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Abstract

Background/Objectives: Sepiella japonica is a highly adaptable cephalopod with an ad-
vanced nervous system and complex reproductive behavior, capable of reproducing two
to three generations annually depending on water temperature. However, the absence of
a complete genome assembly has limited molecular investigations of its unique biologi-
cal characteristics. This study aimed to perform a genome survey of female and male S.
japonica, systematically characterize and compare key genomic characteristics. Methods:
Quality-filtered short reads enabled K-mer-based estimation of genome size, heterozygosity,
repeat content, and GC content; generation of draft genome assemblies, SSR identification
from the draft assemblies, complete mitogenome assemblies and annotations with ML
phylogeny based on 13 concatenated PCGs, and PSMC-based demographic inference. Re-
sults: The estimated genome sizes were 4317 Mb (female) and 4222 Mb (male), with revised
estimates of 4310 Mb and 4215 Mb, respectively. K-mer analysis revealed heterozygosity
rates of 0.85% (female) and 0.77% (male) and repeat content of 76.05% (female) and 75.91%
(male). The assembled genome sizes were 4197 Mb for females (N50: 508 bp) and 4206 Mb
for males (N50: 511 bp); the GC content was 34.15% for both genomes. Deduplicated
data showed GC content of 35.16% (female) and 35.27% (male). Microsatellite analysis
revealed that mononucleotide repeats were the most abundant simple sequence repeat
motif. The mitochondrial genome sequences measured 16,729 bp for the female genome
and 16,725 bp for the male genome. Conclusions: This study provides fundamental data
for subsequent high-quality whole-genome assembly and comparative analysis of female
and male genomes.

Keywords: Sepiella japonica; genome survey; genomic characteristics

1. Introduction

Sepiella japonica is a mollusk in the class Cephalopoda (Sepiida: Sepiidae) [1]. It is
one of the four traditional marine species in the East China Sea and possesses notable
economic and medicinal value. This species is widely distributed in the coastal waters of
the Northwest Pacific and the Northern Indian Ocean, with particularly large populations
occurring in China’s Liaodong Bay, Zhoushan Archipelago, and Beibu Gulf. Populations of
S. japonica declined severely during the 1980s due to overfishing and environmental degra-
dation. This species can grow rapidly, has a short life cycle, and migrates to reproduce [2].
In recent years, stocking strategies, including artificial breeding and release, have been
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optimized, and this has greatly aided population recovery. However, the effectiveness of
these programs has been limited by various challenges such as precocious maturation and
miniaturization of individuals. These phenotypic abnormalities are likely associated with
the species’ reproductive biology and mechanisms regulating sex differentiation, but the
molecular basis of these mechanisms has not yet been clarified. The lack of whole-genome
data and systematic female and male genomic comparisons has constrained the elucidation
of these molecular mechanisms.

Previous genomic studies on cephalopods have revealed that representative species
generally possess large genome sizes and high proportions of repetitive elements. For
example, the genome of Sepia officinalis is estimated at 5 Gb, with 71.17% of bases masked as
repetitive elements. The first sequenced cephalopod genome, Octopus bimaculoides (2.7 Gb),
exhibits extensive gene family expansions and large-scale genome rearrangements [3].
The chromosome-scale genome assembly of Octopus vulgaris revealed a genome size of
2.8 Gb, with repeats comprising 68.68%, thereby advancing comparative research on
genome structure and karyotype evolution [4]. The genome of Sepia pharaonis (4.79 Gb,
65% repeats) uncovered a unique reflectin gene family associated with body coloration,
including 12 reflectin copies and three newly classified types [5]. The genome (5.1 Gb)
and transcriptome resources of Euprymna scolopes provided genomic insights into host—
microbe interactions and the evolution of symbiotic organs [6]. In contrast, the genome
of Nautilus pompilius (730 Mb) is markedly smaller than that of other cephalopods, with
TEs making up about 31% dominated by DNA transposons, and displays a pronounced
contraction of orthologous gene families rather than expansion. This assembly provides a
novel perspective on the evolution of cephalopod vision and biomineralization [7]. Review
studies have emphasized that the extraordinary complexity of cephalopod genomes arises
mainly from mechanisms such as gene family expansion, widespread RNA editing, large-
scale rearrangements, and repeat-mediated regulatory innovations [8-10]. Together, these
processes underlie unique traits such as advanced camouflage and neural plasticity. Overall,
these studies indicate that cephalopod genomes are generally large, rich in repetitive
sequences, and evolutionarily dynamic, which likely reflect the selective pressures imposed
by rapid growth, short life cycles, and complex reproductive strategies. These results
highlight the importance of investigating female and male genomic characteristics and
their differences to better understand the adaptive evolution of cephalopods.

