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Abstract: Hepatocellular carcinoma (HCC) is a complex disease with a multi-step carcinogenic
process from preneoplastic lesions, including cirrhosis, low-grade dysplastic nodules (LGDNs),
and high-grade dysplastic nodules (HGDNs) to HCC. There is only an elemental understanding
of its molecular pathogenesis, for which a key problem is to identify when and how the critical
transition happens during the HCC initiation period at a molecular level. In this work, for the first
time, we revealed that LGDNs is the tipping point (i.e., pre-HCC state rather than HCC state) of
hepatocarcinogenesis based on a series of gene expression profiles by a new mathematical model
termed dynamic network biomarkers (DNB)—a group of dominant genes or molecules for the
transition. Different from the conventional biomarkers based on the differential expressions of the
observed genes (or molecules) for diagnosing a disease state, the DNB model exploits collective
fluctuations and correlations of the observed genes, thereby predicting the imminent disease state
or diagnosing the critical state. Our results show that DNB composed of 59 genes signals the
tipping point of HCC (i.e., LGDNs). On the other hand, there are a large number of differentially
expressed genes between cirrhosis and HGDNs, which highlighted the stark differences or drastic
changes before and after the tipping point or LGDNs, implying the 59 DNB members serving as
the early-warning signals of the upcoming drastic deterioration for HCC. We further identified the
biological pathways responsible for this transition, such as the type I interferon signaling pathway,
Janus kinase–signal transducers and activators of transcription (JAK–STAT) signaling pathway,
transforming growth factor (TGF)-β signaling pathway, retinoic acid-inducible gene I (RIG-I)-like
receptor signaling pathway, cell adhesion molecules, and cell cycle. In particular, pathways related
to immune system reactions and cell adhesion were downregulated, and pathways related to cell
growth and death were upregulated. Furthermore, DNB was validated as an effective predictor of
prognosis for HCV-induced HCC patients by survival analysis on independent data, suggesting
a potential clinical application of DNB. This work provides biological insights into the dynamic
regulations of the critical transitions during multistep hepatocarcinogenesis.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third
leading cause of cancer-related deaths around the world [1]. Hepatocellular carcinoma is clinically
characterized by a high incidence rate and very poor prognosis [2]. Currently, it is generally accepted
that persistent hepatitis B virus (HBV) or hepatitis C virus (HCV) infections is the primary cause of
chronic liver disease leading to HCC [3]. Hepatitis C virus infection is the main risk factor in western
countries and Japan. Despite the progress made in numerous treatments, the survival rate of HCC
patients remains low because HCC is not easily detected prior to the advanced stage. Thus, it is of
utmost importance to clinically diagnose early HCC.

In recent years, the concept of multi-step human hepatocarcinogenesis has been well documented [4–6].
The liver injury induced by HCV produces a progressive inflammatory milieu that results in a cycle
of necrosis and regeneration leading to liver cirrhosis. Subsequently, cirrhosis patients often present
dysplastic nodules. These lesions which are confirmed as precancerous lesions of HCC are classified
as low-grade dysplastic nodules (LGDNs) and high-grade dysplastic nodules (HGDNs) based on
presence of cytologic and architectural atypia [7]. Although the morphology of these nodules is not
sufficient to support a diagnosis of malignant tumor, these nodules are closely correlated with the
occurrence of HCC. And, the HGDNs are more likely transformed into HCC than LGDNs based on
clinical, pathological, molecular genetics, and radiological assessments [8–11]. The sequence of HCC
initiation and progression is shown in Figure 1A, but the precise molecular events and their regulatory
networks that underlie HCC formation remain largely unknown.

Recently, a novel, model-free approach based on nonlinear dynamic theory, termed dynamic
network biomarkers (DNB), was developed to detect critical transitions or tipping points during the
progression of complex diseases [12,13]. Generally, a disease progression can be divided into three
stages, i.e., normal state, critical state (or the tipping point), and disease state (Figure 2A). After the
tipping point moves gradually from the normal state, the system drastically deteriorates to a disease
state. Specifically, DNB is a group of molecules (i.e., genes, RNAs, proteins, or metabolites) with
strongly collective fluctuations. Based on nonlinear dynamical theory, DNB appears only at the tipping
point of a homeostatic system and the molecules in DNB are strongly correlated and also fluctuated just
before the critical transition (i.e., the tipping point or pre-disease state). Quantitative criteria for the DNB
can be obtained by measuring the differential correlations and deviations of molecular expressions
rather than the differential expressions adopted in the traditional methods. In contrast to the “disease
diagnosis” by traditional biomarkers, DNB is for “disease prediction” (i.e., for the pre-disease diagnosis
as the early-warning signals of the disease state). If the state of a system passes over the tipping point
to the disease state, it becomes very difficult to reverse to the normal state even by advanced medical
treatment. Therefore, it is crucial to identify the pre-disease state so as to prevent the irreversible
deterioration of the disease. In addition to complex diseases, DNB theory had also been applied to
detect the tipping points in cell fate decisions and immune checkpoint blockade processes [14,15].

Given the difficulty to diagnose early HCC, it is a key problem to identify when and how the
tipping point or the critical transition happens at a molecular level. In this work, from stage-wise gene
expression profiles of HCC initiation (i.e., normal, cirrhosis, LGDNs, HGDNs, and very early HCC),
we identified the tipping point or pre-HCC state of HCV-induced HCC by DNB model. The obtained
DNB formed a specific module with 59 genes at the LGDNs stage to signal the tipping point just before
the drastic deterioration in HCC progression. We also partially revealed molecular mechanism on the
HCC initiation by functional analysis of DNB, which both provides biological insights into the dynamic
regulations of the critical transitions and opens a new way for the identification of therapeutic targets.
We further identified biological pathways responsible for the critical transition, including several
pathways in immune system reactions, cell growth and death, and cell adhesion. And furthermore,
DNB was validated as an effective predictor of prognosis for HCC patients by survival analysis on
independent data.
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Figure 1. The progression of hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) and
gene expression profiling. (A) A schematic diagram shows the HCV-induced HCC development. (B) A
three-dimentional image shows principal component analysis (PCA) for clustering 48 samples along
HCC development. Each small spot represents the principal component (PC) score along the top three
principle components for each sample. (C) Unsupervised hierarchical clustering of 48 tissue samples
using the Pearson correlation coefficient (PCC) distance. Similar to (B), low-grade dysplastic nodules
(LGDNs) samples are not grouped together but dispersed into cirrhosis and high-grade dysplastic
nodules (HGDNs) groups. n: Normal; ci: Cirrhosis; ld: Low-grade dysplastic nodules; hd: High-grade
dysplastic nodules; ve: Very early HCC. The colored bars mark clusters: black, normal; red, cirrhosis;
dark blue, HGDNs; light blue, Very early HCC. Dispersed LGDNs samples are highlighted in green.
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Figure 2. A brief mathematical model of dynamic network biomarkers (DNB) theory and its analysis
results. (A) Three stages during HCC progression. A normal state is a relatively healthy stage in which
the disease is under control, whereas the pre-HCC state or the critical state at the tipping point is the
limit of the normal state just before the transition of the disease. After the tipping point, the system
drastically deteriorates to the disease state. The DNB method can identify the pre-HCC state at the
tipping point by using the signals shown in (B). (B) Dynamic network biomarkers as a network signals
the emergence of the critical transition. When the system approaches the pre-HCC state, DNB members
satisfy the three conditions. The expression of DNB members become strongly fluctuate (high standard
deviations), and these DNB members are highly correlated, meanwhile, the correlations between DNB
members and other non-DNB members decrease. Here, edge width corresponds to the correlation
between a pair of nodes, and node color corresponds to the standard deviation of a node. (C) Scores of
candidate DNBs in every stage. The score in the LGDNs stage is obviously higher than other stages,
therefore, the molecule module in LGDNs is considered as the DNB and the LGDNs correspond to the
tipping point during the HCC progression.

