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Abstract: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder caused by
mutations in the NF1 gene, typically diagnosed during early childhood and character-
ized by significant phenotypic heterogeneity. Despite advancements in next-generation
sequencing (NGS), the diagnostic process remains challenging due to the gene’s complexity,
high mutational burden, and frequent identification of variants of uncertain significance
(VUS). This review explores the emerging role of artificial intelligence (Al) in enhancing
NF1 variant detection, classification, and interpretation. A systematic literature search
was conducted across PubMed, IEEE Xplore, Google Scholar, and ResearchGate to iden-
tify recent studies applying Al technologies to NF1 genetic analysis, focusing on variant
interpretation, structural modeling, tumor classification, and therapeutic prediction. The
review highlights the application of Al-based tools such as VEST3, REVEL, ClinPred, and
NF1-specific models like DITTO and RENOVO-NF1, which have demonstrated improved
accuracy in classifying missense variants and reclassifying VUS. Structural modeling plat-
forms like AlphaFold contribute further insights into the impact of NF1 mutations on
neurofibromin structure and function. In addition, deep learning models, such as LTC
neural networks, support tumor classification and therapeutic outcome prediction, particu-
larly in NFI-associated complications like congenital pseudarthrosis of the tibia (CPT). The
integration of AI methodologies offers substantial potential to improve diagnostic preci-
sion, enable early intervention, and support personalized medicine approaches. However,
key challenges remain, including algorithmic bias, limited data diversity, and the need
for functional validation. Ongoing refinement and clinical validation of these tools are
essential to ensure their effective implementation and equitable use in NF1 diagnostics.
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1. Introduction
NF1: Genetic and Clinical Overview

Neurofibromatosis type 1 (NF1), historically known as von Recklinghausen’s disease,
is a genetic disorder that affects multiple systems in the body. It follows an autosomal
dominant inheritance pattern and occurs in approximately 1 in every 2500 to 3000 live
births. The condition results from inactivating mutations in the NFI tumor suppressor gene,
located on chromosome 17q11.2, a region known for having one of the highest mutation
rates among single-gene disorders in humans [1]. The discovery of the NF1 gene in 1990
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marked a major breakthrough in understanding the molecular mechanisms underlying
this disorder [2]. The gene encodes neurofibromin, a large cytoplasmic protein that acts
as a GTPase-activating protein, functioning as a negative regulator of the Ras signaling
pathway. Under normal circumstances, neurofibromin accelerates the inactivation of Ras,
which helps to control cell growth and differentiation. However, when neurofibromin is
absent or non-functional due to NF1 gene mutations, Ras signaling becomes overactive,
leading to uncontrolled cell proliferation and tumor formation [3].

NF1 is characterized by a wide range of clinical features, with symptoms typically
appearing in early childhood. Among the most common and recognizable signs are der-
matological findings such as café-au-lait macules (CALMs), freckling in the axillary or
inguinal regions, and Lisch nodules, which are benign hamartomas found in the iris. In
addition to these skin manifestations, many children with NF1 experience cognitive and
developmental challenges, including learning disabilities, attention-deficit/hyperactivity
disorder (ADHD), and features associated with autism spectrum disorders. These neurode-
velopmental issues can significantly affect academic performance and social development.
Brain imaging often reveals unidentified bright objects (UBOs), particularly in areas such
as the basal ganglia and cerebellum, which may correlate with some of the neurological
difficulties observed in these patients [4].

Individuals with NF1, both children and adults, also face an increased risk of devel-
oping various types of tumors. Among the most common tumors of the central nervous
system are optic pathway gliomas, often classified as pilocytic astrocytomas. These typi-
cally arise during childhood or adolescence and may impact vision and endocrine function.
Other tumor-related complications include the development of neurofibromas, which are
benign peripheral nerve sheath tumors that frequently appear around puberty, and congen-
ital plexiform neurofibromas, which may be present earlier and have the potential to grow
extensively, sometimes leading to significant morbidity. There is also a risk of malignant
transformation of these tumors into malignant peripheral nerve sheath tumors (MPNSTSs),
which are highly invasive and difficult to treat. Beyond the nervous system, affected indi-
viduals may develop pheochromocytomas, gastrointestinal stromal tumors (GISTs), and, in
women, an increased risk of breast cancer. Additional complications often include skeletal
abnormalities such as scoliosis and tibial dysplasia, as well as cardiovascular issues like
renal artery stenosis and congenital heart defects, which are present in approximately 10%
of cases [4].

The impact of NF1 on life expectancy is considerable. A population-based study
from Finland reported a reduction in lifespan of about 16.5 years for men and 26.1 years
for women with NF1, primarily due to the elevated risk of both benign and malignant
tumors [5]. These findings emphasize the importance of early diagnosis and timely medical
intervention to manage complications and improve patient outcomes.

The diagnosis of NF1 has traditionally been based on clinical criteria established by the
National Institutes of Health in 1988. According to these guidelines, the diagnosis requires
the presence of at least two of the following features: six or more café-au-lait macules
larger than 1.5 cm after puberty or 0.5 cm before puberty, freckling in the underarm or
groin regions, two or more neurofibromas or one plexiform neurofibroma, an optic glioma,
two or more Lisch nodules, specific bone abnormalities, or a first-degree relative with
NF1. However, due to the considerable variability in how the disease presents, even
among affected members of the same family, and the potential overlap with other genetic
conditions, these diagnostic criteria were updated in 2021 to include molecular genetic
testing. The identification of a pathogenic NF1 variant is now considered an independent
diagnostic criterion, a revision particularly beneficial for diagnosing young children who
may present with limited clinical features or lack a known family history of the disorder [6].
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Integrating genetic testing into the diagnostic process enhances the accuracy of NF1
diagnoses and allows for early detection and individualized management strategies. Recog-
nizing pathogenic NF1 variants at an early stage enables proactive monitoring and timely
intervention, which can help reduce the severity of complications. Furthermore, genetic
testing provides valuable information for family planning and helps assess the risk of NF1
in relatives. The integration of molecular diagnostics has thus become a key element in
improving both the quality of life and clinical outcomes for individuals affected by NF1.

2. Challenges in Genetic Testing and Variant Interpretation

Genetic testing for NF1 presents several key challenges, largely due to the gene’s
complexity and the broad spectrum of pathogenic variants observed. The NF1 gene spans
approximately 350 kilobases and comprises 55 constitutive exons and 5 alternatively spliced
exons, encoding neurofibromin—a multifunctional protein involved in several critical
signaling pathways. This extensive genomic architecture, coupled with high mutational
heterogeneity and the absence of recurrent mutation hotspots, complicates the molecular
diagnosis of NF1 [7].

One of the primary difficulties in NF1 genetic testing is the gene’s notably high
spontaneous mutation rate, reported to be 10 to 100 times greater than that observed in
most other human disease-associated genes. This high mutation frequency contributes
significantly to the large proportion of sporadic cases, with up to 50% of affected individuals
showing no family history, as these mutations often occur de novo [8]. In many sporadic
cases, NF1 arises from postzygotic somatic mutations, leading to genetic mosaicism where
only a subset of cells carries the NF1 pathogenic variant. Somatic mosaicism can result in a
wide range of clinical presentations, from localized manifestations, such as segmental NF1,
to generalized but typically milder phenotypes resembling constitutional NF1. Detecting
mosaic mutations poses considerable challenges, particularly when these variants are
present at low variant allele frequencies (VAFs), especially in blood-derived DNA where
the proportion of mutant cells may be insufficient for standard diagnostic methods to detect.
Consequently, deep sequencing methods or analysis of DNA from other tissues—such as
affected skin regions or tumors like neurofibromas—is often necessary to identify low-
level mosaic variants. This approach is crucial for patients with atypical, segmentally
restricted, or localized NF1 phenotypes where standard blood-based testing may yield
false-negative results. It is estimated that approximately 10% of sporadic NF1 cases are
caused by postzygotic mutations either absent or present at very low levels in blood
lymphocytes, complicating both diagnosis and genetic counseling [9].

Traditional diagnostic approaches using Sanger sequencing, while historically pivotal,
are limited by their inability to detect large deletions, duplications, or low-level mosaicism
due to their sequential analysis of individual exons. Recent advances have established the
combination of next-generation sequencing (NGS) and multiplex ligation-dependent probe
amplification (MLPA) as the current gold standard for NF1 molecular diagnostics in clinical
practice. NGS allows high-throughput sequencing of all NF1 coding exons and exon-intron
boundaries, efficiently identifying point mutations, small insertions/deletions (indels),
and splice site alterations with significantly greater sensitivity than Sanger sequencing.
Additionally, NGS read-depth analysis can suggest the presence of copy number variations
(CNVs), although larger deletions or duplications may still escape detection by sequencing
alone [10]. To address these limitations, MLPA serves as a complementary method for the
accurate detection of multi-exon and whole-gene deletions or duplications, which account
for a substantial proportion of pathogenic NF1 variants. The integration of NGS and MLPA
thus ensures comprehensive mutational coverage, significantly enhancing diagnostic yield
and reliability. This combined strategy is particularly valuable in detecting mosaic mu-
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tations, where deep NGS coverage enables the identification of VAFs as low as 7%—a
sensitivity level unattainable by Sanger sequencing [10,11]. The practical application and
improved efficiency of this approach in clinical settings have been well-recognized, sup-
porting precise genetic confirmation, effective counseling, and appropriate risk assessment
for individuals and their families [12].

