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Abstract: MicroRNAs (miRNAs) are a class of small non-coding RNAs that may function as tumor
suppressors or oncogenes. Alteration of their expression levels has been linked to a range of human
malignancies, including cancer. The objective of this investigation is to assess the relative expression
levels of certain miRNAs to distinguish between prostate cancer (PCa) from benign prostatic hyper-
plasia (BPH). Blood plasma was collected from 66 patients diagnosed with BPH and 58 patients with
PCa. Real-time PCR technology was used to evaluate the relative expression among the two groups
for miR-106a-5p and miR-148a-3p. The significant downregulation of both miRNAs in plasma from
PCa versus BPH patients suggests their potential utility as diagnostic biomarkers for distinguishing
between these conditions. The concurrent utilization of these two miRNAs slightly enhanced the
sensitivity for discrimination among the two analyzed groups, as shown in ROC curve analysis.
Further validation of these miRNAs in larger patient cohorts and across different stages of PCa may
strengthen their candidacy as clinically relevant biomarkers for diagnosis and prognosis.

Keywords: microRNAs; miR-106a-5p; miR-148a-3p; prostate cancer

1. Introduction

Prostate cancer (PCa) is the second most prevalent cancer among men globally, with
higher incidence and mortality in Northern and Western Europe, the Americas, Australia,
and the Caribbean. The increasing prevalence of screening is expected to decrease mortality
rates, while it may lead to overdiagnosis [1]. The conclusive diagnosis of PCa is determined
by the histopathological result after analysis of the prostate biopsy cores.

Prostate biopsy is indicated when the levels of the prostate-specific antigen (PSA) are
elevated beyond normal ranges or when there are other clinical indications suggestive
of prostate cancer, such as abnormalities found during a digital rectal examination (DRE)
or suspicious findings on imaging studies like Magnetic Resonance Imaging (MRI) or
ultrasound. The PSA is not a tumor-specific marker but rather an organ-specific marker,
which is why we can find PCa at a normal value of PSA or elevated PSA levels in other
conditions, most commonly benign prostatic hyperplasia (BPH) [2]. A suspicious DRE
associated with normal PSA (≤4 ng/mL) has a positive predictive value of 5–30% [3],
but the association between suspicious DRE and elevated PSA can double the chance of
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finding a positive prostate biopsy (48%) [4]. There has been an increasing use of MRI
in various aspects of PCa management in recent years. The average positive predictive
value is correlated with the PI-RADSv2.1 score. The PIRADSv2.1 3 score was 16% and 59%
and 85% for PIRADSv2.1 scores 4 and 5 [5]. Such clinical diagnosis leads to tissue biopsy,
which is the only way to differentiate between prostate diseases. Many useless biopsies are
performed, exposing patients to risks and stress. It is necessary to develop novel biomarkers
that possess high sensitivity and specificity to address these diagnostic procedures. It is
also essential to discriminate between indolent and aggressive tumors, particularly in the
early stages of the disease. On the other hand, PCa can be found incidentally after surgery
for BPH. The rate of incidental PCa ranges from 5.64% to 23.3% [6,7]. However, there are
surgical techniques that vaporize the prostatic tissue, and there is no histopathological
evaluation such as Green Laser, Thulium vaporization, or Rezum. For all these reasons,
having an accurate diagnosis before recommending surgical options is important.

MicroRNAs (miRNAs) are defined as a group of small non-coding RNA transcripts,
typically consisting of around 22 nucleotides in length. They have the potential to act as
both tumor suppressors and oncogenes, as miRNA alteration of the expression levels has
been related to diverse forms of human malignancies. These transcripts are investigated to
sustain the diagnosis and treatment of cancer, including PCa [8]. They bind to matching
sequences in the 3′UTR of target miRNAs using a conserved ‘seed sequence’ area, inhibiting
the target mRNAs’ translation [9].

Additionally, miRNAs are abundantly and stably expressed in various biological
contexts and can be readily detected in tissues and biofluids, such as plasma. This char-
acteristic makes them promising candidates for biomarker discovery and noninvasive
diagnostic applications in various diseases, including cancer. Their remarkable stability
also makes them promising candidates for noninvasive biomarkers in cancer diagnosis and
prognosis [10,11].