Whole-genome sequencing has become a key tool in contemporary biological re-
search [11], and DNA Nanoball (DNB) sequencing has been widely applied in various
genomic studies [12]. This technology allows analysis of basic genomic features such as
genome size, GC content, and heterozygosity [13-19], and enables identification of mito-
chondrial genomes, microsatellite markers, and single-copy orthologous genes [20-25].
Characterizing genomic differences between males and females is crucial for elucidating
the molecular mechanisms of sex determination and differentiation and provides key clues
for understanding reproductive biology and adaptive evolution. In recent years, several
studies have focused on sex-related genomic differences in mollusks. For example, Kina
et al. compared female and male Haliotis gigantea by whole-genome resequencing, revealing
about 2 Mb of sex-related genomic differences on chromosome 18, clarifying its XX/XY
genetic sex-determination system, and developing male-specific molecular markers [26].
Similarly, Zou et al. identified sex-linked SNP and InDel loci in resequencing data ivory
shell (Babylonia areolata), aiding the elucidation of its sex-determination system [27]. How-
ever, comparative analyses of female and male genomes in cephalopods remain limited,
and studies on S. japonica are particularly lacking. Given the unique reproductive strategies
and evolutionary pressures of cephalopods, their mechanisms of sex differentiation are
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closely related to adaptive evolution, making comparative genomic analysis particularly
important for revealing the adaptive evolution of S. japonica.

In this study, female and male S. japonica genomes were sequenced using next-
generation sequencing (NGS) technology. The K-mer method was used to estimate key
genomic parameters, including genome size, heterozygosity, GC content, repeat content,
and genome integrity, thereby describing the genomic characteristics of female and male
individuals. In addition, the distribution of simple sequence repeats (SSRs) was analyzed,
and the mitochondrial genome was annotated. Our findings will provide foundational
data for comparative genomic analyses between males and females and will offer a basis
for future studies on the genetic basis and evolutionary mechanisms of sex determination
and differentiation in cephalopods, as well as inform molecular breeding and germplasm
resource conservation.

2. Materials and Methods
2.1. Ethics Statement

The samples used in this study were artificially cultured and collected postmortem.
All S. japonica specimens were processed following procedures that were compliant with the
Animal Care and Use Ethics policies of Zhejiang Ocean University (Approval No. 2024150).

2.2. Sample Collection and Genome Sequencing

Six S. japonica samples (three males and three females) were collected from the Xishan
Island in May 2024. The muscle tissue obtained through dissection was preserved at —80 °C.
About 1 g of muscle tissue was collected for DNA extraction. DNA was extracted using
the phenol/chloroform method. The concentration, purity, and integrity of DNA were
evaluated using a NanoDrop 2000 (Thermo Fisher Scientific Inc., Waltham, MA, USA)
and 1% agarose gel electrophoresis. Two paired-end DNA libraries with an insert size
of 350 bp were constructed and sequenced on the DNBseq platform (BGI) according to
the manufacturer’s protocol. Library construction and sequencing were performed by
OneMore Technology Co., Ltd. (Wuhan, China).

2.3. K-mer Analysis and Genome Assembly

Quality control and preprocessing of the raw sequencing data were performed using
FastQC (v0.11.3) [28] and FASTP (v0.23.2) [29]. Filtering of the raw data was conducted with
FASTP, with the length parameter “-1 50” and using default settings for other parameters.
Initial sequencing quality was evaluated with FastQC using default parameters. Sequencing
quality was evaluated using various quality metrics, including Q20 (the proportion of bases
with a Phred quality score greater than 20), Q30 (the proportion of bases with scores
greater than 30), and the GC content distribution. BLAST (2.11.0+) was used to align
a random subset of 10,000 high-quality read pairs selected from the filtered data to the
NCBI nucleotide (NT) database. Matches in the top 80% were identified and visualized for
downstream analysis [30]. Rigorous quality control and filtering were performed (trimming
low-quality bases [Q < 20], removing adapter sequences, discarding reads with >40% low-
quality bases [Q < 15] or >5 ambiguous bases [N], retaining reads >50 bp, and eliminating
PCR duplicates), which yielded high-quality clean reads for subsequent analyses. K-mer
analysis was performed using clean reads in Jellyfish software (version 2.3.0, parameters:
-m 21 -s 1e9 -p 2), and K-mer frequency statistics were calculated [31]. The peak depth
and optimal K-mer quantity were determined based on the K-mer analysis results. The
following formula was used to estimate the genome size: Genome size (G) = Ny_mer/ Ci-mer
= Npase/ Cpase, Where np,qe and ng_mer represent the total number of bases and the number
of K-mers in the sequence, respectively, and Cjse and Cx.mer denote the average depth of
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base pairs and K-mer coverage, respectively. The heterozygosity and repeat sequence ratio
of the genome were also evaluated using K-mer analysis [32]. GCE (v1.0.0) was used to
perform K-mer analysis with a K-mer size of 17, which yielded up to 417 possible K-mer
types; this was sufficient for ensuring comprehensive genomic coverage [33]. The short-read
assembler Minia was used to assemble clean reads with the de Bruijn graph algorithm using
a k-mer size of 51 [34]. PRINSEQ (https:/ /sourceforge.net/projects/prinseq/ (accessed on
20 March 2025)) was used with the -stats all parameter to evaluate the assembled sequences,
and BBMap (v39.13) was used to calculate the GC content. Smudgeplot (v0.2.3dev) was
used to visualize heterozygous K-mer pair patterns to further characterize genome structure
and ploidy.