Yet, there are mosaic mutations with VAFs below 10% that often lead to false-negative
results when using standard NGS approaches. This is particularly relevant in cases such as
neurodevelopmental disorders (NDDs), where mosaic pathogenic variants may be present
at very low levels in peripheral blood and remain undetected by conventional genetic
testing. In these situations, high-depth NGS, performed through deep sequencing with
a customized mosaicism-specific panel and an optimized bioinformatic pipeline, offers a
significant advantage. This method provides ultra-deep coverage, with read depths exceed-
ing 10,000 and reaching up to nearly 70,000 x in some samples, allowing for the reliable
detection of low-frequency mosaic variants. As seen in the study by Kim et al. [13], this ap-
proach enabled the identification of pathogenic NF1 variants with VAF as low as 2.0% from
blood samples of patients with neurocutaneous features associated with NDDs—variants
that would likely have been missed by standard NGS or Sanger sequencing. Therefore,
high-depth NGS represents a necessary and highly effective diagnostic strategy for detect-
ing low-level somatic mosaicism, which plays a crucial role in the genetic architecture of
NDDs [13].

Furthermore, approximately 10% of loss-of-function NF1 variants affect RNA splicing
and are either undetected by conventional DNA-based diagnostic methods or are misinter-
preted by in silico splicing prediction tools. This highlights the critical need for RNA-based
diagnostic approaches, such as reverse transcription PCR (RT-PCR) and targeted RNA
sequencing (RNA-seq), which allow the direct evaluation of transcript-level alterations.
Since many splicing abnormalities result from deep intronic variants or cryptic splice site
activation—regions typically not covered by standard DNA sequencing—RNA analysis
provides essential functional evidence to identify pathogenic variants that might otherwise
remain undetected. The ability to directly observe aberrant splicing events at the RNA
level enables a more accurate characterization of variant effects, thereby improving the
sensitivity and diagnostic precision for NF1 [14].

In a recent study by Koster et al., the diagnostic utility of targeted RNA-seq was
demonstrated through the application of a specific enrichment and analysis workflow
designed to systematically assess splicing events across the NF1 transcript. This approach
uses either hybridization-based or PCR-based RNA capture methods, followed by sequenc-
ing and quantitative assessment of splice junction usage. Central to this workflow is the use
of QURNASs (Quantitative Enrichment of Aberrant Splicing Events in Targeted RNAseq), a
bioinformatic tool developed to calculate enrichment scores (ERS) for splicing events. This
approach is particularly valuable since many splice-disrupting variants in NF1, especially
those located deep within intronic regions, cannot be reliably predicted by DNA sequence
analysis alone [14].

Despite their advantages, RNA-based diagnostic assays present several inherent
limitations. A major challenge is the tissue-specific expression of alternative splice isoforms,
as NF1 transcripts display variable splicing patterns depending on the cellular environment.
Additionally, RNA is inherently less stable than DNA and more prone to degradation,
requiring meticulous handling and processing to preserve transcript integrity for accurate
analysis [14].

From a technical perspective, RI-PCR, while commonly used for splice variant valida-
tion, has notable limitations. It is labor-intensive, prone to amplification bias, and often
constrained by primer design, which may limit analysis to small genomic regions. Its low



Genes 2025, 16, 560

50f28

scalability also makes it less suited for detecting complex or unexpected splicing events,
frequently requiring repeated primer redesign. In contrast, targeted RNA sequencing offers
broader transcript coverage and quantitative assessment of splicing dynamics, providing a
more robust and scalable approach for identifying splice defects [14].

Integrating RNA-seq with DNA variant analysis greatly improves diagnostic accuracy
by functionally confirming suspected splice-altering variants and aiding in the reclassifica-
tion of variants of uncertain significance. RNA analysis also reveals allelic imbalance and
transcript destabilization caused by premature termination codons, offering insights into
mechanisms like nonsense-mediated mRNA decay. These findings underscore the critical
role of RNA-level investigation in identifying pathogenic processes that may be missed by
DNA analysis alone [14].

In conclusion, RNA-based diagnostic approaches, particularly targeted RNA-seq,
serve as an essential complement to DNA sequencing in the molecular diagnosis of NF1.
While both methodological and biological limitations must be considered, the functional
data obtained through RNA analysis significantly improve variant interpretation, increase
diagnostic yield, and contribute to a deeper understanding of the molecular pathology
underlying NF1 [14].

Adding further complexity to NF1 genetic testing is the gene’s extensive allelic hetero-
geneity, with over 3600 distinct pathogenic variants reported. These so called variants of
uncertain significance (VUS), are not confined to coding regions but can also occur deep
within intronic sequences, affecting splicing and making detection more challenging [7].
Approximately 46% of NF1 patients carry extremely rare or private mutations—unique
to individuals or families—complicating variant interpretation, especially for missense
or in-frame indel variants where clinical impact remains uncertain [15]. Another signif-
icant factor is the presence of CNVs, including single-exon deletions and whole-gene
deletions, which account for approximately 5-11% of NF1 cases. These “NFI microdele-
tions” are often associated with more severe phenotypes, known as NFI microdeletion
syndrome [16]. Therefore, a comprehensive genetic testing protocol, including both DNA-
and RNA-based methods such as cDNA sequencing, analysis of exon—intron boundaries,
and CNV assessment, is necessary to maximize diagnostic yield. Despite such approaches,
the interpretation of VUS remains a persistent hurdle, limiting the detection rate for clearly
pathogenic variants in some cases [17].

It is now well-established that diagnosing NF1 can be challenging, particularly in
children and young adults who may present only with dermatological signs and lack other
characteristic features or a known family history. In such cases, relying solely on clinical
criteria may be insufficient, especially for individuals with milder phenotypes that do
not meet the classical diagnostic thresholds. Certain pathogenic NF1 variants, such as
p-Met992del and those affecting Arg1809 or Met1149, are known to cause these atypical or
mild presentations, where symptoms may appear later in life. Therefore, genetic testing
plays a critical role in confirming the diagnosis, even when clinical signs are limited [17,18].

However, a negative genetic test result reduces—but does not completely rule out—the
possibility of constitutional NF1, highlighting the need to continuously improve the sen-
sitivity and accuracy of molecular diagnostics. In this context, emerging technologies,
including artificial intelligence (Al)-based tools, are already contributing to enhancing
variant interpretation, improving the detection of mosaicism, and supporting clinical
decision-making.

Despite the diagnostic value of genetic testing, testing is sometimes deferred, particu-
larly in mild or non-specific cases, with a watchful waiting approach often being adopted
until further clinical features develop. This reflects broader concerns, including financial,
ethical, and psychological considerations [17]. Nevertheless, with the advancement of
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Al-driven approaches, there is growing potential to better guide such decisions, offer-
ing predictive insights and personalized recommendations that may help clinicians and
patients navigate these complex choices.

3. Al in NF1 Variants
3.1. Variant Interpretation Tools

The increasing use of high-efficiency sequencing technologies such as NGS has signifi-
cantly enhanced the detection of genetic variants in disease-causing genes (DCGs), includ-
ing the NF1 gene. This advancement, driven largely by progress in bioinformatics, improves
not only our understanding of the genetic basis of complex disorders, but also paves the
way for more accurate diagnoses, earlier interventions, and targeted therapeutic strategies.

The interpretation of genetic variants remains a major challenge in clinical genomics,
particularly given the high volume of rare or novel variants uncovered by NGS. Bioin-
formatic and deep learning tools have become essential for prioritizing these variants
and assessing their potential pathogenicity, especially in the context of diseases where
experimental validation is often unfeasible. A central strategy in variant interpretation
involves integrating multiple layers of computational predictions, including variant effect
on protein function, RNA splicing, evolutionary conservation, and genome-wide functional
potential. The combination of these complementary approaches increases the reliability of
pathogenicity assessments and helps overcome the inherent limitations of any single pre-
dictive method. At the core of coding variant interpretation are functional effect predictors
designed to assess the pathogenicity of missense mutations. Among these, REVEL (Rare
Exome Variant Ensemble Learner) and EVE (evolutionary model of variant effect) represent
two of the most advanced approaches. REVEL employs an ensemble machine learning
framework that integrates outputs from individual predictors such as SIFT, PolyPhen-2,
MutationAssessor, and GERP, achieving superior accuracy in classifying rare missense
variants with low allele frequencies [19]. In contrast, EVE introduces an unsupervised
deep generative modeling strategy that leverages evolutionary sequence data across thou-
sands of species. By modeling the distribution of naturally occurring protein sequence
variation, EVE quantifies evolutionary constraints without the need for clinical labels,
producing predictions that perform on par with high-throughput functional assays [20].
Together, REVEL and EVE exemplify two complementary philosophies in variant effect
prediction—one based on ensemble supervised learning, and the other on fundamental
evolutionary modeling.

In addition to coding sequence changes, splicing disruption is a well established mech-
anism of genetic disease, making the accurate prediction of splice-altering variants essential
for comprehensive genetic diagnostics. SpliceAl, a deep learning-based model, offers
state-of-the-art performance by assessing both proximal and distal effects on donor and
acceptor splice sites across broad genomic contexts. Unlike traditional computational tools
which rely on motif-based or statistical models and are limited to canonical splice regions,
SpliceAl provides a transcript-wide view, enabling the detection of both canonical and
non-canonical splice-altering variants [21]. In a study evaluating 285 experimentally con-
firmed NF1 variants with experimentally validated splicing outcomes, SpliceAl achieved
a sensitivity of 94.5%, specificity of 94.3%, and an AUC of 0.975, highlighting its accu-
racy and clinical utility. Its superior performance effectively identifies a broader range of
splice-altering variants, including those beyond typical splice site boundaries. This makes
SpliceAl a powerful in silico tool for a transcript-wide assessment of potential splicing
alterations, significantly improving the identification of non-obvious pathogenic variants
improving the interpretation of NF1 variants and reducing reliance on labor-intensive RNA
analyses in clinical diagnostics [22].
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Another important dimension in variant interpretation is the evolutionary conserva-
tion of genomic positions, as regions under strong purifying selection are more likely to
harbor functionally important elements. The comparative statistical Genomic Evolutionary
Rate Profiling (GERP) score quantifies this conservation by measuring the reduction in
observed substitutions relative to neutral expectations across multiple species. While GERP
effectively identifies long-term constrained sites, recent population genetic models high-
light its reduced power in detecting functional elements that experience rapid evolutionary
turnover, particularly within non-coding regions [23]. This limitation emphasizes the need
to integrate conservation data with additional functional annotations.