2. Materials and Methods

2.1. Gene Expression Datasets

The gene expression profiles for DNB analysis were obtained from the Gene Expression
Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession ID GSE6764. And the
normalized expression values processed by marker aided selection (MAS) method were downloaded.
The dataset includes the expression profiles of 75 tissue samples (10 normal liver tissues, 13 cirrhosis
liver tissues, 10 LGDNs, 7 HGDNs, 8 very early HCC, 10 early HCC, 7 advanced HCC and 10 very
advanced HCC) from 48 patients with HCV infection representing the stepwise carcinogenic process
from preneoplastic lesions to HCC. The earlier five stages were selected to study pathogenesis of HCC.
In this dataset, probe sets without corresponding gene symbols were excluded during our analysis,
while multiple probe sets mapping to the same gene were averaged as the expression values. And for
the probe sets mapping to more than one gene, we took the first annotation.

As an independent dataset for validation, a cohort of HCC patients was subjected to survival
analysis. The dataset was deposited in International Cancer Genome Consortium (ICGC) database
(https://icgc.org/) provided by RIKEN (project code: LIRI-JP) including 260 donors [16]. Both the gene
expression profiles (FPKM data) and clinical-pathological information were downloaded. The data
from patients without HCV infection were not considered in this study.

2.2. Identification of Dynamic Network Biomarkers

It has been indicated that the progression of many chronical diseases (e.g., cancer) is not always
smooth but there is an abrupt change after a system state passes over a critical state or pre-disease state,

https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
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resulting in the drastic transition or serious deterioration to a disease state. However, in contrast to
the significant difference between normal state and disease state in terms of molecular concentrations
(or differential expressions of proteins or genes), there is generally no significant difference between
normal state and pre-disease state. Hence, traditional molecular biomarkers or methods may fail
to diagnose the pre-disease state. To overcome this problem, based on nonlinear dynamical theory,
the DNB method was proposed to detect the pre-disease state or critical state by exploring fluctuation
information of the measured omics data, rather than the information of traditional differential
expressions [12]. In brief, DNB is a group of molecules satisfying the following three requirements
when the system approaches the critical state:

Condition 1: The DNB members are closely correlated to each other, i.e., their average Pearson
correlation coefficient (PCCin) in an absolute value becomes very high.
Condition 2: The DNB members lose correlations with other non-DNB members, i.e., the average
PCC (PCCout) between DNB members and non-DNB members becomes very low.
Condition 3: The DNB members are highly fluctuated, i.e., their average standard deviation
(SDin) becomes very high.

Based on nonlinear dynamical theory, whenever DNB satisfying all above three criteria appears,
the system is at the tipping point. Therefore, the three conditions are considered as the generic properties
to detect early-warning signals of the pre-disease state or critical state. Note that DNB is a functional
module, which signals the imminent transition or deterioration from the normal state to the disease
state, and, therefore, is considered to be causally related to the initiation and progression of the
disease [12,13,17,18].

The three conditions can be combined into a single composite index (CI) to quantitatively detect
the DNB as follows:

CI =
SDin × PCCin

PCCout
(1)

where SDin and PCCin are the average standard deviation and average absolute PCC of all molecules
in DNB, corresponding to Conditions 3 and 1, respectively. The PCCout is the average absolute PCC
between molecules inside and outside of DNB, corresponding to Condition 2.

Assume that we collect molecular profiles of several samples (e.g., gene expression data) in each
stage t during the disease progression process (total T stages, i.e., t = 1, . . . , T). The detailed flow of the
computational algorithm for detecting DNB as well as the tipping point as follows:

1. For each stage t, calculate PCCs for all pairs of genes or molecules with respect to the samples.
The PCC at the 0.05 quantile of the descending order PCCs among all pairs was regarded as the
threshold for a high PCC at each stage.

2. For each stage t, select the genes with their standard deviations above 50% percentile based on
gene expression profiles. Then we get a module of molecules at each stage as Mt.

3. Hierarchically cluster the Mt to get smaller modules whose molecules have high correlations at
each stage. The distance used in clustering is defined as 1−|PCC|, and the cutoff is set based on
the significance test for PCC in step one. Denote the resulting modules at each stage t as Ct = {ct}.

4. For any module ct∈Ct, calculate its CI and find the module with the maximum index at each
stage as the candidate DNB.

5. Find the module with the maximum CI value among all T stages with T candidate DNBs.
This module is our DNB and the corresponding stage is the tipping point, at which the system is
considered at the pre-disease or critical state.

2.3. Samples Clustering

Unsupervised hierarchical clustering of all samples along development of HCC was performed
by the PCC distance based on differentially expressed genes (DEGs) assessed using one-way analysis
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of variance (ANOVA) (p < 0.01) [19]. Visualization of the Samples clustering by heat map was achieved
by using gplots package of R 3.2.5 (http://www.R-project.org/). Principal component analysis (PCA)
was performed using the prcomp function in the stats package from R software.

2.4. Functional Analysis

During functional enrichment analysis of genes, the online software Database for Annotation,
Visualization, and Integrated Discovery (DAVID 6.8, https://david.ncifcrf.gov/), clusterProfiler
package and signaling pathway impact analysis (SPIA) package of R were utilized to perform Gene
Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis [20,21]. Terms with p-values under 0.05 after correction for multiple hypotheses testing by
false discovery rate (FDR) were considered as significantly enriched. Ingenuity Pathway Analysis
(IPA) software 01-10 (Ingenuity Systems, Redwood City, CA, USA) was also used for pathways
enrichment analysis. Those genes with known gene symbols were uploaded into the software
and each gene symbol was mapped to its corresponding gene object in the Ingenuity Pathways
Knowledge Base. Significance threshold of Student’s t-test was set at 0.05. To further analyze the
functions of the DNB, STRING resource (https://string-db.org/) was utilized for protein–protein
interactions (PPIs) network analysis [22] and all networks were visualized by Cytoscape software
3.5.1 (http://www.cytoscape.org/). In the network, each gene was corresponded to a node and the
nodes connected by edges (lines). The degree of a gene was defined as the number of the first neighbor
genes linked to it within a network, which can assess the relative significance of a gene in the network.
Thus, in a network, the more the first neighbor genes a DNB member connects, the higher degree it
has and the more important it is.

