biomarkers within their target tissue are shown. For all of the 

tissues, with the exception of skeletal muscle, the total sample read count decreased as expected as 

the input amount of RNA decreased. Almost all of the 5 ng samples (with the exception of trachea 

and kidney) were still above the MTR. The percent contribution for each tissue attributable to the 

tissue specific biomarkers associated with each tissue ranged from 92%–100% for all samples. 

The results provide an indication of the current sensitivity of detection levels of the included 

biomarkers, and do not necessarily provide an accurate estimate of the limit of detection (LOD) of 

the assay. The 50 ng input remains a reasonable attainable target for most samples, but may be 

reduced as additional optimization work is performed. 
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Table 4. Biomarker Sensitivity. 

Tissue Input (ng) Total Reads % Cont SNAP25 RTN1 GABRA1 OPALIN GFAP NEUROD6   

Brain 25 253,551 99 120,086 71,499 8192 8698 36,150 6901   

 10 68,930 100 31,986 19,041 3036 2929 11,055 883   

 5 12,021 100 7256 3315   1450    

Tissue Input (ng) Total Reads % Cont SFTPB SFTPD SFTPA1      

Lung 25 641,600 100 232,508 31,220 377,872      

 10 103,030 100 43,874 6451 52,705      

 5 15,448 100 7612 808 7028      

Tissue Input (ng) Total Reads % Cont BPIFB1        

Trachea 25 75,524 92 69,521        

 10 63,490 99 62,901        

 5 Below MTR --         

Tissue Input (ng) Total Reads % Cont AMBP F2 SPP2 CFHR2 F9 MBL2 AHSG C9 

Liver 25 169,000 100 90.462 7565 3739 11,117 4328 1541 43,900 6348 

 10 47,366 100 24,898 2598 695 3197 870 696 11,850 2562 

 5 26,444 100 15,739 539 -- 1807 592 -- 6678 1089 

Tissue Input (ng) Total Reads % Cont TNNI2 MYLK2 ATP2A1 MYH2 NEB MYLPF   

Sk. Mus 25 234,740 100 50,132 9910 27,752 25,867 27,058 94,021   

 10 7053 100 706 -- 942 1031 798 3576   

 5 20,865 100 3615 768 2061 2276 2190 9955   

Tissue Input (ng) Total Reads % Cont ITGB1BP3 MYBPC3 NPPB NPPA TNNI3    

Heart 25 550,182 100 46,661 30,405 29,711 149,253 294,152    

 10 33,336 100 2427 2115 1790 8145 18,859    

 5 17,489 100 765 832 893 5445 9554    

Tissue Input (ng) Total Reads % Cont UMOD SLC12A1 SLC34A1 SLC22A12     

Kidney 25 30,360 100 9124 9356 7107 4773     

 10 14,360 100 4598 4556 3269 1937     

 5 Below MTR --         

Tissue Input (ng) Total Reads % Cont FABP6 LCT CCL25 DEFA5 DEFA6    

Sm. Int 25 1,227,602 100 189,948 -- -- 690,364 347,290    

 10 557,746 100 74,829 -- -- 314,865 167,268    

 5 398,704 100 55,869 -- -- 223,287 119,549    

Tissue Input (ng) Total Reads % Cont PGA5 PGA3 PGA4 GIF GKN1    

Stomach 25 486,450 100 227,634 49,505 178,348 8322 22,641    

 10 147,139 100 73,155 16,109 46,184 2379 9312    

 5 121,928 100 66,997 8539 36,550 2241 7601    

     % Cont = percent contribution
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3.2.2. Mixtures 

In criminal cases undergoing forensic investigation, more than one tissue type may be present 

in a sample. For example, a bullet recovered after having struck an individual may have traversed 

through multiple organ tissues. Positive identification and differentiation of the organ tissue(s) 

present in a sample could provide important probative information. Therefore, we evaluated the 

performance of the developed 46-plex assay with binary and ternary organ tissue admixtures 

(Figure 5). 