To extend variant interpretation beyond protein-coding regions, genome-wide func-
tional annotation tools such as GenoCanyon provide valuable insights. GenoCanyon
applies a subset of Al called unsupervised statistical learning, to integrate diverse genomic
annotations to estimate the functional potential of each nucleotide across the genome [24].
Importantly, it enables the prediction of functional non-coding regions, which are increas-
ingly recognized as significant contributors to disease.

Although numerous tools have been developed for variant interpretation, representa-
tive examples such as REVEL and EVE for coding variant effect prediction, SpliceAl for
splicing prediction, GERP for conservation analysis, and GenoCanyon for genome-wide
functional annotation illustrate how integrating diverse strategies can enhance diagnos-
tic yield and improve variant prioritization in genetic diagnostics. The integration of
these complementary tools not only enhances diagnostic yield but also provides a scalable
approach to variant interpretation in the era of genomic medicine.

Building on these developments, Al contributes by effectively processing and inter-
preting the large volumes of data generated, supporting more precise variant analysis,
pattern recognition, and informed clinical decision-making.

The interpretation of these variants, particularly missense changes, remains a major
clinical challenge in NF1. Nearly half of the NF1 variants listed in ClinVar, a central
repository for clinically annotated variants, are classified as VUS, with missense mutations
constituting the vast majority [25]. This ambiguity is especially problematic in NF1, where
diagnosis is often suspected early in life, yet canonical features may not be fully present
and de novo mutations are frequent [26,27].

To address this challenge, recent efforts have turned to Al and machine learning-based
computational predictor, the so-called “metapredictors”, to support the pathogenicity
assessment of missense variants. These algorithms are typically trained on large, curated
datasets and incorporate a variety of features including protein structure, evolutionary
conservation, and biochemical properties [28]. In this context, a recent study by Accetturo
et al. [29] assessed the predictive performance of three Al-driven tools—VEST3, REVEL,
and ClinPred—specifically applied to the interpretation of NF1 missense variants extracted
from ClinVar [29].

These tools, although developed independently and based on different underlying
models, were evaluated for their ability to reclassify VUS into two main categories: either
as likely benign or likely pathogenic. Each predictor employs a machine learning-based
scoring system but differs in methodology and feature integration: VEST3 (Variant Effect
Scoring Tool, version 3) operates by combining various types of data, including evolution-
ary conservation, protein sequence features, and structural properties, using supervised
machine learning models trained on well-characterized pathogenic and benign variants
from the Human Gene Mutation Database (HGMD). This allows VEST3 to evaluate how
likely a given amino acid substitution is to disrupt protein function based on the biological
context of the residue [30]. REVEL, as already mentioned, follows a similar ensemble
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approach but distinguishes itself by explicitly integrating the output of multiple individual
prediction tools, focusing on maximizing accuracy for rare missense changes [19].

ClinPred also employs machine learning but was trained directly on ClinVar data,
using a set of variants with high-confidence clinical classifications. It combines evolutionary
conservation, protein functional annotations, and outputs from other tools, along with
clinical evidence, to predict variant pathogenicity [28]. While all three predictors use
overlapping types of information, their training datasets, feature selection, and algorithmic
approaches differ, leading to variability in their outputs. This ensemble methodology
aims to improve prediction accuracy by leveraging diverse sources of variant-related
information, though as the study shows, gene-specific fine-tuning remains necessary for
optimal performance.

It is worth noting that when the numerical scores produced by these tools for the
same mutations were compared, the correlation between them was relatively weak. This is
likely because each tool focuses on different features of the mutations, such as evolutionary
conservation, protein structure, or physicochemical properties. However, by combining the
specific scoring thresholds from these tools, the authors were able to reduce the proportion
of VUS from 88% to approximately 52%. This approach ultimately improved the distinction
between likely benign and likely pathogenic variants, with minimal misclassification,
particularly in protein domains associated with clinical phenotypes [29].

Despite these promising results, several limitations were noted. First, while the risk
of training set circularity (i.e., overlap between training and testing data) was carefully
evaluated and found to be minimal, it cannot be entirely excluded. Nevertheless, the
datasets used in the training of VEST3, REVEL, and ClinPred were largely distinct from the
NF1-specific ClinVar entries evaluated in this study. Such separation minimizes the risk of
data circularity and strengthens the validity of the performance assessment conducted in
this work. Additionally, while these tools provide valuable probabilistic estimates, they do
not replace clinical judgment or the need for experimental validation [29].

These results contribute to a growing body of evidence supporting the use of cus-
tomized computational models to enhance the clinical utility of genetic data, particularly
in complex, multisystem disorders such as NF1.

3.2. Predicting Pathogenicity of NF1 Variants

Predicting the pathogenicity of NF1 variants is essential for identifying clinically rele-
vant mutations and guiding precision medicine efforts. In this context, a recent study by
Chen et al. [31] applied a comprehensive Al-driven computational framework to predict
the pathogenicity of missense mutations in the NF1 gene, with a specific focus on cysteine
substitutions. These residues play a vital role in protein folding, disulfide bond forma-
tion, and maintaining the structural stability of neurofibromin. Thus, mutations affecting
cysteine sites can disrupt protein function and are likely to contribute to the molecular
mechanisms underlying NF1 [31,32].

The study began by collecting and curating mutation data from major genomic
databases, including UniProt, the Human Gene Mutation Database (HGMD), and ClinVar.
To ensure clinical relevance, the authors applied stringent filters based on the Ameri-
can College of Medical Genetics and Genomics (ACMG) guidelines [33], retaining only
variants classified as pathogenic or likely pathogenic. This process retained only those
variants classified as pathogenic or likely pathogenic and resulted in a curated set of
204 non-synonymous variants, with a particular focus on cysteine-related mutations. This
high-confidence dataset served as the foundation for the study’s comprehensive in silico
pathogenicity assessment [31].
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To predict the functional impact of these variants, the study utilized PredictSNP2, an
ensemble classifier that integrates several established algorithms including SIFT, PolyPhen-1
and -2, SNAP, PANTHER, PhD-SNP, MAPP, and MAGPIE. PredictSNP2 outputs a normal-
ized score between 0 and 1, with higher scores indicating greater probability of pathogenic-
ity. By leveraging the strengths of multiple predictive models, this approach increases the
robustness and accuracy of the pathogenicity predictions. The scoring system takes into
account evolutionary conservation, biochemical properties, and structural features of the
amino acid changes, providing a comprehensive evaluation of each variant [31].

In addition to pathogenicity scoring, the study explored the biophysical consequences
of the mutations using the iStable platform, which integrates iMutant 2.0 and MUpro. Both
tools are based on machine learning techniques, including support vector machines (SVMs)
and neural networks, to estimate the change in protein stability (AAG) caused by the
mutations. These predictions provided critical insights into how amino acid substitutions
might destabilize the neurofibromin protein, with lower stability often correlating with
impaired protein function. This layer of analysis is essential, as even mutations that do
not completely eliminate protein production can cause pathogenic effects by reducing
structural integrity or altering functional domains [31].

Evolutionary conservation analysis was also performed using ConSurf, which applies
a Bayesian algorithm to multiple sequence alignments to determine conservation scores for
each residue [34]. The evolutionary significance was further analyzed using Align-GVGD,
an Al tool that combines scores to assess how different the substituted amino acids are from
the original residues across evolutionary time. This analysis reinforces the pathogenicity
predictions by highlighting mutations that occur at evolutionarily conserved sites where
functional tolerance to variation is low [31].

To evaluate the structural consequences of the predicted pathogenic mutations,
the study employed AlphaFold3, a deep learning-based tool for high-accuracy three-
dimensional protein structure prediction. By modeling both the wild-type and mutant
neurofibromin structures, the researchers were able to visualize how specific mutations
altered protein folding and chemical bonding [35]. Additionally, the HOPE bioinformatic
server was used to complement these findings by providing physicochemical annotations
of the mutations, such as changes in residue size, charge, and hydrophobicity, further
enhancing the understanding of their potential impact on protein stability [31,36].

The study also incorporated the SNPeffect database to predict the potential phenotypic
consequences of the mutations. SNPeffect integrates a suite of traditional computational
biology tools, including TANGO (aggregation propensity), WALTZ (amyloidogenic poten-
tial), LIMBO (chaperone-binding likelihood), and FoldX (protein stability effects), offering
a multi-dimensional analysis of how each variant might influence protein behavior at
the cellular level. This additional layer of analysis is particularly valuable for identifying
mutations that may contribute to disease through mechanisms like protein misfolding or
aggregation, which are common features in genetic disorders [31].

Through this comprehensive computational approach, Chen et al. [31] successfully
prioritized potentially pathogenic NF1 mutations, particularly those affecting cysteine
residues, without the immediate need for costly and time-consuming laboratory exper-
iments. Notably, the study identified three variants—C379R, R1000C, and C1016Y—as
consistently exhibiting high pathogenicity scores and reduced protein stability. Among
these, R1000C was distinguished by a marked increase in aggregation propensity, a charac-
teristic associated with protein misfolding disorders. In contrast, C379R and C1016Y did
not significantly affect aggregation potential, and none of the three mutations were found
to alter amyloid-forming capacity or chaperone-binding behavior [31].
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These findings highlight the utility of Al-driven analyses in enhancing the molec-
ular understanding of NF1 mutations and highlight potential avenues for therapeutic
intervention. The detailed characterization of cysteine mutations opens the door for the
development of mutation-specific treatments, such as small molecules that restore protein
stability or gene therapy approaches designed to correct the underlying genetic defects.
These strategies exemplify the potential of precision medicine to tailor treatments according
to individual genetic profiles, moving beyond symptomatic management toward targeting
the molecular basis of the disease [31].