2.4. Microsatellite Identification

Microsatellite motifs in the draft genome were identified using the MlcroSAtellite tool
(http:/ /pgrc.ipk-gatersleben.de/misa/ (accessed on 25 March 2025)). The analysis was
performed using standard parameters: the minimum number of repeats was set to 6, 5, 5, 6,
and 5 for di-, tri-, tetra-, penta-, and hexanucleotide motifs, respectively.

2.5. Mitochondrial Genome Assembly and Phylogenetic Analysis

GetOrganelle (v1.7), Novoplasty (v4.3.5), and MitoZ (v3.6) were used to assemble the
filtered reads into a complete mitochondrial genome. For MitoZ, default parameters were
applied except for specifying Mollusca as the clade, genetic code 33, and species name S.
japonica. GetOrganelle was run with default parameters. NOVOPlasty was executed with
the recommended configuration file, in which the seed sequence and species information
were customized. A reference sequence from the closely related species Sepia esculenta
(accession number AB266516.1) was downloaded from NCBI (https://www.ncbinlm.
nih.gov/, accessed on 8 August 2024). SeqMan Ultra was used to refine the assembled
sequence to ensure its completeness. The MITOS Web Server [35] was used to annotate
the mitochondrial genomes, and OGDRAW (https:/ /chlorobox.mpimp-golm.mpg.de/
OGDraw.html (accessed on 23 August 2025)) was used to generate circular genome maps.
The 13 protein-coding genes (PCGs) were successfully identified in this study.

The mitochondrial genomes of 18 cephalopod species were analyzed, including nine
representatives from Sepiidae (Sepia, Metasepia, Acanthosepion, Sepiella) and outgroup taxa
(Nautilus, Octopus, Todarodes), with S. japonica included as the focal species in this study
(Table 1). Thirteen protein-coding genes (PCGs: atp6, atp8, cox1-3, cob, nad1-6, nad4l) were
extracted for phylogenetic analysis. Nucleotide sequences of each PCG were initially
aligned using MAFFT (v7.505) [36]. The resulting alignments were subsequently refined
using TrimAl (v1.4.1) [37]. The trimmed alignments of all 13 PCGs were then concatenated
into a supermatrix using PhyloSuite (v1.2.3) [38]. Phylogenetic reconstruction was per-
formed using maximum likelihood in IQ-TREE (v2.2.0), with the best-fit substitution model
(MFP) automatically selected by ModelFinder [39]. The analysis incorporated 1000 ultrafast
bootstrap replicates for branch support estimation. The resulting phylogenetic tree was
rooted with N. pompilius (Nautiloidea) as the outgroup and visualized using FigTree (v1.4.4)
and iTOL for further examination of topological relationships within Sepiidae and related
coleoid lineages [40].
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Table 1. NCBI accession of mitogenomes of 18 species used in this study.

Species Accession Length (bp) Family
Nautilus pompilius NC_035715.1 15,693 Nautilidae
Octopus bimaculoides NC_029723.1 15,733 Octopodidae

Octopus vulgaris NC_006353.1 15,744 Octopodidae
Sepioteuthis lessoniana NC_007894.1 16,631 Loliginidae
Idiosepius hallami KF647895.1 16,183 Idiosepiidae
Spirula spirula NC_034682.1 15,472 Spirulidae
Architeuthis dux NC_011581.1 20,331 Architeuthidae
Todarodes pacificus NC_006354.1 20,254 Ommastrephidae
Thysanoteuthis rhombus NC_058301.1 20,545 Thysanoteuthidae
Metasepia tullbergi MT974497.1 16,182 Sepiidae
Acanthosepion esculentum NC_009690.1 16,199 Sepiidae
Acanthosepion pharaonis NC_021146.1 16,208 Sepiidae
Acanthosepion lycidas NC_022468.1 16,244 Sepiidae
Sepia officinalis NC_007895.1 16,163 Sepiidae
Sepiella inermis NC_022693.1 16,191 Sepiidae
Sepiella maindroni NC_028731.1 16,170 Sepiidae
Octopus sinensis NC_052881.1 15,737 Octopodidae
Sepiella japonica PX243620 16,729 Sepiidae