Different types of cancer, including PCa, have been shown to have different miRNA
expression patterns between tumor and normal tissues, plasma, and exosomes [12,13].
In PCa, various studies have demonstrated that miRNAs regulate numerous cellular
and molecular mechanisms. Some miRNAs have been identified as upregulated and
others as downregulated in PCa [14]. The selection of miR-106a-5p and miR-148a-3p for
analysis in PCa is motivated by their potential as biomarkers, their functional significance
in cancer biology, and their implications for PCa treatment strategies. Studying these
miRNAs’ expression profiles and regulatory functions in PCa may contribute to a better
comprehension of the disease and the progress of improved diagnostic and therapeutic
approaches. miR-106a-5p was identified to be downregulated in the plasma samples of PCa
patients compared to those of BPH patients [15] and is upregulated in metastatic PCa [16].
MiR-148a-3p is downregulated when comparing 0PCa patients with healthy controls [17]
and metastatic PCa [18]. MiR-106a-5p and miR-148a-3p are still under research as cancer
biomarkers.

This study aimed to evaluate the relative expression levels of miR-106a-5p and miR-
148a-3p, leading to possible implications as biomarkers in the differentiation of PCa from
BPH when analyzed in the blood plasma of patients using real-time PCR technology.

2. Materials and Methods
2.1. Samples Collection of Prostate Adenoma and Prostate Cancer Patients

From July 2020 to March 2023, 124 patients were prospectively enrolled, of which
66 patients were diagnosed with BPH and 58 with PCa. All patients participating in the
present investigation provided informed consent by the University Ethics Committee. The
current investigation received approval from the University of Medicine and Pharmacy
‘Iuliu Hatieganu’ (UMPhIH) ’s ethical committee under reference numbers 263/23.07.2020
and 294/01.09.2021. The exclusion criteria for both groups were no other malignancy,
and for the BPH group, also a PSA level > 4 ng/mL. The PCa group included 58 patients
who endured laparoscopic radical prostatectomy. The BPH group included 66 patients
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who underwent Thulium vapor resection or transurethral resection of the prostate (TUR-
P) and were diagnosed with BPH. All patients underwent fasting blood sampling. This
classification categorizes PCa patients based on specific criteria. Patients with a prostate-
specific antigen (PSA) level below 10 ng/mL and a Gleason score (GS) below 7, along with
a clinical stage of cT1c or cT2a, are considered low risk. Patients with a PSA level between
10 and 20 ng/mL, a GS of 7, or a clinical stage of cT2b are classified as intermediate risk.
Patients with a PSA level ≥ 20 ng/mL, a GS above 7, or a clinical stage of cT2c are classified
as high risk. The relative expression levels of selected serum miRNAs were assessed in the
PCa and BPH groups using a TaqMan qRT-PCR approach, which is considered the golden
standard for miRNA expression evaluation.

2.2. RNA Isolation and Extraction

RNA was extracted from 124 patients’ plasma with Plasma/Serum RNA Purifica-
tion Kits (Norgen Biotek Corp, Thorold, ON, Canada) according to the manufacturer’s
procedure. The concentration of RNA was evaluated by the NanoDrop2000 series spec-
trophotometer (Thermo Fischer Scientific, Waltham, MA, USA), and the samples were
diluted to a final concentration of 50 ng/µL for all the samples used in the study.

2.3. cDNA Synthesis and qRT-PCR for miR-106a-5p and miR-148a-3p

miRNA expression levels were detected in 124 samples. After quantification, 50 ng of
total RNA was reverse-transcribed into cDNA using a TaqMan MicroRNA Transcription
kit (Thermo Fischer Scientific, Waltham, MA, USA) and specific TaqMan microRNA primer
assay (Thermo Fischer Scientific, Waltham, MA, USA) for the selected miRNAs (miR-106a-
5p and miR-148a-3p) respecting the manufacturer’s protocol. The primer sequences for
miRNAs are included in Table 1.

Table 1. MiRNA assays were used in the study.