Despite the strengths of this Al-powered approach, the authors acknowledge impor-
tant limitations. The study relies exclusively on computational predictions, which, while
powerful, require experimental validation to confirm their biological relevance. Further-
more, the clinical significance of these variants across diverse patient populations remains
to be fully explored. Future research should aim to bridge the gap between computational
findings and clinical outcomes, incorporating experimental assays and patient-derived
data to better understand how specific mutations influence the wide phenotypic spectrum
observed in NF1. Additionally, the study did not fully account for population-specific
genetic variation, which may affect the generalizability of the results. Expanding future
analyses to include genetically diverse cohorts will be essential for improving the clinical
relevance of pathogenicity predictions [31].

In conclusion, this study demonstrates the power of Al-based computational tools
in predicting the pathogenicity of NF1 mutations and provides a valuable framework for
guiding experimental studies and therapeutic development. This integrative approach
represents an important step toward precision medicine for NF1, offering new insights into
mutation prioritization, functional assessment, and targeted intervention strategies.

Another Al tool that stands out in the prediction of NF1 variant pathogenicity is
DITTO (Deep Integration for Transcriptomic and Translational Omics), developed by
Mamidi et al. [37]. What differentiates DITTO from other models is its unique ability to
consider the different conformational states of proteins when evaluating the functional
impact of genetic variants. Rather than relying solely on static structural models, DITTO
integrates dynamic structural information, capturing how mutations may affect a protein’s
behavior across its various functional forms, such as open and closed conformations. This
is particularly relevant for complex proteins like neurofibromin, where structural flexibility
plays a key role in protein function and regulation [37].

It was trained on a large-scale dataset of over 696,000 variants from ClinVar, each
annotated with functional and frequency data through OpenCravat [38]. The architecture of
DITTO integrates multi-level biological information, including genomic sequence context,
transcriptomic characteristics, and proteomic structure predictions, to classify variants as
either pathogenic or benign. In addition, DITTO incorporates other tools like machine
learning SAAFEC-seq and statistic bioinformatics Site Directed Mutator to assess protein
stability changes (AAG), alongside AlphaFold-based modeling to evaluate the structural
effects of mutations on neurofibromin [37].

When applied to the NF1 variant dataset from the Leiden Open Variation Database
(LOVD), the model accurately classified 877 out of 901 variants (98%) as either pathogenic
or benign, performing an exceptionally high classification accuracy. Importantly, beyond
binary classification, DITTO enables mechanistic insights into the functional consequences
of specific mutations by analyzing their effects on protein stability in different conforma-
tional states. The identified NF1I variant p.G848R, involving the substitution of glycine with
arginine at position 848, was predicted to be deleterious due to its destabilizing effect on
the protein. The model revealed that while the mutation caused only a mild reduction in
stability in the closed conformation of neurofibromin, it led to a significantly greater loss
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of stability in the open conformation, which is crucial for certain aspects of the protein’s
activity [37].

This example illustrates how the dynamic nature of protein structures can signifi-
cantly influence the pathogenic potential of genetic variants—a factor often missed by
traditional static models. By capturing these context-dependent effects, DITTO adds an
important layer of biological interpretation, particularly for variants located in regulatory
or flexible regions of NF1. Furthermore, by evaluating how mutations impact the transition
between different structural states, the model contributes valuable mechanistic insights
into genotype—phenotype relationships, which are especially relevant in disorders like NF1
that exhibit variable expressivity [37].

Despite its strengths, DITTO has certain limitations. Like all computational tools, its
predictive performance relies on the quality and completeness of the input data. Although
trained on a large and diverse dataset, potential biases may still exist, particularly for
variant types or ethnic populations that are underrepresented. Additionally, while DITTO
provides important functional predictions, experimental validation remains essential to
confirm these computational findings and to inform clinical decision-making. The model’s
applicability may also be limited for variants located outside well-characterized regions
where structural or functional annotations are lacking [37].

4. Clinical Pipelines
4.1. Tumor Detection

NF1 is commonly characterized by the formation of tumors, primarily affecting the
nervous system, especially the peripheral nerves. However, due to the wide variability
in clinical presentation and the progressive nature of many tumors, achieving an early
and accurate diagnosis remains a major challenge. Acknowledging this issue, in 2023,
Bidollahkhany et al. [39] developed a deep learning model, GENIE-NF-AI, aimed at distin-
guishing tumors associated with NF1 by using gene expression data from the AACR GENIE
(American Association for Cancer Research Genomics Evidence Neoplasia Information
Exchange) project [40]. Their study included 71,572 tumor samples, each described by
973 gene expression features that indicate the activity levels of specific genes. These gene
expression profiles provide valuable insights into whether a tumor may be linked to NF1,
even in cases where clinical symptoms have not yet fully developed [39].

To construct this predictive model, the researchers employed a liquid neural network
(LTC) architecture, incorporating two Long Short-Term Memory (LSTM) layers—deep
learning components particularly well-suited for processing sequential biological data
such as gene expression patterns. The model was trained using standard deep learning
techniques, including the use of dropout layers to reduce the risk of overfitting and learning
rate scheduling to optimize model performance. Additionally, clinical variables such as
patient age and sex were included in the analysis to control for potential confounding
factors, thereby enhancing the model’s robustness and generalizability [39].

The performance of the model was rigorously evaluated using several key metrics,
including accuracy, precision, recall, and Fl-score. The model achieved a remarkable
test accuracy of 99.86%, with perfect precision and recall values of 1.00 for identifying
NF1-related tumors. This indicates that the model successfully detected all NF1-associated
tumors without incorrectly classifying any non-NF1 tumors as NF1-positive. Compared
to previous machine learning approaches and traditional clinical diagnostic methods, this
deep learning model demonstrated statistically significant improvements in classification
performance (p < 0.001) [39].

Beyond achieving high predictive accuracy, the researchers prioritized the interpretabil-
ity of their model, recognizing that this is crucial for clinical application where understand-
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ing the basis of predictions is essential. Since the core deep learning approach functions
as a black-box model, they employed explainable Al techniques to enhance transparency.
Specifically, they used glass-box models (such as logistic regression) and added explainable
layers on top of the black-box model to better interpret the model’s decisions. Through this
approach, they were able to analyze the contribution of individual gene expression features
to the model’s predictions. This interpretability analysis confirmed that the model’s out-
puts were driven by meaningful biological signals rather than random patterns in the data,
significantly improving its potential utility and trustworthiness in clinical settings [39].

Despite these promising results, the study acknowledges several important limitations.
First, while the model achieved excellent performance in detecting NF1-related tumors, its
ability to correctly identify non-NF1 tumors was lower, reflecting reduced recall for this
group. This limitation could restrict the model’s application in broader tumor classification
scenarios. Second, although the dataset was large, it was based on pre-labeled retrospective
data, which may introduce bias and limit the model’s generalizability to real-world clinical
environments where data can be incomplete or more heterogeneous. Additionally, the
binary classification approach (NF1 vs. non-NF1) does not capture the full diversity of
NF1 tumor subtypes, nor does it consider patients with borderline or overlapping genetic
syndromes. Finally, while the model focused exclusively on gene expression data, the
inclusion of other biological data types—such as proteomic, epigenomic, or imaging data—
could further enhance its predictive power and relevance for clinical decision-making in
the future [39].

This year, Bonetti et al. [41] introduced RENOVO-NF1, an Al-powered tool specifically
developed to interpret NF1 missense variants. Adapted from the earlier RENOVO algo-
rithm [42], a random forest-based model for general variant interpretation, RENOVO-NF1,
was retrained using NF1-specific datasets to improve accuracy for this gene. A key feature
of the model is the Pathogenicity Likelihood Score (PLS), which reflects the proportion of
decision trees that classify a variant as pathogenic. To evaluate performance, the authors
applied a “database archaeology” approach, distinguishing between variants consistently
classified over time (“stable”) and those initially labeled as uncertain but later reclassified
(“unstable”). This enabled both retrospective and prospective validation. RENOVO-NF1
achieved 98.6% accuracy during training and maintained strong performance on new data,
with 96.5% accuracy on a 2020 test set of stable variants [41].

Even on a more challenging 2024 set—containing variants that were uncertain in
2020 but later reclassified—the model maintained a respectable 82% accuracy. RENOVO-
NF1 performed particularly well on non-synonymous single nucleotide variants (SNVs),
which result in amino acid changes in the neurofibromin protein, achieving over 96%
accuracy for this variant type. Notably, the model enabled the reclassification of 4412 NF1
missense variants previously labeled as variants of uncertain significance (VUS), with
79% confidently categorized as likely benign or likely pathogenic. This has direct clinical
implications, supporting earlier diagnosis, tumor surveillance, and management of NF1-
associated conditions such as plexiform neurofibromas and malignant peripheral nerve
sheath tumors [41,43].

Despite the promising performance of RENOVO-NF]I, the study does present certain
limitations. While the model was highly accurate for missense variants, it showed reduced
accuracy for non-missense changes, particularly intronic variants, where the absence of key
predictive features such as protein-level impact impairs model reliability. This limitation
reflects the model’s dependence on well-characterized variant types and highlights the
ongoing need for complementary methods—such as functional assays—for non-coding or
splicing-region variants [41].