2.6. Effective Population Size Inferrence

The Pairwise Sequentially Markovian Coalescent (PSMC) method was used to infer
the historical population dynamics of S. japonica. The PSMC model estimates changes in
effective population size over time by analyzing the distribution of heterozygous sites
across the genome of a single diploid individual [41]. Paired-end sequencing reads were
first aligned to the reference genome using BWA-mem. The resulting “sam” files were
sorted into “bam” format with Samtools (sort, -@ 8). High-quality “consensus.fq” files were
then generated with bcftools and vcftools, and converted to psmcfa format using the PSMC
script “fq2psmcfa” (-q20) [42]. PSMC was subsequently run with the generation interval
(g) of 0.5 years and the mutation rate (i) of 0.9 x 10~8, following estimates for the mollusk
Haliotis sorenseni [43].

3. Results
3.1. Size, Heterozygosity Ratio, and Repeat Sequence Ratio

A total of 516.85 Gb and 518.63 Gb of raw sequencing data were obtained for female
and male S. japonica, respectively. A total of 488.58 Gb and 488.46 Gb of high-quality clean
reads were obtained after quality filtering and removing redundant reads, respectively. The
Q20 and Q30 values of all six libraries were greater than 99.40% and 97.83%, respectively,
indicating that the quality of the sequencing data was high. The average GC content was
35.16% for females and 35.27% for males (Table 2). The sequencing depth was 102 for both
female and male S. japonica according to K-mer analysis (Figure 1); the estimated genome
sizes were 4317 Mb and 4222 Mb, and the revised genome sizes were 4310 and 4215 Mb
for females and males, respectively. Heterozygosity rates were 0.85% in females and 0.77%
in males, and repeats comprised 76.05% and 75.91% of the female and male genomes,
respectively (Table 3). No exogenous contamination was detected in the sequencing data
according to the alignment of clean reads against the NCBI NT database (Table S1).
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Table 2. Statistics of sequencing data of female and male S. japonica.

. Read Base Count Read o o o
Library Name Type Number (Gb) Length (bp) Q20 (%) Q30(%) GC Content (%)
CIM-1 raw 392,466,944 58.87 150 99.45 97.99 35.30
dedup 386,993,714 57.30 148 99.45 97.99 35.12
CIM-J-2 raw 1,533,736,568 230.06 150 99.45 98.01 35.38
dedup 1,459,025,604 216.77 148 99.45 98.01 35.24
CIMJ-3 raw 1,519,472,688 227.92 150 99.43 97.92 35.26
dedup 1,446,429,734 214.51 148 99.43 97.92 35.10
Total raw 3,445,676,200 516.85 150 99.44 97.97 35.32
ota dedup  3,292,449,052 48858 148 99.44 97.97 35.16
X1M-J-1 raw 351,953,724 52.79 150 99.50 98.17 35.57
dedup 347,458,202 51.34 147 99.50 98.17 35.35
X1M-J-2 raw 1,457,509,058 218.63 150 99.44 97.96 35.46
dedup 1,388,606,834 205.78 148 99.44 97.96 35.27
X1M-J-3 raw 1,648,035,630 247.21 150 99.40 97.83 35.45
dedup 1,562,234,556 231.34 148 99.40 97.83 35.26
Total raw 3,457,498,412 518.63 150 99.43 97.92 35.47
ota dedup  3,298,299,592 488.46 148 99.43 97.92 35.27
Read number: Number of sequencing reads; Base count (Gb): Total bases sequenced in gigabases; Read length
(bp): Average read length in base pairs; GC content (%): Percentage of guanine (G) and cytosine (C) bases; dedup:
duplicate-removed data; C1IM-J-1: Female-1; X1M-J-1: Male-1.
5.0x10' 5.0x10'
01 0!
0 100 200 0 100 200
Coverage Coverage
(A) (B)
Figure 1. Distribution of the 17-mer depth and frequency in the female and male S. japonica genomes.
(A) Female. (B) Male. The x-axis (Coverage) represents the sequencing depth; the y-axis represents
the proportion of reads at each depth relative to the total read count.
Table 3. Data statistics and analysis of 17-mer sequences in female and male S. japonica.
Genome Revised Genome Heterozygous o
Sample K-mer Number K-mer Depth Size (bp) Size (bp) Ratio (%) Repeat (%)
Female 435,897,116,926 102 4,317,320,000 4,310,509,074 0.85 76.05
Male 435,678,168,857 102 4,222,250,000 4,215,254,265 0.77 7591

