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Abstract: Defective mini-puberty results in insufficient testosterone secretion that impairs the
differentiation of gonocytes into dark-type (Ad) spermatogonia. The differentiation of gonocytes
into Ad spermatogonia can be induced by administration of the gonadotropin-releasing hormone
agonist, GnRHa (Buserelin, INN)). Nothing is known about the mechanism that underlies successful
GnRHa treatment in the germ cells. Using RNA-sequencing of testicular biopsies, we recently
examined RNA profiles of testes with and without GnRHa treatment. Here, we focused on the
expression patterns of known gene markers for gonocytes and spermatogonia, and found that
DMRTC2, PAX7, BRACHYURY/T, and TERT were associated with defective mini-puberty and were
responsive to GnRHa. These results indicate novel testosterone-dependent genes and provide
valuable insight into the transcriptional response to both defective mini-puberty and curative
GnRHa treatment, which prevents infertility in man with one or both undescended (cryptorchid)
testes.

Keywords: gonocytes; Ad spermatogonia; RNA-sequencing; testosterone; LH; GnRHa-treatment;
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1. Introduction

During mini-puberty, which occurs between 30 and 90 days of postnatal life in male infants, the
substantial increase in gonadotropin releasing hormone (GnRH) secretion induces gonadotropin and
testosterone production [1-3]. As a consequence, transformation of gonocytes into adult dark (Ad)
spermatogonia takes place. Ad spermatogonia have a characteristic nuclear feature that distinguishes
them from the other germ cells (e.g., fetal, transient, and pale-type (Ap) spermatogonia) (Figures 1
and 2). Ad spermatogonia appear at three months of age and remain present in the testes for the rest
of an individual’s life. Therefore, the transformation of gonocytes into Ad spermatogonia, either
directly or through intermediate stages, is not simply another step in a succession of developmental
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stages, but a major transformation. It represents the switch from a fetal reservoir of stem cells
(gonocytes) to an adult reservoir of stem cells (Ad spermatogonia), from which all future germ cells
are generated [4-6]. Insufficient testosterone levels fail to direct gonocytes into the differentiation
process in boys with defective mini-puberty, resulting in both abrogated Ad spermatogonia
development and infertility [7-9].

IR/Ad+

N7\

Figure 1. Semi-thin sections of prepubertal cryptorchid testes. (A) Low infertility risk (LIR/Ad+) testes
and (B) high infertility risk (HIR/Ad-) testes. Atrophic Leydig cells (LC) and a severe reduction of
germ cells is a typical picture in cryptorchid boys with defective mini-puberty (Ad- group). Dark type
(Ad) spermatogonia, juvenile LC and germ cells (Sp) are indicated with arrow heads.

Cryptorchid boys, of a median age of eight years, who were treated with a gonadotropin-
releasing hormone agonist, showed post-puberty improved sperm concentrations, when compared
to an untreated control group [10]. The treatment resulted in increased luteinizing hormone (LH)
levels and regeneration of atrophic juvenile Leydig cells, and increased numbers of germ and Leydig
cells [11,12]. Worth noting, long term follow-up in a high infertility risk group of cryptorchid boys,
treated before the age of six, showed normal sperm concentrations in 86% of cases [13]. This result
strongly contrasts with those of a ‘surgery only” group, in which not a single patient had a normal
semen analysis and 20% suffered from azoospermia [13].

Though expression patterns may differ, development in both humans and mice appear to
involve a similar set of genes, which can also be used as markers to distinguish gonocytes and
spermatogonia (reviewed in [14,15]). Because the transition process is similar between both species,
animal models are commonly used, since the testicular tissues necessary to study this process in
humans are difficult to obtain.

ALPP/PLAP, EPSS8, KIT/c-KIT, NANOG, POU5F1 and TFAP2C/AP2y are gonocyte markers,
while ALPP, NANOG, POUS5F1, and TFAP2C encode transcription factors known to be important for
pluripotency. The differentiation of gonocytes into spermatogonia is associated with upregulation of
certain genes, including MAGEA4, DDX4 and TSPY1 [16,17], while POU5F1, ALPP, TFAP2C,
NANOG and KIT are downregulated [17-21]. Markers for self-renewal (ETV5, FOXO1, GFRA1, ID4,
RET, SALL4, UTF1, CHDIL, and TAF4B) or differentiation (DMRT1, ZBTB16/PLZF, FGF9, FGFR3,
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NANOS2, NANOS3, DAZ1, DAZL, SOHLH1, SOHLH2, NEUROGS3, and PHF13/SPOC1) can be used
to identify undifferentiated spermatogonia. However, the contribution of these proteins to the
testosterone-dependent transition as well as their mechanisms of action remain unclear.