No miRNAs Assay ID Sequence

1 RNU48 001006 5′-GATGACCCCAGGTAACTCTGAGTGTGTCGCTGATGCCATCACCGCA
GCGCTCTGACC-3’

2 U6 001973
5’-GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGA
GAAGATTAGCATGGCC
CCTGCGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTT-3’

3 hsa-miR-106a-5p 000470 5’-AAAAGUGCUUACAGUGCAGGUAG-3’

4 hsa-miR-148a-3p 002169 5’-UCAGUGCACUACAGAACUUUGU-3’

qRT-PCR reaction was carried out in a volume of 10 µL using 5 µL of cDNA (diluted 1:4
with nuclease-free water), 5.03 µL TaqMan Fast Advanced Master MIX (Applied Biosystems,
Foster City, CA, USA), and 0.47 µL primer for each miRNA in ViiA7 (Applied Biosystems,
USA) PCR machine. The reactions were set up as follows: the initial denaturation step at
50 ◦C for 2 min and 95 ◦C for 2 s, followed by 40 cycles of 95 ◦C for 1 s, and 60 ◦C for 20 s.
RNU48 and U6 were used as housekeeping miRNAs. ∆∆ct method was used to analyze
the obtained CT values [19]. The qRT-PCR was duplicated for all the tested samples, and
the outliers were removed from the analysis.

2.4. Biological Relevance of hsa-miR-106a-5p and hsa-miR-148a-3p

DIANA-miRPath was used to perform miRNA pathway analysis (KEGG) for the
selected two transcripts [20]. DIANA-miRPath, a web server for miRNA pathway analysis,
uses the predicted miRNA targets generated by the DIANA-microT-CDS algorithm. These
algorithms predict target genes based on sequence complementarity between miRNAs and
the 3′ untranslated regions (UTRs) of mRNA transcripts. By default, DIANA-miRPath
combines all miRNA target genes and calculates p values to assess the KEGG pathway
enrichment of these target genes using bioinformatics tools such as TarBase v7.0.
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Then, Minturnet, linked to MiRTarBase, was used to explore and analyze miRNA–gene
regulatory networks. This is a valuable resource for understanding the post-transcriptional
regulation mediated by miRNAs and its implications in various biological processes and
diseases. It incorporates only interactions with strong experimental validation, such as
luciferase assay and Western blotting [21].

2.5. Statistical Analysis

Statistical analysis was executed with GraphPad Prism software.9 (GraphPad Soft-
ware, San Diego, CA, USA) using the t-test method. p-value < 0.05 was considered to
indicate a statistically significant difference among the relative expression levels of the
analyzed transcripts. The analyzed transcripts’ specificity and sensitivity as biomarkers
were combined in the receiver operating characteristic (ROC) curve analysis and reported
in areas under the curve (AUCs). The combined ROC curve for the two analyzed transcripts
was created using the CombiROC online tool [22].

3. Results
Patients’ Characteristics and Expression of Candidate miRNAs

Out of the 124 patients included in the present investigation, 58 were diagnosed with
PCa and 66 with BPH. The mean age of the BPH group was 66.65 years (range: 40–91), and
the mean PSA was 2.52 ng/mL (range: 0.15–3.92). The clinical and histopathologic data of
the PCa patients are summarized in Table 2.

Table 2. PCa patients’ characteristics and clinical and histopathological data.

Characteristics PCa (n = 58)

Mean age (range), years 68.75 (58–75)
Mean PSA (range), ng/mL 11.05 (4.5–33)
EAU risk groups for biochemical recurrence of localized and locally advanced PCa, n (%)
Low risk 8 (13.79%)
Intermediate risk 26 (44.82%)
High risk 24 (41.37%)
Pathological stage, n (%)
T2 35 (60.34%)
T3a 9 (15.51%)
T3b 10 (17.24%)
T3a+b 1 (1.72%)
T4 3 (5.17%)
Pathological Gleason score prostatectomy, n (%)
6 4 (6.89%)
7 42 (72.41%)
8 4 (6.89%)
9 8 (13.79%)
ISUP grade
1 4 (6.89%)
2 23 (39.65%)
3 19 (32.75%)
4 4 (6.89%)
5 8 (13.79%)
Lymph node involvement, n (%) 3 (5.17)

EAU, European Association of Urology; PCa, prostate cancer; PSA, prostate-specific antigen; ISUP, International
Society of Urological Pathology.