The draft genome assembly was generated using filtered clean reads. Information on
the draft genome for female and male S. japonica at the contig level is shown in Table 4.
Mapping rates of 99.78% (female) and 99.77% (male) based on 10 Gb subsampled reads
confirmed the high completeness and low contamination of the draft assemblies. The total
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contig length for the female genome was 4197 Mb, which comprised 21,378,004 contigs,
with N50 and N90 lengths of 508 bp and 57 bp, respectively, and a maximum contig length
of 23,523 bp. The GC content of the assembled female genome was 34.15%. The total contig
length of the male genome was 4206 Mb, which comprised 21,355,316 contigs, with N50
and N90 lengths of 511 bp and 57 bp, respectively, and the maximum contig length was
23,780 bp. The total length and N50 length were greater for the male genome than the
female genome; the number of contigs was slightly lower in the male genome than in the
female genome. Smudgeplot analysis revealed that S. japonica is a diploid species (AB)
(Figure 2, Table 5), and AB-type K-mers were the most common (54%). The presence of
AABB and AAB peaks suggests a high repeat content and heterozygosity rates [44,45].
These values suggest that levels of heterozygosity were similar in males and females,
which indicates that the architecture of the genome is conserved across sexes; sex-linked
chromosomal divergence was absent.

Table 4. Assembly statistics of the draft genomes of female and male S. japonica.

Total Length (bp)  Total Number

Max Length N50 Length N90 Length GC Content

(bp) (bp) (bp) (%)
Female contig 4,197,030,785 21,378,004 23,523 508 57 34.15
Male contig 4,206,358,660 21,355,316 23,780 511 57 34.15
kmers pairs kmers pairs

Total coverage of the kmer pair; A + B

3n 4n 5n 6n 7n 8n

2n

proposed diploid ‘

AB 0.54

AABB 029

AAB 0.17 I3
c
<

Normalized minor kmer coverage: B / (A + B)

3,091,000

2,575,000

2,060,000

1,545,000

1,030,000

515,000
0

3,102,000

2,585,000

2,068,000

1,651,000

1,034,000

517,000
0

proposed diploid

AB 0.54
AABB 0.3
AAB 0.16

7n

6n

5n

3n

Total coverage of the kmer pair: A + B

2n

15 1/4 13 2/5 12

Normalized minor kmer coverage: B/ (A + B)

(A) (B)

Figure 2. Genome ploidy level analysis of female and male S. japonica. (A) Female. (B) Male. The
plots display the heterozygous K-mer distribution for diploid S. japonica. The concentration of points
in defined regions is consistent with the features expected for a diploid genome.
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Table 5. Smudgeplot analysis results of female and male S. japonica.

Peak K-mers K-mers [Proportion] Summit B/(A + B) Summit A + B
AB 63,723,397 0.54 0.48 98.06
Female AABB 34,490,621 0.29 0.48 199.5
AAB 20,076,357 0.17 0.34 148.78
AB 62,713,232 0.54 0.48 92.96
Male AABB 34,793,915 0.30 0.49 205.99
AAB 18,889,638 0.16 0.34 143.19

3.2. Identification of Microsatellite Motifs

Both ends of the contig sequences from the assembled draft genome sequences were
screened to identify SSR sequences. A total of 21,355,316 and 21,378,004 microsatellite
motifs were identified in female and male S. japonica genomes, respectively (Table 6).
In the male genome, microsatellite motifs were 38.92% mononucleotide repeats, 28.20%
dinucleotide repeats, 11.63% trinucleotide repeats, 21.00% tetranucleotide repeats, 0.11%
pentanucleotide repeats, and only a few hexanucleotide repeats. By contrast, microsatellite
motifs in the female genome were 38.59%, 27.43%, 11.29%, 21.00%, and 0.11% mono-, di-,
tri-, tetra-, penta-, respectively (Figure 3). Overall, the microsatellite motif profiles of female
and male S. japonica genomes were highly similar (Figures 3 and 4; Table 6). The numbers
of most repeats for S. japonica ranged from 9 to 12 (mono-) and 5 to 8 (di-, tri-, tetra-) for
both males and females.

Table 6. Microsatellite motif types detected in female and male S. japonica.