Ten binary mixtures were tested that consisted of the following: brain—skeletal muscle, 

lung—heart, lung—liver, liver—stomach, small intestine—skeletal muscle, kidney—small intestine, 

kidney—skeletal muscle, brain—trachea, liver—kidney, and small intestine—stomach. The binary 

mixtures comprised 25 ng of total RNA from both tissues. The percent composition attributable to 

each tissue biomarker class is shown for each mixture in Figure 5A. Of the 10 binary mixtures, six 

showed a substantial contribution from each tissue: brain—skeletal muscle (35%, 65%, respectively); 

lung—heart (51%, 49%, respectively); lung—liver (43%, 57%, respectively); small intestine—skeletal 

muscle (51%, 49%, respectively); brain—trachea (77%, 22%, respectively); and liver—kidney (49%, 

51%, respectively). The relative proportions of the components were such that identification of the 

mixture constituents would be a facile matter if such mixtures were to be encountered in a real-life 

case scenario. For the four remaining mixtures (liver—stomach, kidney—small intestine, 

kidney—skeletal muscle, and small intestine—stomach), one of the constituents was present as a 

minor component comprising 3%–13% of the total reads. This is likely due to the higher abundance 

of some biomarker tissue classes compared with others, and such low level relative expression could 

confound tissue inference of the minor component. 

Three ternary mixtures were tested that consisted of the following: heart–liver–lung, 

stomach–lung–liver, and heart–lung–skeletal muscle. The ternary mixtures comprised 17 ng of total 

RNA from all three tissues. The percent contributions attributable to each tissue biomarker class is 

shown for each mixture in Figure 5B. For the heart—liver—lung admixture, each tissue component 

was successfully detected with almost equal one-third contributions from each of the three tissue 

biomarker classes. For the heart—lung—skeletal muscle admixture, all three tissues were also 

identified, with 60% of the total reads attributable to heart biomarkers, 28% to skeletal muscle 

biomarkers, and 12% to lung biomarkers. The most challenging ternary sample for potential 

identification purposes was the stomach—lung—liver mixture, in which the percent contribution 

from stomach biomarkers dominated the sample with 93% of the total reads. Liver and lung were 

present, but making up only 3% and 4% of the total reads, respectively, which is close to the 

background transcription noise threshold. 

Due to the low-level expression of non-target biomarkers in some tissues, minimum percent 

contribution thresholds will also need to be established for accurate tissue identification inference. 

Additional mixture studies will also need to be performed to evaluate observed percent 

contributions from minor mixture components to assess how those thresholds affect mixture 

interpretation. From the relative expression data of different biomarker classes in single source 

samples (Table 3), except for adipose, low-level expression from non-target biomarker classes for the 

assay range from 1%–11%, with trachea showing 11% of reads from non-trachea biomarkers. We 

expect this value to decrease as additional trachea biomarkers are added to the assay. However, the 

data provides an initial indication of the magnitude of possible threshold levels for discarding 

background transcriptional noise that will need to be incorporated into a finalized assay for routine 

forensic use. 
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Figure 5. Identified Biomarker Expression Classes in Two- and Three-Tissue Admixed Samples. The 

percent contributions for individual biomarkers were calculated (reads per biomarker/total reads per 

sample). The percentages from each group of tissue-specific biomarkers were combined to determine 

the percentage of reads per sample attributable to each tissue class. Percent reads attributable to each 

biomarker group are listed and represented by color: grey—brain, pink—lung, dark green—trachea, 

purple—liver, blue—skeletal muscle, dark red—heart muscle, red—heart, light green—kidney, 

brown—intestine, blue—stomach. (A) binary tissue mixtures, (B) ternary tissue mixtures. Brain 

(BRN), lung (LUN), trachea (TRA), liver (LIV), skeletal Muscle (SKM and MUS), heart muscle 

(HRM), heart (HRT), kidney (KID), intestine (INT), stomach (STM), small intestine (SMTINT). 
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3.2.3. Repeatability 

Expression data for the same single source tissue samples (N = 1 for brain, lung, trachea, liver, 

skeletal muscle, kidney, adipose, small intestine, and stomach) were available from two different 

sequencing runs (using the same operator and instrument), and therefore the repeatability of the 

developed assay was evaluated. Figure S2 provides a graphical representation of the percent 

contributions of the biomarkers in each tissue class for the data from both runs (“-1” and “-2”). The 

data clearly shows good repeatability of the targeted RNA assay across different sequencing runs, 

especially considering that the samples were processed via separate library preparations and 

sequencing runs. Overall, the total read count for each individual sample was ~4–5 times higher in 

run 1. The -1 samples were from a 48-sample run consisting of more low-input (sensitivity) samples 

or negative (body fluid) samples. Therefore, more of the read ‘real estate’ was available for positive 

samples in this run. The -2 samples were from a 96-sample run consisting of mostly ‘positive’ single 

source or admixed tissue samples. This demonstrates the utility of using the percent composition 

analysis approach, as it normalizes the values to total read counts, and therefore accounts for any 

potential run-to-run variation in the total read counts. 