In this study, we investigated the molecular events underlying human male germ cell
development, focusing on the testosterone-dependent transition from gonocytes to Ad
spermatogonia as well as the molecular impact of early GnRHa (Buserelin INN) treatment. Utilizing
testicular gene expression profiles from testes with insufficient testosterone secretion, before and after
GnRHa administration, and testes with completed mini-puberty, we identified the DMRTC2, PAX7,
BRACHYURY/T, and TERT genes to be associated with defective mini-puberty and responsive to
GnRHa.

2. Materials and Methods

2.1. Study Population and Biopsy Sample Collection

We selected 15 patients with isolated cryptorchidism, based on histological results, and divided
them into 2 groups. Seven belonged to the Ad- (lacking Ad spermatogonia) and 8 to the Ad+
(presenting Ad spermatogonia) group. Data from Ad- bilateral cryptorchid boys treated with GnRHa
(Buserelin) following the first orchidopexy (surgery) (4 patients) were retrieved from an ongoing
randomized study. Initial biopsies revealed no Ad spermatogonia, indicating defective mini-puberty
(Ad- group). The second testis was managed by orchidopexy and biopsied 6 months after the initial
surgery. Thus, results from 19 biopsies were compared. Patients were age and ethnicity matched.
RNA sequencing data from manually selected germ cell marker genes from our two previous studies
[22,23] were analyzed.

A cryptorchid testis is defined as a testis localized outside of the scrotum and incapable of being
brought into a stable scrotal position. All undescended testes in this study were located in the
inguinal region. Testicular biopsies were taken at the time of orchidopexy. This sample was then
subdivided, with one fragment fixed in glutaraldehyde for histological processing, while the other
one was immediately immersed in RNAlater (ThermoFisher Scientific, Waltham, Massachusetts,
USA) and stored at —25 °C until further processing (for RNA extraction and RNA- sequencing).

2.2. Histological Analyses

Biopsies were fixed in 3% glutaraldehyde in phosphate-buffered saline (PBS, pH 7.4) and then
embedded in Epon resin. Semi-thin sections (1 pm) were cut using a Reichert Om-U3 ultramicrotome
(Reichert AG, Vienna, Austria). Sections were mounted on glass slides, stained with 1% toluidine
blue, and examined under a Zeiss Axioskop light microscope (Carl Zeiss Microscopy Gmbh, Jena,
Germany) with an integrated photo-camera. Biopsies were histologically examined by two of the
authors (F.H. and D.D.), each with expertise in the interpretation of semi-thin sections of prepubertal
testes.

During histological analyses, at least 100 tubular cross sections per biopsy were evaluated, with
regard to their number and absence of Ad spermatogonia. In the prepubertal testes, Ad
spermatogonia were identified according to the criteria first published by Seguchi and
Hadziselimovic [24]. This type of germ cell has a typical halo in the nucleus, termed the rarefication
zone, and cytoplasm with a darker aspect in comparison to Ap or fetal spermatogonia.

2.3. RNA Preparation, Sequencing, Data Analyses, and RNA Expression Levels
The workflow from RNA isolation, through to purification, library preparation, sequencing,
data analyses, and expression level analyses, has been described previously [22,23].

2.4. Data and Differential Gene Expression Analyses

Determination of differentially expressed genes, statistical analyses and model design were
described previously [22,23]. Only genes with at least one read per million, in at least two samples,
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were included. p values and fold-changes were calculated for the treatment factor and differentially
expressed genes were defined as those displaying a false discovery rate (FDR) of less than 0.05 and
an absolute change in expression of at least two-fold. Raw data files are available at the Database of
Genotypes and Phenotypes (dbGaP) with the accession number phs001275.v1.p1.

2.5. Protein Interaction Network

Two gonocyte marker genes, 19 spermatogonial marker genes and 8 putative spermatogonia
genes, all of which are differentially expressed between the two groups (Ad- and Ad+), were used as
input to obtain the protein—protein interaction network using STRING version 10.0 [25].

2.6. Ethics Statement

Investigations were carried out in accordance with the Declaration of Helsinki of 1975, revised
in 2008. All aspects of this study were approved by the Institutional Review Board and the
Independent Ethics Committee of Vilnius University. Approval was also provided for research
involving the use of material (data records or biopsy specimens) that had been collected for non-
research purposes (Vilnius Regional Biomedical Research Ethics Committee, No. 158200-580-PPI-17,
11 June 2013).