Female Male
Total number of sequences examined 21,378,004 21,355,316
Total size of examined sequences (bp) 4,197,030,785 4,206,358,660
Total number of identified SSRs 4,347,973 4,322,277
Number of SSR containing sequences 3,175,080 3,152,792
Number of sequences containing more than 1 SSR 789,477 785,798
Number of SSRs present in compound formation 666,189 658,486

~0.11%

0.03% . ~0.11% 0.03%
N N\

B Mono-nucleotide
[ Di-nucleotide

. Tri-nucleotide
11.63% [ Tetra-nucleotide
' [ Penta--nucleotide
I Hexa-nucleotide

11.29%

28.20%

2743% :

0

(A) (B)

Figure 3. Frequency of SSR types in the genomic survey of female and male S. japonica. (A) Female.
(B) Male.
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Epeat counys

Figure 4. Distribution of microsatellite repeats in female and male S. japonica. (A) Female. (B) Male.

3.3. Characterization of S. japonica Mitochondrial Genome

The complete mitochondrial genomes of female and male S. japonica formed closed
circular molecules, with total lengths of 16,729 bp and 16,725 bp, respectively. These two
mitochondrial genomes comprised 37 genes, including 13 PCGs (7 NADH dehydrogenase
genes: nadl-nad6 and nad4l; 3 cytochrome c oxidase genes: cox1-cox3; 1 cytochrome b gene:
cob; and 2 ATP synthase genes: atp6 and atp8), as well as 22 tRNA genes and 2 rRNA genes
(12S and 16S) (Table S2).

The majority strand contained the trnT, trnkK, trnA, trnR, trnS1, trnN, trnl, and trnD
genes, along with the cox1, cox2, cox3, nad2, nad3, atp6, and atp8 genes; the minority strand
contained the rest of the mitochondrial genes. The same numbers of transfer RNA (tRNA)
and ribosomal RNA (rRNA) genes were identified in both sexes (each with 22 tRNA genes
and 2 rRNA genes) (Figure 5).

3.4. Phylogenetic Relationships of S. japonica Based on Mitochondrial Genome

The phylogenetic position of S. japonica was determined using the complete mito-
chondrial genomes of 17 representative cephalopod species from the families Sepiidae,
Octopodidae, Loliginidae, Idiosepiidae, Spirulidae, Architeuthidae, Ommastrephidae, and
Thysanoteuthidae. N. pompilius was selected as an outgroup to root the phylogenetic tree.
The tree was constructed from concatenated nucleotide sequences of all 13 mitochondrial
protein-coding genes (PCGs) (Figure 6A). S. japonica clustered most closely with its con-
geners S. inermis and S. maindroni, and these three species formed a distinct clade that
further grouped with S. officinalis, indicating a close evolutionary relationship between the
genera Sepiella and Sepia (Figure 6B). M. tullbergi and three species of Acanthosepion formed
another clade, and these two clades together constituted the family Sepiidae. Except for
the basal node (bootstrap = 56), all internal nodes within Sepiidae received full bootstrap
support (bootstrap = 100), suggesting that the phylogenetic relationships among genera
and species in this family are overall stable and well resolved [46]. Within other lineages,
O. bimaculoides, O. sinensis, and O. vulgaris formed a single branch with maximal support
(bootstrap = 100), supporting the monophyly of these three Octopus species. T. pacificus
and T. rhombus grouped as sister branches (bootstrap = 98), indicating a close relationship
between these taxa. In contrast, S. lessoniana, I. hallami, S. spirula, and A. dux formed a larger
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branch with lower support (bootstrap = 63), suggesting that the phylogenetic relationships
among these taxa remain uncertain [47]. Overall, the topology of the phylogenetic tree was
largely consistent with the traditional classification of cephalopods and clarified the evolu-
tionary relationships of S. japonica with its congeners and closely related species, providing
important evidence for future studies on the systematics and evolutionary history of the
family Sepiidae.
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Figure 5. Mitochondrial map of female and male S. japonica. (A) Female. (B) Male. The first and
second circles display the CDSs, rRNAs, and tRNAs located on both the positive and negative strands.
The third circle represents the GC content. The inward-facing peaks of the circle indicate that the
GC content was lower than the average value of the entire genome, and the outward-facing peaks

indicate increases in the GC content relative to the average value of the genome. The fourth circle
shows the GC-skew value.

3.5. Population Size Dynamics of S. japonica

The PSMC model was employed to infer the historical changes in the effective popula-
tion size of S. japonica (Figure 7). The results showed that S. japonica experienced substantial
demographic fluctuations and a bottleneck effect over the past ~300 Kya. Around 200 Kya,
its effective population size remained at a moderate level (about 2-3 x 10%). A marked con-
traction then occurred, with the effective population size declining to below about 2 x 10%.
Around 100 Kya, the population recovered and reached a peak (about 4 x 10%), followed
by a continuous decline. During the Last Glacial Period (approximately ~70-15 Kya), the
effective population size dropped to its minimum and showed no sign of recovery by
about 10 Kya. The bootstrap analyses were consistent with the main curve within 100 Kya,
indicating that the inference in this time range was robust.
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Figure 6. The phylogenetic tree reconstructed from the nucleotide sequences of thirteen PCGs using