Genes 2025, 16, 560

13 of 28

Furthermore, although RENOVO-NF1 significantly accelerates variant interpretation,
it does not replace the ACMG guidelines, which remain the gold standard for clinical clas-
sification. Instead, the model serves as a prioritization tool—identifying likely pathogenic
variants that should undergo full ACMG validation. This is especially valuable in clinical
contexts lacking family history or segregation data, such as cases with de novo NF1 variants,
where early identification is otherwise delayed [41].

Finally, while RENOVO-NF1’s training and validation on retrospective ClinVar data
ensures robustness, its generalizability to real-time clinical variant discovery depends on
continuous updates to both data and model parameters. The slow rate of variant reclassi-
fication in public databases—roughly one reclassified variant per 30 new VUS—suggests
that predictive tools like RENOVO play a critical role in bridging this gap until more
definitive evidence becomes available [41].

4.2. Therapeutic Prediction

It is well-established that NF1 presents with a wide spectrum of clinical features affect-
ing multiple organ systems. Among these, one of the most severe skeletal complications is
the congenital pseudarthrosis of the tibia (CPT), a rare, debilitating condition characterized
by spontaneous fractures that fail to heal, typically manifesting in early childhood [44].

Clinical data show that between 50% and 90% of CPT cases are associated with NF1
variants, featuring a strong genetic link between the two conditions. Research suggests that
up to 80% of individuals with CPT carry NF1 mutations, and that the complete loss of NF1
function, through a “double-hit” mechanism involving both NF1-haploinsufficient and
NF1-null cells, may be necessary for the disease to develop. These mutations disrupt the
RAS/MAPK signaling pathway, which plays a crucial role in bone remodeling. As a result,
individuals with NF1 and CPT often exhibit abnormal osteoclast differentiation, leading to
excessive bone resorption and impaired osteoblast function, which reduces bone formation.
This dual defect significantly hinders fracture healing and often limits the effectiveness of
standard orthopedic treatments. Many patients undergo multiple surgeries, and in severe
cases, amputation may be the only viable option [44].

Nowadays, treatment approaches typically involve the surgical removal of pathologi-
cal tissue combined with the application of bone morphogenetic proteins (BMPs). However,
the outcomes of these therapies remain inconsistent, particularly in pediatric patients [44].
The situation is further complicated by the heterogeneity of NF1-related disease mech-
anisms and the rarity of CPT, both of which pose significant challenges to conducting
large-scale clinical trials [45,46].

In response to these challenges, Carlier et al. [46] developed a virtual clinical trial
model involving 200 virtual patients, where each simulated subject received either no
treatment or BMP therapy. This in silico framework was based on a previously validated
multiscale mechanistic model of murine bone regeneration and incorporated key biological
processes relevant to CPT. The model accounted for eight critical parameters reflecting NF1-
associated cellular dysfunction, including enhanced fibrous tissue proliferation, impaired
cartilage and bone formation, and disrupted osteogenic and angiogenic signaling. Machine
learning played a pivotal role in this approach by enabling the simulation of therapeutic
outcomes and facilitating the analysis of complex, nonlinear interactions among these
parameters [46].

Healing outcomes were modeled both with and without BMP therapy, allowing Al
algorithms to stratify subjects based on their predicted treatment response. The analysis
revealed significant variability in outcomes where BMP therapy produced notable improve-
ment in some virtual patients (responders), showed no benefit in others (non-responders),
and even led to negative effects in a small subset (adverse responders). Additionally,
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the study identified a group of asymptomatic virtual patients whose condition remained
largely unaffected regardless of treatment [46].

Crucially, the model also facilitated the identification of predictive biomarkers for
treatment response. Parameters such as the rate of cartilage formation (Pmc), osteogenic
differentiation (Y11), and endochondral ossification (Y3cb) emerged as strong predictors
of BMP responsiveness. These biological markers are closely linked to the NF1 mutation
status of cells, emphasizing the gene’s pivotal role in influencing CPT severity and treat-
ment outcomes, and highlighting the complex genotype-phenotype relationships involved
in NF1-associated CPT. The model’s predictive accuracy was further validated through
correlation analyses and receiver operating characteristic (ROC) curves, supporting its
potential for biomarker discovery and the development of personalized therapies [46].

Importantly, this in silico trial approach offers an ethically sound pathway for ex-
ploring therapeutic strategies in vulnerable populations, such as children with rare bone
disorders, where conventional clinical trials may face ethical or practical barriers. By simu-
lating treatment responses virtually, researchers can evaluate potential risks and benefits
before proceeding with real-world interventions, positioning this model as a valuable tool
for preclinical decision-making.

Despite its innovation, the study presents certain limitations. The in silico trial was
based on murine biology and modeled only 200 virtual subjects, limiting its capacity
to fully capture the complexity of human CPT. Furthermore, the model did not include
mechanoregulatory influences or the effects of different surgical techniques, BMP dosages,
and prior treatments—all of which could influence clinical outcomes. The subgroup of
adverse responders was particularly small, preventing strong statistical conclusions for
this cohort. Additionally, the model used a uniform sampling of the NF1 parameter space,
which may not fully reflect the real distribution of cellular behaviors in patients [46].

In a similar context, a more recent study by Xu et al. [47] used human genetic data
to investigate a rare case of CPT within a five-generation Chinese family. The researchers
identified a novel truncating mutation in the NF1 gene (c.871G>T; p.E291%), with affected
individuals, such as the proband in this study, typically presenting early in life with severe
bone deformities, recurrent fractures, and impaired bone healing. To explore the genetic
basis and functional consequences of this mutation, the researchers employed a range of
bioinformatics tools at various stages of their investigation [47].

Advanced computational approaches played a central role in the analysis of whole-
exome sequencing (WES) data, followed by Sanger sequencing to confirm the presence of
the identified mutation. Bioinformatic algorithms enabled efficient filtering, alignment,
and detection of the pathogenic variant, demonstrating the diagnostic power of WES and
paving the way for potential gene therapy strategies. To investigate the functional impact
of the mutation, structural modeling tools were used to generate a three-dimensional
representation of the neurofibromin protein through platforms such as PyMOL. This
analysis revealed that the p.E291* variant leads to the loss of several critical protein domains,
including the cysteine-serine-rich domain (CSRD), GAP-related domain (GRD), Sec14-
homologous and pleckstrin homology domain (SEC14-PH), and the C-terminal domain
(CTD)—all of which are essential for the proper regulation of Ras/MAPK signaling [47].

Furthermore, evolutionary conservation analysis using platforms like the ConSurf
server demonstrated that the glutamic acid residue at position 291 is highly conserved
across species, indicating its crucial role in maintaining neurofibromin’s structural integrity
and function [34]. Together, these computational methods provided strong evidence
for a genotype—phenotype correlation, helping to explain the severity and early onset
of CPT observed in the affected family members. These insights also hold significant
clinical implications, highlighting the potential of early genetic screening to identify at-risk
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individuals and the future possibility of targeting NF1 loss-of-function mutations through
precision gene therapy [47].

Despite these advancements, the study has notable limitations. The mutation was con-
firmed using blood samples, but lesion or periosteal tissue was not analyzed—potentially
overlooking somatic mosaicism. Furthermore, while WES is a robust tool, it may miss
non-coding or intronic variants that could also influence gene expression and disease de-
velopment. The focus on a single family limits the ability to generalize the findings, and no
functional studies (e.g., in vitro or in vivo models) were conducted to validate the biological
effects of the mutation. The variability in symptoms among family members also points to
possible modifier genes or environmental factors, which were not investigated [47].

In conclusion, these studies demonstrate how Al-powered and standard bioinformatic
tools can significantly advance our understanding of NF1 gene mutations and their role
in rare disorders like CPT. By integrating mutation detection, structural modeling, and
conservation analysis, they not only clarified the mutation’s impact but also enhanced
diagnostic precision and opened avenues for personalized treatment strategies in the future.

Table 1 below provides a comprehensive overview of the current Al tools reviewed
in this article for NF1 variant analysis. These tools are categorized based on their pri-
mary function: Variant Interpretation and Pathogenicity Prediction, Protein Structure and
Stability Prediction, Tumor Classification, and Therapeutic Prediction.

Table 1. Al tools used in identifying NF1 variants based on their primary function.

Variant Interpretation and Pathogenicity Prediction

Al Tool Function/Description

SpliceAl [22] Deep learning model that predicts splice site disruptions across the entire transcript, enabling accurate
p detection of both canonical and non-canonical splice-altering variants in the NF1 gene.

REVEL [19,29] Ensemble machine learning tool that combines scores from multiple individual predictors (e.g., SIFT,

PolyPhen-2) to improve the classification of rare missense variants as likely benign or pathogenic.

VEST3 [29,30]

Supervised learning algorithm trained on known pathogenic and benign variants; uses sequence
conservation, protein features, and structural data to predict functional impact of NF1 missense mutations.

ClinPred [28,29]

Machine learning classifier trained on ClinVar data; integrates multiple features including conservation,
protein annotations, and clinical evidence to assess variant pathogenicity.

PredictSNP2 [31]

Consensus-based predictor that merges results from several established tools (e.g., SNAP, PANTHER,
PhD-SNP) to enhance reliability in predicting the functional consequences of NF1 missense variants.

Align-GVGD [31]

Combines evolutionary conservation and biochemical properties to assess the functional impact of amino
acid substitutions in NF1, particularly useful in cysteine mutation evaluation.

RENOVO-NF1 [41]

NF1-specific random forest model that calculates a Pathogenicity Likelihood Score (PLS) and effectively
reclassifies NF1 missense VUS into likely pathogenic or benign with high accuracy.

DITTO [37]

Advanced AI model that integrates transcriptomic, proteomic, and structural dynamics data to evaluate
the functional effects of NF1 mutations, including protein conformation-specific impacts.