3.2.4. Specificity 

In addition to the tissue samples, the expression of each of the included biomarkers was 

evaluated in non-organ tissue body fluid samples commonly found at crime scenes, including blood 

(N = 5), semen (N = 4), saliva (N = 4), vaginal secretions (N = 4), and menstrual blood (N = 4) (Table 

S2). Amongst these samples, one blood sample gave a total read count above the MTR. The other 

four blood samples and all semen, saliva, vaginal secretions, and menstrual samples were below the 

MTR, indicating no substantial cross-reactivity with forensically relevant body fluids. For the one 

blood sample above the MTR, read counts were detected only for the brain biomarkers SNAP25 

(16,743 counts), RTN1 (5723), and GFAP (1035). In comparison, the average read counts for these 

biomarkers in brain tissue are 10-, 14-, and 52-fold higher than those observed in the blood sample. 

We also tested spinal cord and colon samples (N = 1 each), since they represented tissues with 

related physiological functions to the included brain and intestine target tissues. The expression 

results for these samples are provided in Table S2. For spinal cord, substantial expression of brain 

biomarkers SNAP25, RTN1, and GFAP were observed with little to no expression of GABRA1 

(gamma-aminobutyric acid (GABA) A receptor) and NEUROD6 (neuronal differentiation 6). 

Additional spinal cord samples need to be tested to determine if these three brain genes will be 

consistently expressed (and the other two brain ones not). For colon, expression of four (LCT, 

CCL25, DEFA5 and DEFA6 (defensing alpha 6)) of the five intestine biomarkers was observed. 

Expression of the brain- and intestine-specific biomarkers in the related spinal cord and colon tissues 

is not entirely unexpected. Attempts will be made in future iterations of the assay to try and 

distinguish related tissues with additional markers, although a combined intestine/colon or 

brain/spinal cord designation would also suffice for the assay’s purpose. 

3.2.5. DNA and Amplification Blanks 

The RNA sample preparation process used for this study includes DNase treatment of all total 

RNA extracts to remove any residual DNA that may be present in the sample. However, to confirm 

that DNA would not produce any amplification products that could confound RNA biomarker 

analysis and interpretation, genomic DNA was tested with the 46-plex assay. Five ng of genomic 

DNA isolated (from a menstrual blood sample) was run once during two different sequencing runs. 

In each instance, the total read counts for the DNA sample was below the MTR (0 and 522 total read 

counts), and confirmed the absence of potentially confounding DNA products. An amplification 

blank (i.e., nuclease-free water in place of sample) was also included in two different sequencing 

runs. The total read counts for both amplification blanks was also below the MTR, and therefore was 

not included in the downstream analysis. 
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3.3. Blind Study 

A set of six samples were prepared by analyst 2 and provided to analyst 1 to analyze as a single 

blind study. Analyst 1 had no knowledge of the sample type prior to conducting the analysis. The 

samples used as unknowns for the blind study were from individuals who had not been previously 

run with the 46-plex assay. The raw read count data was threshold-filtered, and the percent 

contributions from each tissue class were determined for each unknown sample. The percent 

contributions of biomarker tissue classes for each of the unknown samples as determined by the 

blinded analyst 1, the true source of the provided samples, and the blinded analyst’s conclusions are 

provided in Table 5. 

Table 5. Tissue Identification in a Six-Sample Blind Study Using the 46-plex Targeted RNA 

Sequencing Multiplex. 

 Unk 1 Unk 2 Unk 3 Unk 4 Unk 5 Unk 6 

% Contr.       

BRN 0 100 - 2 0 0 

LUN 0 0 - 0 0 0 

TRA 0 0 - 0 0 0 

LIV 0 0 - 0 0 100 

SKM 0 0 - 11 100 0 

HRM 0 0 - 0 0 0 

HRT 0 0 - 0 0 0 

KID 0 0 - 0 0 0 

ADI 0 0 - 86 0 0 

INT 0 0 - 0 0 0 

STM 100 0 - 1 0 0 

Analyst Conclusion Stomach Brain No tissue detected Adipose Skeletal Muscle Liver 

Actual Stomach Brain (poly A) Blank (water) Adipose Skeletal Muscle Liver (fetal) 

Unk = unknown.  