IQ-TREE in PhyloSuite. (A) The gene orders of the concatenated nucleotide sequences of protein-
coding genes (PCGs) for different species. (B) The phylogenetic tree of cephalopod species based on
mitochondprial protein-coding genes. Clade groupings indicate family taxonomy. Numbers on the

branches represent bootstrap values (red star indicates the study species).
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Figure 7. The demographic history of S. japonica in this study. The PSMC estimates based on the draft
genome sequences of S. japonica revealed temporal changes in effective population size. The thin

light-red lines represent 100 bootstrap replicates, and the thick red line indicates the median value.
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4. Discussion

This study used NGS to conduct a genome survey analysis of female and male S.
japonica, which yielded fundamental genomic information, including information on size,
heterozygosity, and the content of repeats. Microsatellite motifs were also identified, and the
complete mitochondrial genomes were assembled and annotated. Through comparative
analysis, this study provided key insights into the basic genomic differences between
female and male individuals of S. japonica. At present, only a few cephalopod species have
undergone whole-genome sequencing, and systematic comparative analyses of female
and male genomes remain scarce. For example, Li et al. combined a chromosome-level
genome of 2.72 Gb of female O. sinensis using PacBio sequencing, Illumina paired-end
sequencing, and Hi-C technology [48]. Similarly, Kim et al. assembled a 5.09 Gb genome for
Octopus minor, providing valuable insights into the evolutionary adaptations of octopuses
to mudflat environments [49]. Coffing et al. generated a 2.3 Gb genome assembly of
O. bimaculoides by re-sequencing a single female individual using PacBio HiFi long-read
sequencing, with Hi-C data used to anchor scaffolds to chromosomes [50]. Therefore, this
study provides valuable data of great significance for the whole-genome assembly analysis
of S. japonica. The genome sizes of female and male S. japonica were estimated to be 4311 Mb
and 4215 Mb, respectively (corrected values), according to K-mer analysis. These values
are slightly smaller than those reported for other related species, including S. esculenta
(5.1 Gb, GCA_964036315.1), Sepia bandensis (5.9 Gb, GCA_037127315.1), S. pharaonis (4.8 Gb,
GCA_903632075.3), and Sepia lycidas (5.2 Gb, GCA_963932145.1). This difference might
stem from the lower content of repetitive elements, such as LINE and SINE transposable
elements, in S. japonica compared with other Sepiella species. LINE elements comprise
over 12% of the genome of O. bimaculoides, suggesting that they play a key role in genome
expansion in cephalopods [9]. The lower abundance of transposable elements in S. japonica
might contribute to the smaller size of their genome. Differences in genome size may
be associated with reductions in the size of introns and intergenic regions. Cephalopod
genomes are generally large and often range from 3 to 6 Gb; they have high proportions
of repetitive sequences [9,51], which are potentially linked to their complex behavioral
regulation, advanced nervous systems, and environmental adaptability. The observed
variation in genome size among species likely reflects differences in the expansion of
transposable elements, the accumulation of repeats, gene loss, or genome compaction over
evolutionary time.

The estimated heterozygosity was 0.85% and 0.77% in females and males, respec-
tively; repetitive sequences comprised 76.05% and 75.91% of the female and male genomes,
respectively. Comparable genome survey analyses, all based on K-mer methods, have
reported heterozygosity values ranging from 0.34% in Octopus sinensis [50] and 0.35% in
S. pharaonis [5] to 1.64% in Mytilus coruscus [52]. These results indicate that the heterozy-
gosity observed in S. japonica falls within the range reported for cephalopods and other
marine mollusks.

The higher heterozygosity in females compared with males suggests that multiple
factors such as reproductive strategies, environmental adaptability, and selection pres-
sures have affected the genome of female S. japonica. For example, a genomic analysis of
Hapalogenys analis revealed that females have higher heterozygosity (0.58%) than males
(0.23%), indicating that females may experience stronger selection associated with mate
choice and intraspecific competition compared with males [53]. Coffing et al. proposed that
sex determination mechanisms affect genomic heterozygosity in the California two-spot
octopus (O. bimaculoides); males have two copies of chromosome 17 (ZZ), and females have
a single copy (ZO) [50]. These findings suggest that sex plays an important role in the
formation and maintenance of genomic diversity in cephalopods. However, the causes of
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sex-related differences in heterozygosity are complex and might vary across taxa; additional
studies are needed to further clarify this possibility. The somatic chromosome number of
S. japonica is 2n = 92, with no morphologically distinct sex chromosomes observed [54].
This suggests that genomic differences between males and females likely originate from
sequence-level variation rather than chromosomal dimorphism. Obtaining sex-specific
karyotypic and sex chromosome data in the future will be essential to further elucidate
these genomic differences.