SAAFEC-seq [37]

Gradient boosting-based model estimating protein stability changes (AAG) using sequence-derived
features to assess potential pathogenic effects of NF1 mutations.

Protein Structure and Stability Prediction

Al Tool

Function/Description

AlphaFold3 [31,35]

Deep learning tool for predicting 3D protein structures at high resolution; used to visualize and assess how
NF1 mutations affect neurofibromin folding and domain architecture.

iStable [31]

Integrates predictions from iMutant 2.0 and MUpro to estimate mutation-induced changes in protein
stability (AAG), helping identify destabilizing NF1 variants.

iMutant 2.0 [31]

SVM-based predictor for estimating the impact of single-point mutations on protein stability.

MUpro [31]

Combines SVM and neural networks to predict whether a mutation increases or decreases protein stability
in NF1.
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Table 1. Cont.

Tumor Classification

Al Tool

Function/Description

GENIE-NF-AI [39]

Deep learning model based on a liquid neural network (LSTM) trained on gene expression data to classify
NF1-associated tumors with high accuracy. It integrates black-box predictive performance with glass-box
interpretability—using explainable Al layers to clarify how gene features contribute to classification, thus
enhancing clinical trust and transparency.

Therapeutic Prediction

Al Tool

Function/Description

In Silico Al Tools [46]

Machine learning framework used in virtual clinical trials for NF1-related CPT; includes random forest for
response prediction, biomarker discovery, and patient stratification based on simulated
biological outcomes.

5. Future Directions
5.1. NGS for Genotype—Phenotype Correlation

In NF1, understanding how specific genetic mutations relate to clinical features is
essential for improving diagnosis, risk assessment, and individualized treatment. Despite
over 3197 pathogenic NF1 variants being identified, only about 10-15% of cases show
clear genotype—phenotype correlations [48]. These correlations, however, offer meaningful
clinical insights. For example, individuals with the p.Met992del variant usually exhibit
mild symptoms such as CALMs and axillary freckling, but typically lack cutaneous or
plexiform neurofibromas, making them unsuitable candidates for neurofibroma-targeted
clinical trials [48,49]. Similarly, mutations like p.Arg1809Cys are associated with pigmentary
changes and Noonan-like features without tumor development [48,50]. In contrast, patients
with large NF1 microdeletions, especially the type 1 deletion spanning 1.4 Mb and including
genes like SUZ12 and RNF135, tend to experience more severe disease involving numerous
tumors, cognitive impairment, overgrowth, cardiovascular anomalies, and a fourfold
increased risk of MPNST [48,51]. Germline mosaicism also influences disease severity,
with mosaic individuals often presenting milder features than non-mosaic carriers of
the same variant [52]. Additionally, missense mutations in codons 844-848 of the CSRD
correlate with severe phenotypes including optic gliomas, plexiform neurofibromas, and
skeletal abnormalities, underscoring that pathogenicity is not limited to classic functional
domains [48,53]. Frameshift mutations were notably associated with cognitive impairment,
while nonsense mutations often coincided with skeletal deformities. Whole-gene deletions
and duplications were further linked to spinal abnormalities, cardiovascular complications
and a higher likelihood of multiple systemic tumors [54].

Regardless of these associations, NF1 remains highly variable in presentation, even
among patients with the same mutation, due to modifying factors such as somatic second
hits, epigenetic alterations, and environmental influences. Malignancies like MPNST often
develop through a multistep genetic process involving the somatic loss of genes like NF1,
CDKN2A/B, SUZ12, or EED, combined with epigenetic deregulation, including the loss
of H3K27me3 and hypermethylation of key genes like SOX10 and CDKN2A [48]. Given
the intricate genetic and epigenetic landscape of NF1, advanced and scalable technologies
are crucial for thoroughly characterizing its diverse mutational spectrum and associated
phenotypic variability.

As previously discussed, NGS has revolutionized genomic research [10,11,13]. How-
ever, despite its advanced capabilities, NGS still faces significant challenges, particularly
in the interpretation of VUS and in translating genomic findings into clinically actionable
insights. To help address these limitations, Al is increasingly being integrated into genomic
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workflows, enhancing the accuracy, scalability, and efficiency of NGS data analysis across
several key processes, including variant calling, annotation, pathogenicity prediction, and
the linking of genotype to phenotype [27].

Traditionally, bioinformatics tools, used to process and analyze NGS data, have relied
on rule-based algorithms and statistical models. In contrast, machine learning and deep
learning approaches introduce data-driven models capable of learning complex patterns
directly from the data itself. This allows Al systems to perform tasks with greater adapt-
ability and scalability, which is especially valuable when working with large, noisy, or
incomplete datasets such as those encountered in NFI research. The integration of Al
into NGS workflows was comprehensively reviewed last year by Choon et al. [27], who
highlighted a range of Al-based tools that have demonstrated promising results across
various stages of the genomic analysis pipeline [27].

Firstly, variant calling, the process of detecting genetic variants from sequencing data,
has traditionally relied on algorithms using fixed heuristic rules. AI models, however, can
learn directly from sequencing outputs, thereby improving accuracy and reducing false
discovery rates. For example, DeepVariant [55] employs convolutional neural networks
(CNNss) to transform aligned sequencing reads into image representations, leveraging
computer vision techniques for variant identification. Similarly, Clairvoyante [56], an-
other CNN-based model, extends these capabilities to long-read sequencing technologies,
enhancing variant detection in complex genomic regions. DeepNano [57] utilizes recur-
rent neural networks (RNNs) to improve base calling accuracy in nanopore sequencing,
while NeoMutate [58] applies ensemble learning with Bayesian classifiers and other su-
pervised ML algorithms to optimize variant detection through the integration of diverse
sequence features.

Secondly, in the variant filtering stage, Al tools outperform traditional methods
by learning from labeled datasets to distinguish true variants from sequencing artifacts.
SNooPer [59], which uses random forest algorithms, is specifically designed for detecting
somatic variants in low-coverage data. GARFIELD-NGS [60] applies machine learning to
effectively separate true variants from false positives in exome sequencing data. Mean-
while, Intelli-NGS [61], powered by deep neural networks, further refines this process
by maintaining high sensitivity while minimizing false positives and negatives, thereby
increasing confidence in the final variant set.

Thirdly, variant annotation and prioritization, critical steps for assessing the clinical rel-
evance of detected variants, also benefit significantly from Al-based approaches. Whereas
traditional annotation tools rely on manually curated databases and fixed scoring sys-
tems, Al models can learn complex relationships between variant features and pathogenic
outcomes. For instance, Skyhawk [56], a deep neural network model, simulates expert vari-
ant review processes to prioritize clinically actionable variants. DANN [62] applies deep
learning to predict the pathogenic potential of genetic variants, outperforming traditional
classifiers like support vector machines, and DeepSEA [63] extends these capabilities to
non-coding regions, using CNNs to predict the regulatory impact of non-coding variants
directly from sequence context.

Additionally, one of the key strengths of Al-driven approaches is their ability to incor-
porate phenotype information into variant prioritization, which improves the interpretation
of sequencing results within a clinical context. For example, DeepGestalt [64], a CNN-based
model, uses facial phenotypic analysis to assist in diagnosing over 200 genetic syndromes,
demonstrating the power of integrating phenotypic data with genomic analysis. Similarly,
DeepPVP [65] combines phenotypic and genomic data through deep neural networks for en-
hanced variant prioritization, while Xrare [66] employs machine learning models to jointly an-
alyze phenotype—genotype associations for identifying pathogenic variants in rare disorders.
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The fundamental distinction between traditional bioinformatics and Al-based methods
lies not only in their methodologies but also in their flexibility and learning capacity.
Conventional bioinformatics tools often require manual parameter tuning and rely on
predefined rules. In contrast, AI models can adaptively learn from data, continuously
improving as more annotated datasets become available. This adaptability makes Al-
driven approaches particularly well suited for addressing the complexities of genomic
data, especially in the context of diseases like NF1, where data scarcity and high genetic
heterogeneity often limit the effectiveness of traditional analysis strategies [27].

Moreover, Al facilitates the integration of genomic data with electronic health records,
supporting precision medicine and personalized care strategies. Its advantages include the
automation of complex tasks, reduction in human error in variant interpretation, and the
discovery of novel correlations between genetic mutations and clinical outcomes. Nonetheless,
Al has limitations—it requires large, annotated datasets for training, demands high computa-
tional resources, and presents ethical and privacy challenges in clinical implementation [27].

The synergy between NGS and Al, as seen well in Figure 1 below, forms a power-
ful foundation for advancing genotype—phenotype correlations and genomic medicine.
While NGS generates massive amounts of genetic data, Al extracts clinically meaningful
insights, enabling more accurate diagnoses, better disease understanding, and tailored
treatment plans. In NF1, this integrated approach is expanding our ability to define
genotype—phenotype relationships and refine therapeutic strategies. Although only a sub-
set of NF1 variants currently have established clinical correlations, continued advances in
genomic technologies and Al promise to deepen our understanding and improve outcomes
for patients with NF1 and other rare genetic conditions [27].
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Figure 1. Genotype—phenotype correlation in NF1 and role of NGS and Al in precision medicine.

5.2. Multi-Omics

Recent advances in genomics, Al, and precision medicine have paved the way for
innovative strategies with strong potential to improve the understanding and management
of NF1 in the future. Although these technologies have not yet been directly applied to NF1,
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they represent important methodological breakthroughs that could conceptually enhance
variant classification, tumor stratification, and personalized care for this disorder.