2.5. Statistical Analysis

Two-tailed, unpaired Student’s t-tests were used for identifying DEGs between two stages.
Genes with FDR adjusted p < 0.05 were considered to be differentially expressed. Survival curves
were generated using Kaplan–Meier estimates and differences between the curves were evaluated by
log-rank test. Differences were considered as statistically significant when p < 0.05.

3. Results

3.1. Gene Expression Profiling

The generally chronologic sequence of HCV-induced HCC is shown in Figure 1A. Patients with
HCV infection first develop chronic hepatitis leading to liver cirrhosis, subsequently to LGDNs
and HGDNs, and finally to HCC. The samples with five stages including 10 normal liver tissues,
13 cirrhosis liver tissues, 10 LGDNs, 7 HGDNs, and 8 very early HCC in GSE6764 were studied
in this work. We compared the gene expression profiles of these 48 tissue samples using the PCA.
A three-dimensional PCA was performed, representing 42% of the data information (Figure 1B). Clearly,
almost all histological-stage samples were segregated from each other except LGDNs. The LGDN
samples were not clustered together and dispersed, suggesting their special stage. To further analyze
the correlation between the expression profiles and pathological stages, an unsupervised hierarchical
clustering based on 4340 DEGs was performed by the PCC distance and visualized via a heat map
(Figure 1C). Each group is distinguished by a different color. The first branch allowed the separation of
very early HCC from non-carcinoma samples. A sub-branch partitioned the non-carcinoma samples
between normal samples and preneoplastic lesions. In the precancerous cluster, the samples in cirrhosis
and HGDNs were clustered together respectively, while LGDNs (Figure 1C, in green) samples were
not grouped together but dispersed into cirrhosis and HGDNs groups. The result of the hierarchical
clustering was consistent with the three-dimensional PCA, which also implied that LGDNs was special
and different from other stages.

http://www.R-project.org/
https://david.ncifcrf.gov/
https://string-db.org/
http://www.cytoscape.org/
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3.2. Dynamic Network Biomarkers Theory Detects Low-Grade Dysplastic Nodules as the Tipping Point
during Hepatocarcinogenesis

Identifying the pre-HCC state at the tipping point during HCC progression is crucial for diagnosis
and treatment purpose (Figure 2A). A DNB model was developed by measuring fluctuations and
correlations of a group of molecules rather than their differential expressions, and this is the first
theoretical work to quantitatively detect the critical state only based on the observed data (see Materials
and Methods). The three criteria for DNB members are summarized in Figure 2B, i.e., at the tipping
point or pre-disease state, (i) the expressions of DNB members become highly fluctuated (high standard
deviations); (ii) these DNB members are highly correlated (high PCCs) and (iii) correlations between
DNB members and other non-DNB members disappear (low PCCs).

Based on the above three criteria, we conducted the DNB analysis to detect the pre-HCC state
(see Materials and Methods). Then, we got five candidate DNBs at five different stages and the scores
of the candidate DNBs were shown in Figure 2C. Clearly, the score of the candidate DNB at LGDNs
was significantly higher than the other four-time points, so this candidate DNB was considered as the
real DNB for signaling the drastic deterioration during the progression of HCC. Thus, the disease state
of HCC would present after the tipping point (i.e., LGDNs stage). It was consistent with previous
reports: after LGDNs stage, the disease was drastically deteriorated to HGDNs, which was considered
closest to HCC based on histopathological features and clinical follow-up studies with a high risk of
transformation [8,9]. The three parameters (SDin, PCCin, and PCCout) of obtained DNB were satisfied
with typical features of the critical state characterized by DNB (Supplementary Figure S1). The DNB
included 59 genes (Supplementary Table S1) and some of them have been reported as related to
HCC initiation. For instance, tripartite motif containing 21 (TRIM21) which has E3 ligase activity
and functions in the process of ubiquitination and is a potential tumor suppressor in HCC [23].
Interferon-stimulated gene 15 (ISG15) high expression is an intrinsic feature for HCC and a trigger for
tumorigenesis and metastasis [24,25]. The network of DNB was constructed based on high confidence
protein–protein interactions from the STRING database. As shown in Supplementary Figure S2,
strong functional relationships existed among DNB members.

3.3. The Key Biological Processes in which Dynamic Network Biomarkers are Involved

Based on DNB theory, the DNB subnetwork as the early-warning signal was strongly related to disease
development. For analyzing the mechanism of DNB at a network level during hepatocarcinogenesis,
we firstly performed the GO enrichment analysis and KEGG pathway enrichment analysis on 59 DNB
members (Supplementary Table S2).

Type I interferon signaling pathway, response to virus, and negative regulation of viral
genome replication were the most relevant biological processes, validating the significant correlation
between the disease evolution and the DNB [26,27]. Except for processes involving immune response,
protein polyubiquitination was also detected for playing a role in the critical transition to HCC,
which participates in many processes important for cellular homeostasis such as regulation of the cell
cycle, apoptosis, endocytosis, and many more [28,29]. In addition, at the KEGG pathway enrichment
level, the pathway of hepatitis C and viral carcinogenesis was among the top five, which directly
indicated the close correlation between the DNB and HCV-induced HCC. Meanwhile, many other
pathways related to immune system reactions, such as antigen processing and presentation,
the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor signaling
pathway, and the RIG-I-like receptor signaling pathway were listed in the results. The TGF-β signaling
pathway and JAK–STAT signaling pathway participating in regulating cell proliferation, differentiation,
cell migration, and apoptosis were also significantly enriched, which were dysfunctional processes
involved in fibrogenesis and progression of HCC [30–32]. Consistently, many canonical pathways
related to immune system reaction were enriched in the result of ingenuity pathway analysis (IPA)
(Supplementary Table S3). These pathways and biological processes played remarkable roles in early
carcinogenesis and partially bringing about the critical transition to HCC. Furthermore, many genes in
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the DNB took part in more than one pathway, such as human leukocyte antigen (HLA)-A, HLA-B,
HLA-C which were identified from six enriched KEGG pathways and these genes could affect the
cross-talking among different pathways.