The GC content was 35.16% and 35.27% in female and male S. japonica, respectively.
The GC content is an important genomic characteristic associated with randomness in
the genome and the density of functional genes [55,56]. The GC content in closely related
species such as S. esculenta (33.5%), S. bandensis (34.5%), S. pharaonis (33.0%), and S. lycidas
(33.0%) was similar to that in S. japonica in this study. This may reflect the evolutionary
conservation of genome composition within cephalopods. The genome of S. japonica is
moderately sized, has a high proportion of repetitive sequences, and has a relatively high
GC content, which is consistent with the typical characteristics of cephalopod genomes,
including a high repeat content and low coding density. Subsequently, comprehensive
whole-genome sequencing research can be conducted.

Mononucleotide repeats were the most abundant in the female (38.59%) and male
(38.92%) genomes, and hexanucleotide repeats were the least common. Generally, the
number of SSRs decreases with the length of the repeating unit [53]. In this study, the
proportion of tetranucleotide repeats was higher than the proportion of trinucleotide repeats
in both female and male genomes. This may stem from the ease with which tetranucleotide
repeats can be amplified and accumulate in non-coding regions [57]. The expansion and
accumulation of tetranucleotide motifs may be facilitated by the high proportion of non-
coding sequences. Overall, SSR types and frequencies were highly similar in female and
male S. japonica genomes.

The whole mitochondrial genome of S. japonica was previously assembled by Ya-
mashita et al. [58]. This study generated complete mitochondrial genome assemblies for
both female and male S. japonica. A 551 bp non-coding region between trnG and truN in the
newly assembled sequences was identified as the mitochondrial control region; this region
is essential for regulating mitochondrial DNA replication and transcription. Similar control
regions have also been identified in closely related species (e.g., S. lycidas) [59]; this control
region might be functionally significant and evolutionarily conserved in cephalopods. Com-
pared with previous mitochondrial studies that have primarily focused on protein-coding
regions, this study identifies and annotates the mitochondrial non-coding regions of S.
japonica, providing preliminary insights into their potential roles in gene regulation and
evolutionary adaptation. Furthermore, our analysis of the mitochondrial genome identified
functionally significant genes and enhanced our understanding of the genomic structure of
this species. Our findings provide novel molecular insights that will aid future studies of
the evolution, reproduction, and systematics of S. japonica and its closely related species.

A substantial fall in sea level would have caused widespread exposure of continental
shelves, a drastic reduction and fragmentation of shallow-marine habitats, and this process
may have directly reduced the effective population size of S. japonica and promoted the
differentiation of its population genetic structure [60-62]. As a species inhabiting nearshore
environments [2], its population size is strongly influenced by large sea-level fluctua-
tions [63]. PSMC analysis indicates that this species underwent a prolonged population
decline beginning around 60 Kya and remained at a low effective population size until about
~10 Kya. This long-term reduction was likely closely associated with the cold climate and
marked sea-level oscillations of the Last Glacial Period (approximately ~70-15 Kya) [60].
By altering habitat availability and connectivity, these environmental drivers probably
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governed the historical population decline of S. japonica and shaped its present genetic
structure. Future studies integrating chromosome-level genome assembly with population
resequencing will further elucidate its genetic structure and evolutionary history.

5. Conclusions

We conducted the first genome survey analysis of female and male S. japonica. We
analyzed key genomic characteristics, including genome size, heterozygosity, GC content,
and repeat sequences, and generated draft genome assemblies. The genome sizes of the fe-
males and males were 4310 Mb and 4215 Mb, respectively. The heterozygosity of the female
genome was slightly higher than that of the male genome; however, the number of SSR
markers was higher in the male genome than in the female genome. Overall, the differences
in genomic characteristics between males and females were relatively small. Phylogenetic
analysis based on the complete mitochondrial genome confirmed the taxonomic position of
S. japonica within the family Sepiidae, showing its closest relationships with S. inermis and
S. maindroni and a stable clade with S. officinalis. PSMC analysis indicated that this species
underwent a prolonged population decline during the Last Glacial Period (approximately
~70-15 Kya), likely driven by cold climate and pronounced sea-level fluctuations. Overall,
our results reveal that S. japonica is a diploid species and highlight the challenges posed
by its high heterozygosity and repetitive sequences for genome assembly. These results
provide genomic resources for high-quality whole-genome assembly and comparative
analysis of female and male S. japonica, and offer scientific references for subsequent studies
on the genetic basis and evolutionary mechanisms of sex determination and differentiation,
as well as for molecular breeding and germplasm resource conservation.
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