A notable example of such progress is the integrative multi-omics study by Yang
et al. [67], which conducted CNV, DNA methylation, and microRNA (miRNA) expression
profiling to classify tumor subtypes and identify immune-related biomarkers in lower-
grade glioma. In this study, MOVICS (Multi-Omics Integration and Visualization in Cancer
Subtyping) was employed as the integrative clustering method to merge genome-wide
profiling data from these three omics layers. Using this approach, the authors identified
four distinct molecular subtypes of lower-grade glioma, each significantly associated with
patient prognosis, immune-related features, and genetic characteristics. By integrating
multi-omics data, the study provided a robust classification framework and highlighted
the critical role of miRNA dysregulation driven by genomic and epigenomic alterations.
This work demonstrates how the integration of multiple layers of genomic and epigenomic
information can reveal key regulatory mechanisms and prognostic markers, ultimately
supporting the development of personalized treatment strategies. Given the tumor hetero-
geneity and diverse clinical manifestations observed in NF1, adopting similar multi-omics
approaches could greatly enhance patient stratification, facilitate the discovery of prog-
nostic biomarkers, and improve our understanding of immune evasion mechanisms in
NF1-associated tumors.

Further expanding the possibilities for precision variant interpretation, the sc2GWAS
platform introduced by Yin et al. [68] integrates genome-wide association study data
with single-cell RNA sequencing to achieve cell-specific mapping of genetic risk variants.
This enables the identification of precise trait—cell-gene relationships and highlights the
functional impact of variants within specific cellular contexts. Applying this strategy to
NF1 could facilitate the discovery of disease-relevant variants within key cell types, such
as Schwann cells or neural crest-derived populations implicated in tumorigenesis and
neurodevelopment.

In the field of precision modeling and real-time symptom assessment, Xing et al. [69]
demonstrated the use of Al-based sensors, wearable devices, and machine learning al-
gorithms for the dynamic monitoring and adjustment of pain management strategies.
These technologies allow for continuous data collection and individualized treatment plan-
ning based on real-time physiological feedback. Such an approach could be adapted to
support symptom monitoring in NF1 patients, particularly for managing chronic pain,
nerve dysfunction, or tracking treatment responses, thereby enhancing individualized
patient care.

Complementary to these Al-based approaches, recent research has also provided
insights into cellular function, stress responses, and epigenetic regulation that may inform
future NF1 studies. The work by Zhou et al. [70] highlights the role of Nynrin in main-
taining hematopoietic stem cell (HSC) function through the regulation of mitochondrial
permeability transition pore opening, a mechanism relevant to cell survival under stress
conditions. In this study, the authors used RNA-seq, single-cell RNA-seq (scRNA-seq),
and ChIP-seq as key omics tools to uncover the role of Nynrin in HSC function. These
approaches allowed for the identification of Nynrin target genes, and revealed critical
pathways involved in mitochondrial regulation and stem cell maintenance. The use of
multi-omics was essential to provide a comprehensive and high-resolution understanding
of gene regulation and cellular mechanisms, highlighting the power of integrative omics in
uncovering complex biological processes. Additionally, Zhou et al. [71] investigated the
impact of METTL3-modified exosomes and m6A RNA methylation on cellular proliferation
and migration, providing further understanding of how post-transcriptional modifications
can influence tumor biology. Although these studies do not directly involve NF1, their focus
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on cellular stress mechanisms and epigenetic regulation may offer valuable perspectives for
understanding NF1-related tumorigenesis and developing novel therapeutic approaches.

Together, these advancements in Al-integrated multi-omics analysis, single-cell variant
mapping, precision modeling, and epigenetic research offer a conceptual framework that could
significantly contribute to NF1 research in the future. Their potential to improve variant discov-
ery, patient stratification, symptom monitoring, and targeted therapy development highlights
their relevance for advancing personalized medicine in this complex genetic disorder.

6. Bias of AI in Genetics

Al models have become powerful tools for genetic variant interpretation, offering the
potential to improve diagnostic accuracy and support clinical decision-making. However,
these models are vulnerable to systemic biases when trained on non-diverse datasets,
limiting their generalizability across different ethnic groups. This issue is particularly
critical in the context of NF1, a disorder with a highly heterogeneous mutation spectrum,
including many rare, de novo, and population-specific variants.

Several widely used Al-based tools for variant classification, such as VEST3, REVEL,
and ClinPred, have demonstrated strong performance for missense variants, yet as shown
by Accetturo et al. [29], their predictive accuracy is influenced by the composition of
their training data—largely sourced from populations of European ancestry. This lack of
diversity compromises the ability of these models to correctly classify variants that are more
prevalent or unique to underrepresented groups, leading to potential misinterpretation
and diagnostic uncertainty [29].

A key contributor to this problem is the dependence of AI models on public variant
databases, such as ClinVar and the HGMD, for training and validation. While these
databases are essential resources for variant annotation, studies have shown that they
contain ancestry-related biases. Work by Sharo et al. [72] revealed that both ClinVar and
HGMD include pathogenic classifications that do not always reflect real-world disease
prevalence, particularly in individuals of African ancestry, who were disproportionately
flagged as affected by rare disorders such as inborn errors of metabolism (IEMs). This
misclassification stems from the underrepresentation of diverse populations during variant
curation and a historical reliance on European-derived data. Although updated allele
frequency guidelines have reduced some of these errors, common benign variants in
African genomes remain at risk of being mislabeled as pathogenic, especially in HGMD
where reclassification rates are slower compared to ClinVar [72].

Since many Al models rely on public variant databases as ground truth, misclassifica-
tions within these databases can be propagated and amplified by predictive algorithms,
further compromising model reliability, especially for individuals from non-European
populations. This feedback loop not only reduces the accuracy of Al-driven variant inter-
pretation but also risks reinforcing existing health disparities in genomic medicine.

Efforts to address these biases have emphasized the importance of both functional
validation and equitable data representation. For example, the study by Dawood et al. [73]
found that individuals of non-European ancestry carry a significantly higher burden of
VUS, largely due to underrepresentation in genomic databases. Using the experimental
platform known as MAVEs (Multiplexed Assays of Variant Effects), the authors were able to
reclassify a greater proportion of VUS in non-European individuals than in their European
counterparts, thereby reducing diagnostic uncertainty and helping to mitigate data imbal-
ance. However, the study also highlighted that while MAVE-generated functional data
were applied equitably across ancestries, other evidence sources, such as allele frequency
data and computational predictions, continued to perform inequitably, with a bias toward
European genetic backgrounds [73].
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Within this framework, community-driven data-sharing platforms like Franklin by
Genoox [74] represent a valuable strategy to mitigate bias in Al-based variant interpre-
tation by enhancing the diversity and accuracy of the underlying evidence used for
model training and validation. The study by Einhorn et al. [75] exemplifies how lever-
aging the Franklin platform, which integrates large-scale real-world sequencing data
with community-contributed variant classifications, enabled the identification of novel
pathogenic founder variants (PFVs) absent from traditional carrier screening panels and
global resources like ClinVar. By combining automated ancestry inference with evidence
shared across a broad network of clinical users, the platform facilitates the detection of
true pathogenic variants within underrepresented groups while also supporting the re-
classification of variants that may have been misinterpreted due to limited or biased data.
By incorporating variant observations from diverse ancestries and linking them to clini-
cal phenotypes, it helps prevent the entrenchment of misclassified or uncertain variants
within Al training datasets—a key contributor to systemic bias in predictive models. This
participatory framework not only enhances the accuracy of pathogenicity assessments but
also reduces the burden of VUS in non-European populations, where data gaps are most
pronounced. This approach directly addresses the well-documented limitations of static
variant databases by allowing continuous updates and real-world feedback, significantly
improving the interpretive landscape for Al tools reliant on these resources [75].

7. Strengths and Limitations

Tables 2 and 3 below provide an overview of the advantages and drawbacks of utilizing Al
in the context of NF1 analysis, compiled by the authors based on the previously discussed data
to highlight both the potential benefits, such as enhanced diagnostic accuracy and efficiency,
and the current challenges, including data quality, interpretability, and clinical integration.

Table 2. Advantages of Al in NF1 gene analysis.

AI Advantage

Description

Example/Application in NF1

Enhanced Variant
Interpretation

Al reduces uncertainty in
classifying missense mutations
and VUS.

Tools like REVEL, VEST3, and
RENOVO-NF1 improve confidence
in variant classification, aiding early
diagnosis and risk

assessment [29,41].

Accurate Structural
Impact Prediction

Al-powered structural models
predict how mutations affect
neurofibromin conformation.

AlphaFold3 and DITTO reveal
stability changes in different protein
states, offering insights for targeted
therapies [31,35,37].

Rapid Analysis of Big
Genomic Data

AT accelerates processing of
sequencing datasets,
prioritizing clinically
relevant variants.

In silico tools rapidly stratify
patient data (e.g., CPT models in
virtual trials), reducing diagnostic
delays [46].

Integration of
Multi-Omics Data

Al can unify genomic,
transcriptomic, and proteomic
information for comprehensive
variant assessment.

DITTO integrates transcriptomic
and structural dynamics to model
protein behavior across
conformations [37].

Support for Clinical
Decision-Making

Al enhances diagnostic
precision and treatment
planning by reducing
ambiguity.

GENIE-NF-AI and RENOVO-NF1
assist in tumor classification and
VUS reclassification, guiding early
interventions [39,41].

Ethical Therapeutic
Exploration

Al enables virtual clinical trials
in populations where real trials
are ethically challenging.

In silico BMP therapy trials for
NF1-CPT model treatment
outcomes in children without
physical risk [46].
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Table 3. Challenges and mitigation strategies for Al in NF1 analysis.

Challenge

Al Limitation

Proposed Mitigation Strategy

Data Representation
Bias

Al tools trained on databases like
ClinVar and HGMD often reflect
Eurocentric variant data, reducing
performance on variants common
in non-European populations [72].

Promote use of diverse datasets
and platforms like Franklin;
integrate community-contributed
variant data for broader ancestry
coverage [74].