3.4. Dynamic Network Biomarkers Play Key Functional Roles in Coordinating the Critical Transition

For further analyzing the mechanism behind the drastic deteriorations during hepatocarcinogenesis,
1208 DEGs before and after the critical period were picked up by Student’s t-test statistics with p < 0.05
after FDR correction. The largest amount of DEGs between different disease stages (i.e., cirrhosis and
HGDNs), highlighted the stark differences before and after the tipping point (Figure 3B), which implied
the drastic deterioration phenomena after LGDNs. The DNB members and DEGs had been linked and
correlated by the combined functional linkages from protein–protein interactions database STRING
and visualized by Cytoscape (www.cytoscape.org/) (Figure 3A). Three hundred sixty DEGs which
significantly changed (or inversed) from low (or high) at cirrhosis stage to high (or low) at HGDNs
stage were linked to 48 DNB members directly. Although only two DNB members, ring-box 1 (RBX1)
and interferon stimulated exonuclease gene 20 (ISG20) belonged to these 1208 DEGs, the DEGs were
significantly enriched in DNB-associated network with p < 0.01 by hypergeometric test (Figure 3A),
implying their functional relations, especially during the critical period.
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Figure 3. The DNB-associated network involving differentially expressed genes (DEGs) and dynamical
changes of DEGs before and after the critical state. (A) These series of networks visually demonstrate
the dynamic changes of DNB-associated network in terms of expressions before and after the critical
state. There are 360 DEGs linked to DNB in the network, which significantly change from low (or high)
at cirrhosis to high (or low) at HGDNs. Differentially expressed genes are significantly enriched in
DNB-associated network with p = 5.19 × 10−6 by hypergeometric test. (B) The numbers of DEGs
between any two stages during hepatocarcinogenesis. Genes with FDR adjusted p < 0.05 are considered
to be differentially expressed by Student’s t-tests. One thousand two hundred eight DEGs between
cirrhosis and HGDNs highlight the huge differences before and after the tipping point. (C) The top 10
DNB members with high degrees in the network.
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The degree of each DNB member was defined as the number of the first neighbor genes linked
to it within the network, which could assess the relative significance of the DNB member in the
network. The top ten DNB members with the highest degrees are listed in Figure 3C. The STAT1 acts as
a transcription factor mediating cellular responses to cytokines and growth factors, playing a pivotal
role in cell cycle and cell fate determination. Activation of STAT1 induces a variety of antiviral proteins
which inhibit HCV replication. The STAT1 has been reported to play a critical role in pathogenesis
of liver diseases [27,33,34]. β-2-microglobulin (B2M), HLA-C, and HLA-B are components of the
class I major histocompatibility complex (MHC), involved in the presentation antigens to the immune
system. The HCV core protein induces MHC class I upregulation to achieve immune evasion [35].
The MX1 protein is a GTPase that acts at an early step of the virus life cycle, prior to the genome
replication, by trapping viral components and preventing them from reaching their cellular destination.
Also, MX1 is reported to be related with HCV clearance during acute HCV infection and after interferon
therapy, and severity of liver disease [36,37]. Cluster of differentiation (CD) 47 is a cell surface molecule
that inhibits phagocytosis of cells which express it by binding to its receptor on macrophages and
other immune cells. The CD47 is expressed at different levels by normal and neoplastic cells. Targeting
CD47 is in the spotlight of immunotherapy in lung and breast cancer [38,39]. The degrees of whole
DNB members in the network are shown in Supplementary Table S4.

At a network level, DEGs were significantly enriched in DNB-associated network (Figure 3A)
which indicated the strong relationships between DNB and DEGs. Furthermore, we detected the
connection at a pathway level. The net perturbation accumulation (Acc) from the SPIA method [21]
was used to estimate the overall perturbation of direct upstream genes on one gene, which can be used
to detect the relative position between DEGs and DNB members. We set the fold changes of DEGs
and DNB members to SPIA. Among the 12 significantly enriched HCC-related pathways, we found
that the Acc of DNB members was 0 (except for the JAK–STAT signaling pathway), while the Acc of
DEGs varied by pathway, indicating the DNB members suffer less perturbation than DEGs do from
upstream genes (Supplementary Table S5). From this result, we could infer that a DNB was located
relatively upstream of these pathways. Then, we specifically mapped the DNB and DEGs to KEGG
pathways. We also found that in the HCC related pathways which contained genes from both DNB and
DEGs, the members of DNB stayed at relatively important places (Figure 4). For instance, several DNB
genes were located upstream of RIG-I-like receptor signaling pathway and many downstream genes
presented significantly altered expression. Some other DNB genes as receptors of pathways can
help signal transduction (e.g., B cell receptor signaling pathway and natural killer cell-mediated
cytotoxicity). And, STAT1 as a transcription factor made a significant impact on JAK–STAT pathway.Genes 2017, 8, 268    10 of 16 
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Figure 4. Hepatocellular carcinoma-related biological pathways with both DNB members and
DEGs. DNB members are placed at relatively important positions in the pathways (e.g., transciption
factors, receptors, and upstream regulators). DNB: dynamic network biomarkers; DEGs: differentially
expressed genes.

3.5. Biological Functions Influenced by Dynamic Network Biomarkers and Differentially Expressed Genes before
and after the Critical Transition

To further understand the types of pathways that were infected during the critical transition,
the SPIA method was used, which measured the actual perturbation on a given pathway under a given
condition [21]. Although most of the DNB members have no significantly altered expression before
and after the critical transition, the enriched pathways (p < 0.05) based on DNB and DEGs were similar.
Four overlaps and close crosstalk between DNB and DEGs could be detected (Table 1). The cytosolic
DNA-sensing pathway belonging to the enriched pathways by DNB included the nuclear factor-κB
(NF-κB) signaling pathway, which was in the pathways enriched by DEGs. This relation also existed
for cell adhesion molecules (CAMs) and tight junctions. Moreover, mitogen-activated protein kinases
(MAPK) signaling pathway belonging to the enriched pathways by DEGs was downstream of several
pathways enriched by DNB, e.g., RIG-I-like receptor signaling pathway, natural killer cell mediated
cytotoxicity, the JAK–STAT signaling pathway, and the TGF-β signaling pathway.

As shown in Table 1, pathways of both sides participated in the same biological functions and
their regulation direction was consistent. During the critical transition, biological function including
cell growth and death, immune response, and cell adhesion were significantly regulated. Pathways
involved in immune response and cell adhesion were downregulated, such as the JAK–STAT signaling
pathway, NF-κB signaling pathway, and RIG-I-like receptor signaling pathway. Meanwhile, pathways
related to cell growth and death, such as cell cycle, the Notch signaling pathway, and Hedgehog
signaling pathway were upregulated. These biological functions could be responsible for the critical
transition from preneoplastic lesions to HCC.
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Table 1. Significantly regulated pathways with known biological functions detected by DNB and DEGs.