Unknown samples 1, 2, 4, 5, and 6 were all above the MTR. Unknown sample 3 was below 

MTR. Therefore, it was concluded that no organ tissue was detected in this sample, which was a 

correct assessment, since the sample was a blank (water). Unknown sample 1 had 100% of reads 

attributable to stomach biomarkers, and was correctly identified as a stomach sample. Unknown 

sample 2 had 100% of reads attributable to brain, and was correctly identified as a brain sample. The 

brain sample used was a poly-A enriched brain sample, which is different than the other brain 

samples used in the study, but this did not preclude facile inference of brain. Unknown sample 4 had 

11% of reads attributable to skeletal muscle biomarkers and 86% of reads attributable to adipose 

biomarkers. As a result of this pattern of biomarkers, the sample was correctly identified as adipose 

tissue. Unknown sample 5 had 100% of reads attributable to skeletal muscle biomarkers, and was 

correctly identified as a skeletal muscle sample. Unknown sample 6 had 100% of reads attributable 

to liver biomarkers, and was correctly identified as a liver sample. Interestingly, the liver sample 

used for unknown 6 was a fetal liver sample, indicating the ability of the assay to identify both fetal 

and adult liver samples. 

4. Discussion 

An MPS-based molecular organ tissue assay that can definitively identify internal organ tissue 

and could be used by any laboratory with forensic MPS capabilities will facilitate the investigation 

and prosecution of cases in which such potentially important contextual information about the 

organ tissue source of the DNA is present on a person, weapon, or location. Many of the cases 

impacted by such an assay include shootings or stabbings whereby the bullet or knife trajectory 

through the body, or the mere presence of particular internal organ tissue indicating proximity to, or 

involvement in, a significant trauma-producing event, might be demonstrated. The relative 

ease-of-use of such an assay by forensic molecular biologists will in time, once labs are up and 
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running with MPS technology, ‘democratize’ the ability to routinely identify organ tissue when 

necessary instead of having to rely on specialized, and not always readily available, cellular 

pathology services. 

We have made progress towards the development of such an assay with the prototype 46-plex 

MPS organ tissue ID system tested and evaluated in the present work. Further optimization, testing, 

and evaluation of the assay is necessary before it is ready for use in actual casework. This would 

include identifying suitably robust and highly expressed biomarkers (1) for other tissues such as 

spleen and spinal cord (to differentiate it from brain if possible), (2) with more specificity for 

stomach, adipose tissue, and trachea, and (3) to enable the identification of different regions of the 

brain. It will also be useful to specifically target and interrogate parts of the tissue-specific transcripts 

that possess coding region SNPs to help genetically identify the donor of the tissue, especially in 

situations involving mixtures of tissues from different individuals. The present work was carried out 

with extracted RNA from organ tissue samples obtained from commercial sources. The assay is 

currently in the process of being tested with total RNA isolated from in house bona fide tissue 

samples, including autopsied tissues. Subsequently, we will test the assay’s performance with mock 

casework samples in which organ tissue will be deposited on a variety of substrates and allowed to 

desiccate before analysis. 

Categorical inference for the presence of a particular organ tissue was carried out here using a 

simple graphic method and/or agglomerative hierarchical clustering [42]. However, the final assay 

will likely incorporate a more formal probabilistic approach using partial least squares and linear 

discriminant analysis (PLS-DA) in order to determine the posterior probabilities for each of the 

possible tissues [43]. 

It is possible that in the future, the organ tissue targets will be incorporated together with body 

fluid-specific biomarkers into a combined comprehensive tissue identification assay to identify both 

externally secreted body fluids and internal organ tissues. Such an assay would require 

approximately 100 or fewer targets, a number that is easily accomplished with current multiplex 

MPS technology. This combined assay would simply become another modular component of the 

forensic scientist’s MPS armamentarium to be employed whenever necessary, along with DNA 

typing. Commercial vendors are already making plans to incorporate RNA-based body fluid 

identification into their MPS products, and could be easily expanded to include organ tissue 

markers. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: List of 

Additional Biomarkers Tested and Rejected, Table S2: Specificity Amongst Body Fluids and Other Tissues. 

Figure S1: Intra-Class Biomarker Expression Differences within Target Tissues, Figure S2: Reproducibility. 
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