3. Results
Here, we focused on selected marker genes for gonocytes and Ad spermatogonia (Table 1).

Table 1. Differential expression of gonocyte and spermatogonial marker genes involved in self-
renewal and differentiation of spermatogonial stem cells (SSCs). Absolute fold changes (logFC) and
false discovery rates (FDR) of differentially expressed genes in the Ad- vs. Ad+ group, and in the
GnRHa (Buserelin, INN) treated vs. untreated group are indicated. Absolute fold changes <2 are
highlighted in red; n.d.: not determined, n.s: not significant.

logFC FDR logFC FDR
Gene ID Name CellMarker 4 /ad+ _Ad-/Ad+ GnRHa _GnRHa
ALPP/PLAP Alkaline phosphatase, gonocytes n.d. n.d. n.s. n.s.
placental

Epidermal growth factor
EPSS8 receptor pathway gonocytes n.s. ns. -0.6181 0.0091
substrate 8

KIT proto-oncogene

KIT/c-KIT . . gonocytes n.s. n.s. -0.6307 0.0086
receptor tyrosine kinase
NANOG Nanog homeobox gonocytes n.s. n.s. n.s. n.s.
POUS5F1/0CT4 POU class 5 homeobox 1 gonocytes -3.0537 0.0059 n.s. n.s.
Transcription factor AP-2
TFAP2C/AP2y gamma/activating gonocytes -2.3598 0.0041 n.s. ns.
enhancer binding protein
2 gamma
Adhesion G protein-
ADGRA3/GPR125 ~ Cupled receptor A3/G- — undifferentiated n.d. n.d. -0.6740 00047
protein coupled receptor spermatogonia
125
f -
BCL6B B-cell CLL/lymphoma 6B undi erenhat.ed ns. n.s. n.s. ns.
spermatogonia
CDHI1 Cadherin 1 undlfferenhat.ed n.s. n.s. n.s. n.s.
spermatogonia
Chromodomain helicase undifferentiated
CHDIL DNA binding protein 1- . n.s. n.s. -0.6220 0.0068
. spermatogonia
like
T -
DAZ1 Deleted in azoospermia 1 Undifferentiated ) ;050 0.0038 n.s. ns.
spermatogonia
DAZL Deleted in azoospermia- undifferentiated 13031 0.0073 s, s,