Biological Function DNB DEGs (Cirrhosis vs. HGDNs)

Disease
Pathways in cancer (+) *

Pathways in cancer (+) *Viral carcinogenesis (+)
Hepatitis C (+)

Immune response

Antigen processing and presentation (−) * Antigen processing and presentation (−) *
Natural killer cell-mediated cytotoxicity (−) * Natural killer cell-mediated cytotoxicity (−) *
RIG-I-like receptor signaling pathway (−) T cell receptor signaling pathway (−)

Cytosolic DNA-sensing pathway (−)
FcγR-mediated phagocytosis (−)
FcεRI signaling pathway (−)
Chemokine signaling pathway (−)

Cell adhesion CAMs (−)

Focal adhesion (−)
ECM-receptor interaction (−)
Gap junction (−)
Tight junction (−)

Cell motility Regulation of actin cytoskeleton (−)

Cell growth and death Cell cycle (+)

Signal transduction

JAK–STAT signaling pathway (−) * JAK–STAT signaling pathway (−) *

TGF-β signaling pathway (+)

NF-κB signaling pathway (−)
Notch signaling pathway (+)
MAPK signaling pathway (−)
Hedgehog signaling pathway (+)

* Represents the pathway which was in the both significantly regulated pathways detected by DNB and DEGs.
(+) represents the pathway which was upregulated; (−) represents the pathway which was downregulated.
CAMs: Cell adhesion molecules; ECM: Extracellular matrix; FcεRI: Fragment crystallizable ε receptor;
FcγR: Fragment crystallizable γ receptor; JAK–STAT: Janus kinase–signal transducers and activators of transcription;
MAPK: Mitogen-activated protein kinase; NF-κB: Nuclear factor-κB; RIG-I: Retinoic acid-inducible gene I;
TGF-β: Transforming growth factor-β.

3.6. Prognostic Analyses of Dynamic Network Biomarkers

Dynamic network biomarkers played a key functional role during HCC onset and we found
that 43 of the 59 DNB members were differently expressed with p < 0.05 between normal tissues and
HCC tissues, indicating the efficacy of DNB members in HCC progression. To detect whether or not
DNB has potential in clinic practice, survival analysis was performed based on 122 HCV-induced
HCC patients with gene expressions and clinical information from the Liver Cancer–RIKEN, JP, Japan
(LIRI-JP) project in the ICGC database.

According to the expressions of genes in DNB, the HCV-induced HCC patients were separated
into two groups by k-means clustering, and group 2 displayed obviously poor survival, as shown
in Figure 5A. As a comparison, expression of the randomly chosen non-DNB genes were also used
to predict the prognostic difference, which failed to discover the biologically meaningful groups
(Figure 5B). Subsequently, we investigated the independent prognostic significance of each member in
DNB and found 14 of them could predict patient survival with p-values < 0.05. Figure 5C–F displays
four representative genes with significant survival values, and the others are shown in Supplementary
Figure S3.



Genes 2017, 8, 268 12 of 16

Genes 2017, 8, 268    12 of 16 

 

According to the expressions of genes in DNB, the HCV‐induced HCC patients were separated 

into two groups by k‐means clustering, and group 2 displayed obviously poor survival, as shown in 

Figure 5A. As a comparison, expression of the randomly chosen non‐DNB genes were also used to 

predict the prognostic difference, which failed to discover the biologically meaningful groups (Figure 

5B). Subsequently, we investigated the independent prognostic significance of each member in DNB 

and found 14 of them could predict patient survival with p‐values < 0.05. Figure 5C–F displays four 

representative genes with significant survival values, and the others are shown  in Supplementary 

Figure S3. 

 

Figure 5. Kaplan–Meier overall survival curves for the HCV‐induced HCC patients based on DNB. 

Illustration  of  prognostic  difference  between  the  two  groups  identified  by  the DNB  (A)  and  by 

Figure 5. Kaplan–Meier overall survival curves for the HCV-induced HCC patients based on DNB.
Illustration of prognostic difference between the two groups identified by the DNB (A) and by
random non-DNB (B). (C–F) The survival curves of patients with different expression levels of
representative DNB members. Patients were divided into low- and high-expression groups according
to the median value.

4. Discussion

In this study, we identified a critical stage (or pre-HCC) just before the crucial transition from
preneoplastic lesions to HCC based on multi-stage gene expression profiles during HCC progression
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by DNB theory. Unlike traditional molecular biomarkers which usually distinguish disease state from
normal state, DNB can detect the critical state just before the disease state to realize early. Although the
DNB method is a model-free approach, it generally requires multiple samples in each sampling period
so as to detect the tipping point. Based on the three conditions of DNB, LGDNs was revealed as the
tipping point during multistep hepatocarcinogenesis. It was consistent with reports in the literature
that found that after the LGDNs stage, the disease drastically deteriorated to HGDNs, which is the
closest manifestation to HCC, based on histopathological features and clinical follow-up studies with
a high risk of transformation [5,10,40]. Although each step in HCC progression could be a target for
prevention of HCC, intervention before the tipping point could be more practical.

It should be noted that the DNB subnetwork is not necessarily a set of driving factors [12],
but provides the early-warning signals of the pre-HCC state, thus predicting the upcoming HCC onset
before the occurrence of the disease phenotype based on its dynamic features. Moreover, DNB can also
be implemented to analyze the underlying molecular mechanisms of disease initiation at a network
level. The functional enrichment of GO biological processes and pathways validated the significant
correlation between hepatocarcinogenesis and the DNB. Most of the enriched terms were related to
inflammation, immune responses, cell proliferation, differentiation, cell migration, and apoptosis,
such as negative regulation of viral genome replication, viral carcinogenesis, the type I interferon
signaling pathway, RIG-I-like receptor signaling, TGF-β signaling pathway, and JAK–STAT signaling
pathway. These analyses indicate that these biological processes and pathways play a remarkable role
resulting in hepatocarcinogenesis, and the genes in DNB make them move to the disease phenotype
on HCC initiation.

In DNB, only two genes presented significantly differential expressions between cirrhosis and
HGDNs. However, 43 DNB members were differently expressed between normal tissues and HCC
tissues, implying the effectiveness of DNB members in HCC progression. The effect of DNB at HCC
onset depended not on their differential expressions, but on collective fluctuations according to DNB
theory. Thus, we detected the relation between DNB and DEGs during critical transition at a network
level. The DEGs before and after the tipping point were significantly enriched in the DNB-associated
network, further implying that DNB plays core functional roles in coordinating the critical transition
from preneoplastic lesions to HCC, which results in drastic deterioration phenomena after LGDNs.
We also found that in the HCC related pathways which contained genes from both DNB and DEGs,
several DNB members stayed at relatively important places, such as receptors, upstream regulators
and transcription factors. Hence, we hypothesized that the emergence of DNB modules made the
expression of those closely related genes change considerably and caused several vital biological
processes to become abnormal, ultimately leading to the drastic deterioration to the irreversible
HCC state. Although only two DNB members (RBX1 and ISG20) belonged to DEGs, the pathways
significantly regulated by DNB and DEGs were similar. During the critical transition, pathways in
immune response and cell adhesion were down-regulated, such as the JAK–STAT signaling pathway,
NF-κB signaling pathway, and RIG-I-like receptor signaling pathway. Meanwhile, pathways related
to cell growth and death, such as cell cycle, the Notch signaling pathway, and Hedgehog signaling
pathway were up-regulated. Moreover, it had been reported that immune response and cell adhesion
were upregulated in cirrhosis and downregulated on HCC initiation, and cell proliferation was
upregulated on HCC initiation [41]. It could be inferred that the HGDNs stage was very close to HCC
onset and demonstrated the LGDNs stage as the tipping point during hepatocarcinogenesis.