Limited
Generalizability

AI models may fail on novel or
ultra-rare variants due to lack of
similar examples in training
data [72].

Continually retrain models with
updated real-world clinical data
and include synthetic data from
simulated environments where
appropriate [74].

Lack of Functional
Validation

Al predictions often lack biological
validation, reducing clinical trust.

Use multiplexed assays of variant
effects (MAVEs) and encourage
Al-wet lab partnerships to
validate predictions [73].

Missense Variant
Focus

Most tools are optimized for
missense mutations and lack
support for intronic, splicing, or
structural variants.

Incorporate tools like SpliceAl to
cover splicing and regulatory
regions [22].

Interpretability and
Clinical Trust

Black-box models limit clinical
adoption due to poor transparency
in decision-making [39].

Use explainable Al (e.g.,
GENIE-NF-AT's glass-box
overlay) to make model logic
transparent for clinicians [39].

Regulatory and
Integration Barriers

Many Al tools are not validated for
clinical use, delaying integration
into routine diagnostics [39,41].

Develop standards for Al
validation and interoperability in
genomics workflows, aligned

with ACMG frameworks.

8. Al Diagnosing NF1 Beyond Genetics

While the following is not a genetics-focused study, it is essential to highlight the
growing role of Al in enhancing NF1 diagnostics in a holistic approach. A groundbreak-
ing multicenter study published in 2025 introduced deep learning models trained on
T2-weighted MRI data to distinguish between benign plexiform neurofibromas (PNFs)
and MPNSTs, a clinically critical differentiation. The researchers analyzed over 3100 MRI
images from 347 patients across seven medical centers in China, establishing this as the
largest image-based Al study in NF1 to date. Recognizing that NF1 tumors can arise
throughout the body and exhibit highly variable imaging features, the team developed a
novel one-step Al model that integrates both tumor detection and classification, while in-
corporating contextual information from surrounding normal tissues to improve diagnostic
precision [76].

The study employed a traditional two-step deep learning imaging framework using U-
Net for lesion segmentation and ResNet18 for classification. However, the real innovation
was the introduction of a streamlined, YOLO-v5-based one-step model, which completed
segmentation and diagnosis simultaneously. This model achieved impressive results—an
85.71% accuracy in the validation set and 84.75% in an independent test set—while requir-
ing only a third of the computational resources of previous models. Its ability to mimic
clinician reasoning by factoring in both anatomical location and lesion context allowed
for enhanced reliability, even in complex regions such as the head and face. The use of
Grad-CAM interpretability tools further validated that the Al focused on relevant tumor
features, aligning its “attention” with clinical expectations [76].

This study reflects a meaningful evolution in NF1 diagnostics, highlighting a shift
from a traditional focus on genetics and clinical symptoms toward the integration of Al-
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powered imaging tools. While genetic testing remains a key component in identifying
NF1 variants, its limitations—particularly the lack of consistent genotype—phenotype
correlations—accentuate the need for additional diagnostic strategies. Al is now becoming
an integral part of the multidisciplinary approach to NF1, expanding beyond genetics to
include advanced imaging analysis as a critical layer of insight. This progression points
toward a future where Al plays a leading role in enhancing diagnostic precision, enabling
earlier detection, and supporting more personalized care for individuals with this highly
variable condition.

9. Discussion

NF1 continues to pose significant diagnostic and therapeutic challenges due to its
marked genetic heterogeneity, variable phenotypic expression, and the intrinsic complexity
of the NF1 gene itself [17]. While the NIH diagnostic criteria remain clinically valuable,
they are often insufficient in cases with early onset, atypical manifestations, or borderline
presentations [6]. In such instances, molecular testing has become increasingly indispens-
able. However, the interpretation of NF1 variants remains difficult since the gene lacks
well defined mutation hotspots and encompasses thousands of unique variants, many of
which are classified as VUS [31]. This high rate of uncertain findings complicates clinical
decision-making and diminishes the immediate utility of genetic test results.

Recent advancements in Al and computational biology are transforming the landscape
of NF1 diagnostics, particularly in the interpretation of gene variants. Al-driven tools such
as VEST3, REVEL, ClinPred, DITTO, and RENOVO-NF1 have demonstrated high accuracy
in classifying genetic variants and reclassifying VUS with improved reliability [29,37,41].
These models leverage diverse inputs—including structural, functional, and evolutionary
data—to generate more refined pathogenicity predictions. Further, Al’s role extends beyond
simple classification. In silico modeling platforms like AlphaFold allow researchers to
predict the biophysical impact of mutations on neurofibromin, as demonstrated in the
identification of destabilizing mutations such as C379R and C1016Y, that might otherwise
remain undetected or misclassified by conventional methods [31]. Such tools offer a
promising path forward in resolving diagnostic ambiguity and expanding the catalog of
clinically actionable variants.

In addition to variant interpretation, Al has shown potential in addressing other clini-
cally significant aspects of NF1 management. For example, LTC-based machine learning
models have achieved near-perfect accuracy in classifying NF1-associated tumors using
gene expression data [39]. The RENOVO-NF1 tool has also made a substantial impact by
reclassifying more than 4000 missense VUS listed in ClinVar, demonstrating its utility in
refining variant databases and enhancing clinical interpretation [41]. In rare and complex
manifestations such as CPT, Al-powered in silico trials and bioinformatics platforms have
been used to predict treatment response and identify potential therapeutic targets, thereby
contributing to emerging precision medicine strategies in NF1 [46].

Furthermore, Al is increasingly being utilized beyond genomics for NF1, extending
into the field of medical imaging. Deep learning models can accurately distinguish malig-
nant from benign lesions on whole-body MRI scans in patients with NF1 [76]. These models,
trained to account for complex anatomical backgrounds, underline the expanding role of
Al across disciplines and highlight its capacity to complement both genetic and radiologic
diagnostics. The integration of Al across these domains reinforces the multidisciplinary
nature of NF1 care and reflects the broader goal of enhancing diagnostic accuracy and
patient outcomes.

The advantages of applying Al to NF1 are numerous (Table 2). Al algorithms can
process vast and complex datasets with remarkable speed, significantly reducing the time
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and labor associated with manual variant interpretation. They are capable of detecting
subtle patterns and correlations that may be missed by human analysis, offering insights
into potential genotype—phenotype relationships. With continued development, Al could
enable the integration of genomic, transcriptomic, and phenotypic data, helping clinicians
build comprehensive and individualized patient profiles that support personalized care.

Nonetheless, several limitations and challenges remain (Table 3). Many Al models
are trained on datasets that lack sufficient population diversity, potentially limiting their
generalizability across ethnic and demographic groups. Moreover, while these tools show
strong predictive performance, most predictions lack functional validation and, therefore,
cannot yet be translated directly into clinical recommendations. This is especially true
for non-coding and intronic variants, which are currently underrepresented in algorithm
training and interpretation. Al systems also require high-quality, annotated datasets for
effective training, and their successful implementation into clinical workflows will depend
on overcoming regulatory, infrastructural, and ethical hurdles. In this evolving landscape,
platforms like Franklin by Genoox [74], which offer real-time variant classification and
community-based data sharing, represent valuable tools for enhancing collaborative in-
terpretation and reducing uncertainty in variant analysis. Moreover, concerns about data
privacy, algorithm transparency, and clinician familiarity with proper oversight of Al tools
is crucial to guarantee their safe and efficient integration into healthcare settings [27].

Although Al is not yet widely implemented in routine clinical practice for establishing
genotype—phenotype correlations in NF1, it holds significant promise in transforming
the field [47]. As the interpretation of NF1 gene variants continues to be complicated by
the gene’s size, the diversity of mutations, and the clinical variability of the disorder, Al-
powered tools offer the potential to streamline variant classification, prioritize pathogenic
mutations, and support early diagnostic efforts [27]. Emerging in silico models and machine
learning algorithms have already shown encouraging results in reclassifying VUS and
identifying patterns within genomic and transcriptomic data that may eventually correlate
with clinical features.

Despite these challenges, the growing application of Al in both genetic and imaging
domains of NF1 reflects the clinical urgency and importance of improving diagnostic
precision and therapeutic outcomes. These multidisciplinary efforts—from molecular
variant analysis to advanced imaging interpretation—are collectively advancing the field
toward more personalized, data-driven care. Ultimately, the integration of Al into NF1
diagnostics holds great promise for enhancing the quality of life and long-term prognosis
of individuals living with this complex genetic disorder.

10. Conclusions

While these advances remain largely at the research stage, they highlight a future
in which AI could complement NGS technologies to improve diagnostic precision and
support individualized treatment approaches for NF1. Ongoing efforts in the development,
validation, and incorporation of Al tools into genetics and clinical practice will be vital to
fully harness their potential in the diagnosis and management of NF1.
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Abbreviations

Neurofibromatosis Type 1 (NF1), artificial intelligence (AI), National Institutes of Health (NIH),
attention-deficit/hyperactivity disorder (ADHD), unidentified bright objects (UBOS), malignant pe-
ripheral nerve sheath tumors (MPNSTSs), gastrointestinal stromal tumors (GISTs), café-au-lait macules
(CALMs), next-generation sequencing (NGS), neurodevelopmental disorders (NDDs), variants of
uncertain significance (VUS), disease-causing genes (DCGs), cysteine-serine-rich domain (CSRD), sta-
bility changes (AAG), Pleckstrin Domain (PH), American College Of Medical Genetics And Genomics
(ACMG), Deep Integration For Transcriptomic And Translational Omics (DITTO), Single-Nucleotide
Variants (SNVs), liquid neural network (LTC), congenital pseudarthrosis of the tibia (CPT), bone
morphogenetic protein (BMP), whole-exome sequencing (WES), whole-genome sequencing (WGS),

convolutional neural networks (CNNs).
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