like spermatogonia
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DDX4/VASA DEAD (Asp-GIu-{%la-Asp) undlfferentlatfzd 28616 0.0002 s ns
box polypeptide 4 spermatogonia
Doublesex and mab-3 ndifferentiated
DMRT1 related transcription factor v . n.s n.s -0.7838 0.0010
1 spermatogonia
ETV5 ETS variant gene 5 undifferentiated ;) ;g 00037  -04611  0.0490
spermatogonia
. undifferentiated
FGF9 Fibroblast growth factor 9 . -1.0605 0.0016 n.s n.s
spermatogonia
FGER3 Fibroblast growth factor undlfferentlatfzd 33079 0.0002 s ns
receptor 3 spermatogonia
undifferentiated
FOXO1 Forkhead box O1 . n.s n.s -0.6078 0.0097
spermatogonia
GFRAI GDNF family receptor undlfferentlatc.ad s s s s
alpha 1 spermatogonia
D4 Inhibitor of DNA binding undlfferentlatc'ad 15342 0.0011 ~0.5512 0.0322
4 spermatogonia
MACGEA4 Melanoma antigen family undlfferentlatc'ad 6591 0.0002 s s
A4 spermatogonia
NANOS? Nanos C'ZHC-type zinc undlfferentlatc'ad 40081 0.0003 s s
finger 2 spermatogonia
NANOS3 Nanos C'ZHC-type zinc undlfferentlatc'ad 6621 0.0043 nd. nd.
finger 3 spermatogonia
NEUROG3 Neurogenin 3 unchfferennatc'ad n.d. n.d. n.d. n.d.
spermatogonia
PAX7 Paired box 7 undifferentiated ;5909 00318 18592  0.0005
spermatogonia
PHF13/SPOC1 PHD finger protein 13 U erentiated ns ns ns ns
spermatogonia
undifferentiated
POU2F2/0CT2 POU class 2 homeobox 2 . n.s n.s 0.9912 0.0166
spermatogonia
RET Ret proto-oncogene unchfferennatc'ad -2.1556 0.0002 n.s n.s
spermatogonia
SALL4 Spalt-like transcription undlfferentlat'ed 19953 0.0087 ns s
factor 4 spermatogonia
Spermatogenesis and . .
differentiated
SOHLH1 oogenesis specific basic undiierentiate -2.9639 0.0002 ns n.s
. . spermatogonia
helix-loop-helix 1
Spermatogenesis and . .
SOHLH2 oogenesis specific basic undlfferennatfzd -1.3457 0.0105 ns n.s
. . spermatogonia
helix-loop-helix 2
T T brachyury transcription undlfferentlat‘ed 24149 0.0146 1.9341 0.0221
factor spermatogonia
TAF4B TATA box b}ndlng protein undlfferentlat‘ed s ns 0.8142 0.0008
(TBP)-associated factor 4B spermatogonia
TERT Telomeras.e reverse undlfferentlat‘ed 29152 0.0006 1.5623 0.0155
transcriptase spermatogonia
. undifferentiated
THY1 Thy-1 cell surface antigen . n.s n.s -0.9577 0.0011
spermatogonia
. undifferentiated
TSPANS Tetraspanin 8 . n.s n.s 1.1760 0.0154
spermatogonia
TSPY1 Testis spe.c1f1c protein, Y- undlfferentlat‘ed 24939 0.0003 ns s
linked 1 spermatogonia
UCHLI Ubiquitin C-terminal undlfferentlat‘ed 11036 0.0064 _1.0168 0.0003
hydrolase L1 spermatogonia
Undifferentiated . .
UTF1 embryonic cell undlfferentlatfzd n.d. n.d. n.d. n.d.
e spermatogonia
transcription factor 1
ZBTB16/PLZE Zinc .flnger al.’ld: BTB undlfferentlat‘ed s ns ns s
domain containing 16 spermatogonia
DMRTC2/DMRT7 DMRT-like family C2 spermatogonia? -1.6666 0.0004 1.0740 0.0199
EGR2 Early growth response 2 spermatogonia? -1.1786 0.0013 1.2310 0.0022
NRGI1 Neuregulin 1 spermatogonia? -0.9213 0.0136 0.7797 0.0099
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NRG3 Neuregulin 3 spermatogonia? -0.8806 0.0160 0.7177 0.0291
RNA binding motif
RBMY1B protein, Y-linked, family 1, ~ spermatogonia? -1.9326 0.0004 1.1699 0.0023
member B
RNA binding motif
RBMY1E protein, Y-linked, family 1, ~ spermatogonia? -1.9032 0.0020 1.3151 0.0010
member E
RNA binding motif
RBMY1] protein, Y-linked, family 1, ~ spermatogonia? -1.9522 0.0007 0.8343 0.0158
member J

Testis specific protein, Y-

TsPy4 linked 4

spermatogonia? -1.9952 0.0004 1.0862 0.0325

Gonocytes are defined as small cells originating from the primordial germ cells and localized
predominately in the center of the tubule and small typical mitochondria. They give rise to the fetal
spermatogonia, which are the largest germ cells in prepubertal testis (Figure 2). This type of germ
cells represents a population of so called undifferentiated spermatogonia. In the group of
undifferentiated spermatogonia we included also all transient forms of the germ cells, which evolve
into A spermatogonia [24].

Prenatal |

Fetal spermatogonia Transient spermatogonia

0. L

Prepuberty

Spermatocyte |. order

Figure 2. Male germ cell development. Differentiation of gonocytes into Ad spermatogonia is
highlighted as color change from green to red (figure adapted from Hadziselimovic and Herzog [26]).

3.1. Decreased Expression of Gonocyte and Spermatogonial Marker Genes in Testes with Altered Mini-
Puberty

Of the six gonocyte markers selected, POU5F1 and TFAP2C showed lower expression levels in
Ad- testes with testosterone deficiency (Table 1), and 19 of 34 spermatogonial marker genes showed
reduced expression in Ad- testes with insufficient testosterone levels. This group includes genes
involved in spermatogonial stem cell (SSC) self-renewal (ETV5, ID4, PAX7, RET, SALL4,
BRACHYURY/T, TERT) as well as mitotic-to-meiotic germ cell transition and differentiation (DAZ1,
DAZL, DDX4, FGF9, FGFR3, NANOS2, NANOS3, SOHLH1, SOHLH2, UCHLI) (Table 1). These results
confirm and extend previous GeneChips observations related to ID4, DAZ1, DAZL, DDX4, FGF9,
FGFR3, in testes exposed to defective mini-puberty [27,28] and emphasize their importance in
testosterone-dependent development into Ad spermatogonia. Additionally, the marker gene with
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unknown function (MAGEA4) was less expressed. Interestingly, 19 marker genes showed no
difference in expression (ADGRA3, ALPP, BCL6B, CDH1, CHD1L, DMRT1, EPS8, FOXO1, GFRAI,
KIT, NANOG, NEUROGS3, PHF13, POU2F2, TAF4B, THY1, TSPANS, UTF1, and ZBTB16). There were
no increased RNA levels observed for any of the gonocyte and spermatogonial markers in testes
without Ad spermatogonia (Table 1).