Furthermore, we performed survival analysis based on 122 HCV-induced patients for detecting
whether or not DNB has clinical application value. The results show that DNB is effective as
a clinical predictor of prognosis for HCV-induced HCC patients. In conclusion, DNB during
hepatocarcinogenesis can be used as early-warning signals of HCC, and this work also opens a new
way to understand the underlying mechanisms responsible for HCC initiation and provides a new
method to facilitate the identification of molecular targets. This method can also be applied to the
analysis of other diseases [42–44] in a similar manner.



Genes 2017, 8, 268 14 of 16

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/10/268/s1,
Figure S1: The criteria of DNB over all different stages of the HCC progression, Figure S2: The network of DNB,
Figure S3: Kaplan–Meier overall survival curves for the HCV-induced HCC patients based on the expression of
corresponding DNB members, Table S1: Detailed DNB members at LGDNs tipping point, Table S2: Functional
enrichment of GO biological processes and KEGG pathways for the identified DNB, Table S3: Pathways enrichment
analysis for DNB by IPA, Table S4: The degrees of DNB members in network.

Acknowledgments: This work was supported by the National Key Research and Development Program of
China (2017YFA0505500), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)
(XDB13040700), the National Program on Key Basic Research Project (2014CB910504), and the National Natural
Science Foundation of China (NSFC) (91439103, 91529303, 31771476 and 81471047).

Author Contributions: L.L. and L.C. conceived and designed the study; L.L., Z.J. and Y.D. performed the
analysis; L.C. contributed to the study design and overall supervision of the research project; L.L. wrote the paper.
L.C. helped to revise the paper. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lamarca, A.; Mendiola, M.; Barriuso, J. Hepatocellular carcinoma: Exploring the impact of ethnicity on
molecular biology. Criti. Rev. Oncolo./Hematol. 2016, 105, 65–72. [CrossRef] [PubMed]

2. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F.
Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.
Int. J. Cancer 2015, 136, E359–E386. [CrossRef] [PubMed]

3. Arzumanyan, A.; Reis, H.M.; Feitelson, M.A. Pathogenic mechanisms in HBV- and HCV-associated
hepatocellular carcinoma. Nat. Rev. Cancer 2013, 13, 123–135. [CrossRef] [PubMed]

4. Marquardt, J.U.; Seo, D.; Andersen, J.B.; Gillen, M.C.; Kim, M.S.; Conner, E.A.; Galle, P.R.; Factor, V.M.;
Park, Y.N.; Thorgeirsson, S.S. Sequential transcriptome analysis of human liver cancer indicates late stage
acquisition of malignant traits. J. Hepatol. 2014, 60, 346–353. [CrossRef] [PubMed]

5. Niu, Z.S.; Niu, X.J.; Wang, W.H.; Zhao, J. Latest developments in precancerous lesions of hepatocellular
carcinoma. World J. Gastroenterol. 2016, 22, 3305–3314. [CrossRef] [PubMed]

6. Kudo, M. Multistep human hepatocarcinogenesis: Correlation of imaging with pathology. J. Gastroenterol.
2009, 44 (Suppl. 19), 112–118. [CrossRef] [PubMed]

7. Sakamoto, M.; Effendi, K.; Masugi, Y. Molecular diagnosis of multistage hepatocarcinogenesis. Jpn. J. Clin. Oncol.
2010, 40, 891–896. [CrossRef] [PubMed]

8. Chang, O.; Yano, Y.; Masuzawa, A.; Fukushima, N.; Teramura, K.; Hayashi, Y. The cytological characteristics
of small cell change of dysplasia in small hepatic nodules. Oncol. Rep. 2010, 23, 1229–1232. [PubMed]

9. Serste, T.; Barrau, V.; Ozenne, V.; Vullierme, M.P.; Bedossa, P.; Farges, O.; Valla, D.C.; Vilgrain, V.; Paradis, V.;
Degos, F. Accuracy and disagreement of computed tomography and magnetic resonance imaging for the
diagnosis of small hepatocellular carcinoma and dysplastic nodules: Role of biopsy. Hepatology 2012, 55,
800–806. [CrossRef] [PubMed]

10. Lee, J.M.; Wong, C.M.; Ng, I.O. Hepatitis B virus-associated multistep hepatocarcinogenesis: A stepwise
increase in allelic alterations. Cancer Res. 2008, 68, 5988–5996. [CrossRef] [PubMed]

11. Ng, C.H.; Chan, S.W.; Lee, W.K.; Lai, L.; Lok, K.H.; Li, K.K.; Luk, S.H.; Szeto, M.L. Hepatocarcinogenesis of
regenerative and dysplastic nodules in Chinese patients. Hong Kong Med. J. 2011, 17, 11–19. [PubMed]

12. Chen, L.; Liu, R.; Liu, Z.P.; Li, M.; Aihara, K. Detecting early-warning signals for sudden deterioration of
complex diseases by dynamical network biomarkers. Sci. Rep. 2012, 2, 342. [CrossRef] [PubMed]

13. Liu, R.; Li, M.; Liu, Z.P.; Wu, J.; Chen, L.; Aihara, K. Identifying critical transitions and their leading
biomolecular networks in complex diseases. Sci. Rep. 2012, 2, 813. [CrossRef] [PubMed]

14. Richard, A.; Boullu, L.; Herbach, U.; Bonnafoux, A.; Morin, V.; Vallin, E.; Guillemin, A.; Gao, N.P.;
Gunawan, R.; Cosette, J.; et al. Single-cell-based analysis highlights a surge in cell-to-cell molecular variability
preceding irreversible commitment in a differentiation process. PLoS Biol. 2016, 14, e1002585. [CrossRef]
[PubMed]