3.2. Gonocyte and Spermatogonial Marker Genes Respond to GnRHa Treatment

Out of the six gonocyte marker genes tested, EPS8 and KIT showed decreased RNA expression
after GnRHa treatment (Table 1). Neither gene was differentially expressed between testes, with or
without Ad spermatogonia. ALPP, NANOG, POUS5F1, and TFAP2C expression levels were similar
between the treated and untreated testes, and GnRHa treatment did not lead to upregulation of any
gonocyte markers.

Downregulation was observed in nine of 34 spermatogonial marker genes (ADGRA3, CHDI1L,
DMRTI, ETV5, FOXO1, ID4, TAF4B, THY1, UCHLI), and the expression levels of ETV5, ID4 and
UCHL1 were lower than in testes with Ad spermatogonia, indicating that GnRHa treatment further
decreased the expression of these genes (Table 1 and blue nodes in Figure 3). The expression of 20
spermatogonial markers showed no significant response to GnRHa treatment (Table 1). Five
spermatogonial genes (PAX7, POU2F2, BRACHYURY/T, TERT, TSPANS8) responded with an increase
in RNA expression. TSPANS was not differentially expressed between Ad- and Ad+ testes. PAX7,
BRACHYURY/T, and TERT were both less expressed in Ad- testes and upregulated following
GnRHa treatment (Table 1 and red nodes in Figure 3). These genes showed the strongest treatment
effect.

ETV5

e

_RET

D4 o/
eUCH|_1 ®
NRG3
e
DMRTC2 __ MAGEA4 __FGFR3
~ \_FGF9 —
—
N
__TFAP2C NRG1
N N—
RBMY1B
NRBMWE
~—~
TSPY4
_[NANOS2
RBMY1J
&, __TSPY1 A -
-
__ SOHLH2 ®
_ pAzl {
[ \
X | SOHLH1
&
J-\DAZ1 \__/DDX4
o R, o
X L
| NANOS3
N
PAX7
\l_POUSF1 P
N~
\ SALL4
@ERT &
p—

Figure 3. Protein interaction network of differentially expressed gonocyte and spermatogonial marker
genes in Ad-/Ad+ and after GnRHa treatment. Protein coding genes which up- or downregulated
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after GnRHa treatment are represented by red and blue nodes, respectively. STRING was used to
predict the protein interaction network [25] with a confidence cut-off of 0.4. Line-weight represents
the strength of data support between the predicted interactions.

Only a few of the marker genes downregulated in Ad- testes were then upregulated after
GnRHa treatment. Therefore, we searched for additional genes involved in testosterone-dependent
gonocyte-to-Ad spermatogonia transition (Supplementary Tables S1 and S2). We identified eight
additional candidates matching these criteria: DMRTC2, EGR2, NRG1, NRG3, RBEMY1B, REMY1E,
RBMY1], and TSPY4 (Table 1). A positive effect of GnRHa on EGR2, NRG1, POU2F2, RBMY1B,
RBMY1E and RBMY1] gene expression has been previously reported [22,23].

We next interpreted the 29 markers (including putative markers, and all of which are
differentially expressed between Ad-and Ad+) in the context of physical protein—protein interactions
and functional interactions, by integrating our data with information available in the literature
(STRING interaction network; http://string-db.org [25]). Markers responding positively to GnRHa
(red nodes in Figure 3) are mostly not connected to the non-responsive (grey nodes) key germ cell
markers such as FGF9, NANOS2, SOHLH1 and SOHLH?2, suggesting that, at the protein level,
GnRHa stimulates and activates alternative pathways in germ cells. This is consistent with our
previous observations of alternate GnRHa responsive genes in the hypothalamus-pituitary-gonadal
(HPG) axis [23]. Especially the markers, PAX7, BRACHYURY/T, EGR2, NRG1 and NRG3, seem to
represent an alternative pathway, activated by GnRHa and involved in gonocyte-to-Ad
spermatogonia transition. It should be noted that although not visualized by STRING,
BRACHYURY/T expression was reported to be partially influenced by POU5F1 [29], and to be a
downstream effector of GDNF/ETVS5 signaling to promote self-renewal [30].

4. Discussion

4.1. Luteinizing Hormone and Testosterone Deprivation Decreases Gonocyte and Spermatogonial Marker
Gene Expression

POUS5F1 encodes a transcription factor that plays a key role in both embryonic development and
stem cell pluripotency. In human fetal gonads, POU5F1 regulation differs in male and female germ
cells. While POU5F1 expression is gradually downregulated during gonocyte differentiation, in
human males, in females it is downregulated much earlier in fetal life, when the oocytes enter the
first meiotic prophase [31]. TFAP2C/AP2y expression is also gradually reduced during gonocyte
differentiation [32]. The reduced levels of POU5F1 and TFAP2C RNA, observed in Ad- testes
compared to Ad+ testes, lead to the assumption that they play an important role in LH and in the
testosterone-dependent gonocyte-to-Ad spermatogonia transition.

ETV5 encodes a glial cell-derived neurotrophic factor (GDNF)-inducible transcription factor,
regulating several genes known to be important for stem cell self-renewal, including BCL6B, LHX1,
CXCR4, BRACHYURY/T, and RET [30,33]. The fact that ETV5-null mice are infertile demonstrates the
importance of ETV5 for spermatogenesis [34]. Moreover, Wu and coworkers showed that
transplantation of SSCs in vivo following Brachyury/T silencing significantly reduces the number of
donor cell-derived colonies formed in recipient mouse testes, suggesting that BRACHYURY/T
functions as a part of GDNF/ETV5 signaling to promote self-renewal [30]. BRACHYURY/T is a
classical mesodermal marker, which is regulated by WNT and BMP signaling and expressed in early
mouse and human primordial germ cells [35,36]. Ad- testes showed reduced expression levels for
GDNEF signaling factors—ETV5, CXCR4, BRACHYURY/T, and RET—which indicates disturbed
GDNF-dependent self-renewal in the germ cells.

The pluripotency transcription factor, SALL4, was found to be localized to primordial germ cells
and most gonocytes in the prenatal and early postnatal testes, as well as in undifferentiated
spermatogonia of marmoset, human and mouse pubertal and adult testes [37,38]. SALL4 regulates
the expression of genes required for either self-renewal or differentiation, along with ZBTB16 and
DMRT1 [39].
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NANOS2 and NANOS3 are RNA binding proteins from the NANOS family. In mice, a Nanos3
deficiency results in the loss of primordial germ cells during migration and leads to sterility in male
and female mice [40]. In contrast, a Nanos2 loss results in decreased germ cell numbers and causes
infertility in only male mice [40]. Murine NANQOS2 activates a male-specific genetic program in
female germ cells by inhibiting meiosis, which suppresses the female pathway and induces male-
type differentiation [41]. Furthermore, Nanos2 expression is directly dependent on retinoic acid (RA)
for its downregulation and fibroblast growth factor 9 (FGF9) for its upregulation [42]. While Nanos2
expression is restricted to prenatal germ cells and a small number of spermatogonia in adult mice
[40,43], NANOS2 was reported to be more widely expressed in adult humans, including in
spermatocytes and round spermatids [44]. Therefore, Kusz and colleagues suggested that NANOS2
is not a suitable spermatogonial marker in adult men, although our results indicate that NANOS2
could be a potential marker for spermatogonia in young boys. SOHLH1 and SOHLH?2 together with
DMRT1 and DMRT6/DMRTB1 ensure that meiosis starts only when spermatogonia have reached the
appropriate differentiation step [45,46]. In summary, Nanos2, Sohlh1 and Sohlh2 all play substantial
roles in male germline development in mice, and our results strongly support the notion that they
fulfill the same role during mini-puberty in humans.

4.2. Genes with Augmented Levels after GnRH Treatment

Testosterone treatment of mouse satellite cells was shown to increase Pax7 expression [47],
supporting the present observation of decreased PAX7 expression in Ad- testes with low testosterone
levels as well as increased PAX7 expression in the testes of boys with increased testosterone levels,
following GnRHa treatment.

Lim and colleagues observed a predominant expression of the transcription factor POU2F2 in
Ad spermatogonia [48]. Although it has yet not been confirmed by other studies in humans whether
POU2EF2 is indeed a specific marker for Ad spermatogonia, our RNA expression results after GnRHa
treatment do support this finding.