15. Lesterhuis, W.J.; Bosco, A.; Millward, M.J.; Small, M.; Nowak, A.K.; Lake, R.A. Dynamic versus static
biomarkers in cancer immune checkpoint blockade: Unravelling complexity. Nat. Rev. Drug Discov. 2017, 16,
264–272. [CrossRef] [PubMed]

www.mdpi.com/2073-4425/8/10/268/s1
http://dx.doi.org/10.1016/j.critrevonc.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/27372199
http://dx.doi.org/10.1002/ijc.29210
http://www.ncbi.nlm.nih.gov/pubmed/25220842
http://dx.doi.org/10.1038/nrc3449
http://www.ncbi.nlm.nih.gov/pubmed/23344543
http://dx.doi.org/10.1016/j.jhep.2013.10.014
http://www.ncbi.nlm.nih.gov/pubmed/24512821
http://dx.doi.org/10.3748/wjg.v22.i12.3305
http://www.ncbi.nlm.nih.gov/pubmed/27022212
http://dx.doi.org/10.1007/s00535-008-2274-6
http://www.ncbi.nlm.nih.gov/pubmed/19148804
http://dx.doi.org/10.1093/jjco/hyq099
http://www.ncbi.nlm.nih.gov/pubmed/20603246
http://www.ncbi.nlm.nih.gov/pubmed/20372834
http://dx.doi.org/10.1002/hep.24746
http://www.ncbi.nlm.nih.gov/pubmed/22006503
http://dx.doi.org/10.1158/0008-5472.CAN-08-0905
http://www.ncbi.nlm.nih.gov/pubmed/18632655
http://www.ncbi.nlm.nih.gov/pubmed/21282821
http://dx.doi.org/10.1038/srep00342
http://www.ncbi.nlm.nih.gov/pubmed/22461973
http://dx.doi.org/10.1038/srep00813
http://www.ncbi.nlm.nih.gov/pubmed/23230504
http://dx.doi.org/10.1371/journal.pbio.1002585
http://www.ncbi.nlm.nih.gov/pubmed/28027290
http://dx.doi.org/10.1038/nrd.2016.233
http://www.ncbi.nlm.nih.gov/pubmed/28057932


Genes 2017, 8, 268 15 of 16

16. International Cancer Genome Consortium. International network of cancer genome projects. Nature 2010,
464, 993–998.

17. Sa, R.; Zhang, W.; Ge, J.; Wei, X.; Zhou, Y.; Landzberg, D.R.; Wang, Z.; Han, X.; Chen, L.; Yin, H. Discovering
a critical transition state from nonalcoholic hepatosteatosis to nonalcoholic steatohepatitis by lipidomics and
dynamical network biomarkers. J. Mol. Cell Biol. 2016, 8, 195–206. [CrossRef] [PubMed]

18. Li, M.; Zeng, T.; Liu, R.; Chen, L. Detecting tissue-specific early warning signals for complex diseases based
on dynamical network biomarkers: Study of type 2 diabetes by cross-tissue analysis. Brief. Bioinform. 2014,
15, 229–243. [CrossRef] [PubMed]

19. Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.;
Downing, J.R.; Caligiuri, M.A.; et al. Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring. Science 1999, 286, 531–537. [CrossRef] [PubMed]

20. Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. David: Database
for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, P3. [CrossRef] [PubMed]

21. Tarca, A.L.; Draghici, S.; Khatri, P.; Hassan, S.S.; Mittal, P.; Kim, J.S.; Kim, C.J.; Kusanovic, J.P.; Romero, R.
A novel signaling pathway impact analysis. Bioinformatics 2009, 25, 75–82. [CrossRef] [PubMed]

22. Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.;
von Mering, C.; et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and
integration. Nucleic Acids Res. 2013, 41, D808–815. [CrossRef] [PubMed]

23. Ding, Q.S.; He, D.; He, K.; Zhang, Q.; Tang, M.; Dai, J.F.; Lv, H.L.; Wang, X.C.; Xiang, G.A.; Yu, H.G.
Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor
prognosis of cancers. Tumor Biol. 2015, 36, 8761–8772. [CrossRef] [PubMed]

24. Li, C.; Wang, J.; Zhang, H.; Zhu, M.G.; Chen, F.F.; Hu, Y.F.; Liu, H.D.; Zhu, H. Interferon-stimulated gene
15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget 2014, 5,
8429–8441. [CrossRef] [PubMed]

25. Qiu, X.X.; Hong, Y.; Yang, D.R.; Xia, M.; Zhu, H.Z.; Li, Q.L.; Xie, H.L.; Wu, Q.F.; Liu, C.; Zuo, C.H. ISG15 as
a novel prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma. Int. J. Clin. Exp. Med.
2015, 8, 17140–17150. [PubMed]

26. Hou, J.; Zhou, Y.; Zheng, Y.; Fan, J.; Zhou, W.; Ng, I.O.; Sun, H.; Qin, L.; Qiu, S.; Lee, J.M.; et al. Hepatic RIG-I
predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell 2014, 25,
49–63. [CrossRef] [PubMed]

27. Yang, Y.; Zhou, Y.; Hou, J.; Bai, C.; Li, Z.; Fan, J.; Ng, I.O.L.; Zhou, W.; Sun, H.; Dong, Q.; et al. Hepatic ifit3
predicts interferon-alpha therapeutic response in patients of hepatocellular carcinoma. Hepatology 2017, 66,
152–166. [CrossRef] [PubMed]

28. Dawson, S.P. Hepatocellular carcinoma and the ubiquitin–proteasome system. BBA-Mol. Basis Dis. 2008,
1782, 775–784. [CrossRef] [PubMed]

29. Chen, Y.J.; Wu, H.; Shen, X.Z. The ubiquitin–proteasome system and its potential application in hepatocellular
carcinoma therapy. Cancer Lett. 2016, 379, 245–252. [CrossRef] [PubMed]

30. Dooley, S.; Ten Dijke, P. Tgf-beta in progression of liver disease. Cell Tissue Res. 2012, 347, 245–256. [CrossRef]
[PubMed]

31. Calderaro, J.; Couchy, G.; Imbeaud, S.; Amaddeo, G.; Letouze, E.; Blanc, J.F.; Laurent, C.; Hajji, Y.; Azoulay, D.;
Bioulac-Sage, P.; et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and
molecular tumour classification. J. Hepatol. 2017, 67, 727–738. [CrossRef] [PubMed]

32. Zhang, Q.; Gong, R.; Qu, J.; Zhou, Y.; Liu, W.; Chen, M.; Liu, Y.; Zhu, Y.; Wu, J. Activation of the Ras/Raf/MEK
pathway facilitates hepatitis C virus replication via attenuation of the interferon–JAK–STAT pathway. J. Virol.
2012, 86, 1544–1554. [CrossRef] [PubMed]

33. Zhu, Z.Z.; Di, J.Z.; Gu, W.Y.; Cong, W.M.; Gawron, A.; Wang, Y.; Zheng, Q.; Wang, A.Z.; Zhu, G.; Zhang, P.; et al.
Association of genetic polymorphisms in STAT1 gene with increased risk of hepatocellular carcinoma.
Oncology 2010, 78, 382–388. [CrossRef] [PubMed]

34. Chen, G.; Wang, H.; Xie, S.; Ma, J.; Wang, G. STAT1 negatively regulates hepatocellular carcinoma cell
proliferation. Oncol. Rep. 2013, 29, 2303–2310. [CrossRef] [PubMed]