High telomerase expression levels were found to be a hallmark of undifferentiated
spermatogonia using telomerase reverse transcriptase (I'ERT) reporter mice [49]. It was also shown
that telomere dysfunction caused undifferentiated spermatogonia depletion, which disrupted male
germ cell development. While high telomerase expression has yet not been demonstrated as a
hallmark for human spermatogonia, our differential expression data strongly support this possibility.
Atrophic testes had lower TERT expression levels relative to normal testes, leading to the suggestion
that telomerase plays a role in maintaining germ cell proliferation [50]. Furthermore, the TERT
mRNA expression level was shown to be effective in both classifying spermatogenesis disorders in
patients, and in predicting successful sperm recovery in azoospermia patients [51,52]. Androgens
were reported to enhance TERT expression in human primary hematopoietic cells [53]. Calado and
colleagues also demonstrated that the aromatase, CYP19, known to convert testosterone into
estradiol, is necessary for the testosterone-dependent increase in TERT expression. This supports
both, our finding of reduced TERT expression in lower testosterone Ad- testes, but also the observed
increased TERT expression in Ad- testes with increased testosterone levels after treatment.
Additionally, GnRHa treated testes showed significantly increased CYP19A1 gene expression levels
(absolute fold change logFCGnRHa + 2. 51) [23].

Neither testosterone, nor LH dependent gene expression of BRACHYURY/T, has yet been
reported. However, BRACHYURY/T was shown to bind to the promotor of the androgen receptor
(AR) and regulate AR expression in prostate cancer cells [54]. Increased BRACHYURY/T levels after
GnRHa treatment point towards its role in Ad spermatogonia formation. This is a new observation
which indicates this gene to be an important marker of Ad spermatogonia.

EGR2 and EGR3 are transcription factors used as spermatogonial markers, and EGR3
immunoreaction was reported in A single or paired germ cells in mice [55]. Furthermore, in mice
EGR3 expression is stimulated by RA and downregulated by KIT Ligand (KITLG) [56].
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The neuregulins, NRG1 and NRG3, are essential for the proliferation of spermatogonia and the
initiation of meiosis [57]. NRG1 and KITLG were also reported to activate alternative pathways
downstream of RA signaling in the germline, known to be essential for spermatogonial
differentiation [58]. Notably, after GnRHa treatment NRG1 was upregulated, while KITLG was
downregulated (logFCGnRHa — 1 10).

While mouse RBMY is expressed only in spermatogonia and early spermatocytes [59] and its
mRNA is not detected in meiotic or post-meiotic cells [60], human RBMY is expressed in
spermatogonia, spermatocytes, and round spermatids [61,62]. Therefore, it is notable that testes
lacking Ad spermatogonia showed significantly reduced RBMY RNA levels that increased strongly
after GnRHa treatment.

We also found a treatment related increase in DMRTC2/DMRT7 and TSPY4 gene expression.
DMRT7 mutant mice show meiotic arrest at the pachytene stage [63,64], and DMRT7 protein is
present in germ cells, localized to the male XY body during meiosis, and essential for male but not
female fertility in mice [64]. While murine DMRT7 was predominantly expressed in mid-to late-
pachytene spermatocytes and not detected in other germ cells including spermatogonia [64], our
results point to a role of DMRTC2/DMRT?7 in the early stage of human male germ cell development.
Although the function of TSPY4 is unknown, from sequence similarity it is assumed to be involved
in sperm differentiation and proliferation (UniProtKB/Swiss-Prot, TSPY4 HUMAN, POCV99).
Interestingly, TSPY was reported to bind to androgen receptor and AR variants, and thereby increase
the transactivation of the AR/AR-V7 target genes [65]. Whether testosterone-dependent TSPY4 does
also bind AR is unknown.

4.3. Combining Classical Physiological Information and Cutting-Edge Genomics Data into a Complete
Picture

Here, we report that testes with defective mini-puberty, with lower testosterone levels, and lack
of Ad spermatogonia had significant lower RNA levels for selected gonocyte and spermatogonial
marker genes (21 genes) relative to testes with Ad spermatogonia. We suggest that these differentially
expressed genes reflect molecular functions involved in the gonocyte-to-Ad spermatogonia transition
in humans during mini-puberty. Furthermore, we propose that higher expression levels of these 21
genes in testes presenting Ad spermatogonia are the result of testosterone-dependent expression,
since the lack of testosterone increase during mini-puberty causes developmental arrest. The finding
of four gonocyte markers and 15 spermatogonial marker genes that are not differentially expressed
argues against a dilution effect and supports the importance of these findings.

PAX7, BRACHYURY/T, and TERT responded positively to GnRHa treatment, and were markers
with reduced expression in Ad- testes. We suggest that the genes DMRTC2, EGR2, NRG1, NRGS3,
RBMY1B, RBMYIE, RBMY1] and TSPY4 represent potential new markers for spermatogonia in infant
testes, and that they may have key functions in the gonocyte-to-Ad spermatogonia transition.
Additionally, it seems likely that they are testosterone-responsive genes, given that GnRHa treated
boys were reported to show increased testosterone and LH levels.

The absence of an apparent GnRHa stimulation for 11 out of 16 genes remains unexplained, but
one possibility could be that they are epigenetically downregulated and therefore unresponsive to
GnRHa treatment at the mRNA level. Nonetheless, the absence of GnRHa-responsive key players
strengthens and supports the need for alternative pathways, for which we suggest the stimulation of
the transcription factors, EGR2, DMRTC2, PAX7 and BRACHYURY/T, the growth factor like proteins,
NRGI and NRG3, and the RNA binding and Y chromosome encoded genes, RBMY1B, REMY1E,
RBMY1] and TSPY4.

A clear pattern was not observed regarding the function of GnRHa-responsive and unresponsive
genes in germ cell differentiation or gene regulation. While some of the negatively regulated genes
are involved in self-renewal (ETV5 and ID4), others control the differentiation process (DMRT1 and
UCHL1). Similarly, genes that respond positively to GnRHa treatment are also involved in self-
renewal (PAX7 and BRACHYURY/T) and differentiation (EGR2, NRG1 and NRG3). The differentially
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expressed genes EGR2, ETV5, ID4, TSPANS [66,67] and T [30] are all regulated by FGF/GDNF
signaling, while FOXO1 [68], KIT [69], NANOS2 [41], NRG1 and NRG3 [57], and PAX7 [70]
expressions are regulated by RA. Activated genes of the alternative pathway (PAX7, BRACHYURY/T,
EGR2, NRG1, and NRG3) are therefore linked to both FGF/GDNF and RA signaling.

The balance between self-renewal and differentiation depends not only on the described
intrinsic factors, but also on extrinsic factors, including GDNF, RA, WNT and testosterone signaling.
Spermatogonial cell development in mice depends on testosterone-dependent secretion of GDNF by
peritubular myoid cells [71]. GDNF expression was significantly increased after GnRHa treatment
(logFCGnRHa + 1.47), suggesting expression induced by GnRHa. LH-dependent testosterone secretion
was reported to regulate SSC self-renewal by suppressing Wnt5a expression in mouse Sertolli cells
[72]. GnRHa treated testes showed reduced WNT5A expression (logFCGnRHa — (.86), suggesting a
similar testosterone-dependent regulation of SSC self-renewal, by Wnt5a suppression in humans.

5. Conclusions

Our differential gene expression profiling of gonocyte and spermatogonial markers, particularly
DMRTC2, PAX7, BRACHYURY/T, and TERT, highlights their importance for the development of Ad
spermatogonia with specific functionalities in self-renewal and differentiation, and following GnRHa
curative treatment. We suggest that GnRHa induced testosterone and a LH increase reconstitute self-
renewal properties of the Ad spermatogonial stem cells, and induce RA-responsive genes, such as
NRG1, NRG3 and PAX7, to help prepare them for commitment to differentiation.

Together with our earlier observations on the level of the HPG-axis of differentially expressed
genes in Ad- testes [22,23], we suggest that EGR4 and PITX1 controlled by
PROK2/CHD7/FGFR1/SPRY4 genes expression is responsible for LH deficiency, which in turn affects
the germ cell transitional effectors, FGFR3, FGF9, NANOS2, NANOS3, SOHLH1 and SOHLH?2. Upon
GnRHa treatment, however, alternative pathways are activated, including the LH-secretion
orchestrating factors, EGR2, EGR3, TAC1, TAC3, PROP1 and LEP, and the gonocyte-to-Ad
spermatogonia transition effectors, DMRTC2, T, PAX7, TERT, NRG1, NRG3, RBMY1B, RBMYIE and
RBMY1].

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/10/267/s1, Table
S1: Differentially expressed genes involved in the self-renewal of spermatogonial stem cells in HIR/LIR and after
GnRHa treatment, Table S2: Differentially expressed genes involved in the differentiation of spermatogonial
stem cells in HIR/LIR and after GnRHa treatment.
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