35. Herzer, K.; Falk, C.S.; Encke, J.; Eichhorst, S.T.; Ulsenheimer, A.; Seliger, B.; Krammer, P.H. Upregulation of
major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1
impairs natural killer cell cytotoxicity. J. Virol. 2003, 77, 8299–8309. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/jmcb/mjw016
http://www.ncbi.nlm.nih.gov/pubmed/26993042
http://dx.doi.org/10.1093/bib/bbt027
http://www.ncbi.nlm.nih.gov/pubmed/23620135
http://dx.doi.org/10.1126/science.286.5439.531
http://www.ncbi.nlm.nih.gov/pubmed/10521349
http://dx.doi.org/10.1186/gb-2003-4-5-p3
http://www.ncbi.nlm.nih.gov/pubmed/12734009
http://dx.doi.org/10.1093/bioinformatics/btn577
http://www.ncbi.nlm.nih.gov/pubmed/18990722
http://dx.doi.org/10.1093/nar/gks1094
http://www.ncbi.nlm.nih.gov/pubmed/23203871
http://dx.doi.org/10.1007/s13277-015-3572-2
http://www.ncbi.nlm.nih.gov/pubmed/26055142
http://dx.doi.org/10.18632/oncotarget.2316
http://www.ncbi.nlm.nih.gov/pubmed/25238261
http://www.ncbi.nlm.nih.gov/pubmed/26770308
http://dx.doi.org/10.1016/j.ccr.2013.11.011
http://www.ncbi.nlm.nih.gov/pubmed/24360797
http://dx.doi.org/10.1002/hep.29156
http://www.ncbi.nlm.nih.gov/pubmed/28295457
http://dx.doi.org/10.1016/j.bbadis.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18778769
http://dx.doi.org/10.1016/j.canlet.2015.06.023
http://www.ncbi.nlm.nih.gov/pubmed/26193663
http://dx.doi.org/10.1007/s00441-011-1246-y
http://www.ncbi.nlm.nih.gov/pubmed/22006249
http://dx.doi.org/10.1016/j.jhep.2017.05.014
http://www.ncbi.nlm.nih.gov/pubmed/28532995
http://dx.doi.org/10.1128/JVI.00688-11
http://www.ncbi.nlm.nih.gov/pubmed/22114332
http://dx.doi.org/10.1159/000320521
http://www.ncbi.nlm.nih.gov/pubmed/20798561
http://dx.doi.org/10.3892/or.2013.2398
http://www.ncbi.nlm.nih.gov/pubmed/23588992
http://dx.doi.org/10.1128/JVI.77.15.8299-8309.2003
http://www.ncbi.nlm.nih.gov/pubmed/12857899


Genes 2017, 8, 268 16 of 16

36. Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses.
Annu. Rev. Immunol. 2014, 32, 513–545. [CrossRef] [PubMed]

37. Garcia-Alvarez, M.; Berenguer, J.; Jimenez-Sousa, M.A.; Pineda-Tenor, D.; Aldamiz-Echevarria, T.; Tejerina, F.;
Diez, C.; Vazquez-Moron, S.; Resino, S. Mx1, OAS1 and OAS2 polymorphisms are associated with the
severity of liver disease in HIV/HCV-coinfected patients: A cross-sectional study. Sci. Rep. 2017, 7, 41516.
[CrossRef] [PubMed]

38. Betancur, P.A.; Abraham, B.J.; Yiu, Y.Y.; Willingham, S.B.; Khameneh, F.; Zarnegar, M.; Kuo, A.H.;
McKenna, K.; Kojima, Y.; Leeper, N.J.; et al. A CD47-associated super-enhancer links pro-inflammatory
signalling to CD47 upregulation in breast cancer. Nat. Commun. 2017, 8, 14802. [CrossRef] [PubMed]

39. Weiskopf, K.; Jahchan, N.S.; Schnorr, P.J.; Cristea, S.; Ring, A.M.; Maute, R.L.; Volkmer, A.K.; Volkmer, J.P.;
Liu, J.; Lim, J.S.; et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of
small-cell lung cancer. J. Clin. Investig. 2016, 126, 2610–2620. [CrossRef] [PubMed]

40. Park, Y.N. Update on precursor and early lesions of hepatocellular carcinomas. Arch. Pathol. Lab. Med. 2011,
135, 704–715. [PubMed]

41. Hoshida, Y.; Fuchs, B.C.; Bardeesy, N.; Baumert, T.F.; Chung, R.T. Pathogenesis and prevention of hepatitis C
virus-induced hepatocellular carcinoma. J. Hepatol. 2014, 61, S79–S90. [CrossRef] [PubMed]

42. Liu, X.; Chang, X.; Liu, R.; Yu, X.; Chen, L.; Aihara, K. Quantifying critical states of complex diseases using
single-sample dynamic network biomarkers. PLoS Comput. Biol. 2017, 13, e1005633. [CrossRef] [PubMed]

43. Yu, X.; Zhang, J.; Sun, S.; Zhou, X.; Zeng, T.; Chen, L. Individual-specific edge-network analysis for disease
prediction. Nucleic Acids Res. 2017. [CrossRef] [PubMed]

44. Li, M.; Li, C.; Liu, W.X.; Liu, C.; Cui, J.; Li, Q.; Ni, H.; Yang, Y.; Wu, C.; Chen, C.; et al. Dysfunction of
PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to
hepatocellular carcinoma. J. Mol. Cell Biol. 2017, 26, 1–15. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev-immunol-032713-120231
http://www.ncbi.nlm.nih.gov/pubmed/24555472
http://dx.doi.org/10.1038/srep41516
http://www.ncbi.nlm.nih.gov/pubmed/28139728
http://dx.doi.org/10.1038/ncomms14802
http://www.ncbi.nlm.nih.gov/pubmed/28378740
http://dx.doi.org/10.1172/JCI81603
http://www.ncbi.nlm.nih.gov/pubmed/27294525
http://www.ncbi.nlm.nih.gov/pubmed/21631263
http://dx.doi.org/10.1016/j.jhep.2014.07.010
http://www.ncbi.nlm.nih.gov/pubmed/25443348
http://dx.doi.org/10.1371/journal.pcbi.1005633
http://www.ncbi.nlm.nih.gov/pubmed/28678795
http://dx.doi.org/10.1093/nar/gkx787
http://www.ncbi.nlm.nih.gov/pubmed/28981699
http://dx.doi.org/10.1093/jmcb/mjx021
http://www.ncbi.nlm.nih.gov/pubmed/28655161
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Gene Expression Datasets 
	Identification of Dynamic Network Biomarkers 
	Samples Clustering 
	Functional Analysis 
	Statistical Analysis 

	Results 
	Gene Expression Profiling 
	Dynamic Network Biomarkers Theory Detects Low-Grade Dysplastic Nodules as the Tipping Point during Hepatocarcinogenesis 
	The Key Biological Processes in which Dynamic Network Biomarkers are Involved 
	Dynamic Network Biomarkers Play Key Functional Roles in Coordinating the Critical Transition 
	Biological Functions Influenced by Dynamic Network Biomarkers and Differentially Expressed Genes before and after the Critical Transition 
	Prognostic Analyses of Dynamic Network Biomarkers 

	Discussion 