Both miRNAs revealed alterations in relative expression, and the transcripts proved to
be downregulated in the PCa group compared to in the BPH group (Figure 1). Mir-148a-3p
exhibited a highly significant modification with a p-value < 0.0001, while mir-106a-5p had
a p-value of 0.0168 when comparing the PCa group versus the BHP group. These findings
suggest that these miRNAs may play essential roles in distinguishing between these two
groups and could potentially serve as biomarkers for characterizing differences in their
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molecular profiles. We performed a receiver operating characteristic curve (ROC) analysis
of the relative expression levels of miR-106a-5p and miR-148a-3p in PCa patient plasma
versus BPH plasma, and we calculated the area under the ROC curve (AUC) (Figure 1).
Both miR-106a-5p and miR-148a-3p demonstrated significant sensitivity and specificity
in differentiating the PCa versus BPH groups. Respectively, the AUC of diagnosis in the
combined analysis was superior to that of individual cases. Thus, using the two transcripts
was more specific to predicting PCa diagnosis and demonstrated higher specificity and
sensitivity than the single-transcript evaluation (Figure 2).
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Figure 1. qRT-PCR evaluation of the relative expression levels of miR-106a-5p and miR-146a-3p in
plasma BHP and PCa patients. (A) Graphical representation of the relative expression levels calcu-
lated using ∆∆ct method for miR-106a-5p in plasma PCa patients versus BPH plasma, mean ± SD
(Standard Deviation). The data were normalized using U6 and RNU48 (* p = 0.0168). (B) ROC
curve for miR-106a-5p, displaying the specificity and sensitivity for the discernment among relative
expression levels in plasma for PCa patients versus BPH, AUC = 0.7010. (C) Graphical representation
of the expression levels calculated using ∆∆ct method for miR-146a-3p in plasma PCa patients versus
BPH, mean ± SD. (D) ROC curve for miR-148a-3p, AUC = 0.8173. The data were normalized using
U6 and RNU48 (**** p-value < 0.0001). Abbreviations: ROC, receiver-operating characteristic; AUC,
area under ROC curve.

KEGG pathway analysis of the two miRNA signature target genes. The miRNAs
chosen in our investigation have been linked to various cancers and diseases in prior
research (Figure 3). Nonetheless, we examined whether the target genes of these two tran-
scripts showed enrichment in KEGG pathways to unveil their biological relevance. KEGG
pathway analysis of miR-106a-5p and miR-148a-3p gains insights into their potential roles
in cellular pathways and processes like cell cycle regulation or transcriptional misregulation
in cancer. This analysis will contribute to comprehending the selected miRNAs’ biological
significance in cancer biology.
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Figure 3. Heatmap of KEGG pathways, generating the enrichment analysis for the two miRNA
target genes using DIANA-mirPath. miR-148a-5p and miR-106a-5p were proven to be connected
with multiple pathways, with a particular interaction with cancer-specific signaling (DIANA-mirpath
computes log10 p-values). The color legend is in the upper left corner red corresponds to a higher
statistical significance, while yellow signifies a lower statistical significance (p < 0.05).

Network microRNA–gene interaction. A network miRNA–gene interaction was
generated using a Mienturnet online interface (linked to miRTarBase); in this case, we only
selected robust experimental validation (e.g., luciferase assay, Western blotting) for the
target genes (Figure 4). This short-target gene list is based on experimentally validated
miRNA–target gene interactions from databases such as miRTarBase; the interaction was
filtered through robust experimental evidence, such as luciferase assay or Western blotting
validation. This network analysis provides valuable insights into the regulatory roles of
these transcripts and their experimentally validated target genes.
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miRNAs and their target genes. Blue circles are used to present the miRNAs; yellow circles are the
target genes of our selected transcripts [23].

4. Discussion

PCa ranks as the second most frequently diagnosed cancer in men and is linked to a
notable number of cancer-related fatalities [1]. Therefore, early diagnosis is essential for
successful treatment. Today, serum PSA is the marker used to diagnose PCa, but serum
PSA levels can be elevated in other conditions, such as BPH or prostatitis, affecting its
specificity [2]. Also, despite following the recommendations, we may obtain a negative
prostate biopsy. In addition, the PSA level correlates poorly with tumor aggressiveness,
making it an inadequate predictor of disease evolution. For all these situations, we need
new biomarkers for the easy and accurate diagnosis and prognosis of PCa [24]. Several
studies demonstrated that miRNA dysregulation can be a potential diagnostic modality for
PCa [25]. Also, the association of TP53 with miRNAs can play a relevant role in controlling
a tumor as a potential therapeutic target and biomarker in PCa [26].

This study aims to characterize the impact of miR-106a-5p and miR-146a-3p in diag-
nosing patients with PCa by comparing plasma from patients diagnosed with BPH or PCa.
Our study found that miR-106a-5p and miR-146a-3p were significantly downregulated in
the plasma samples of PCa patients versus BPH patients.

This KEGG analysis sustains the rationale for proposing miR-106a-5p and miR-146a-3p
as biomarkers, considering their multiple known roles in cellular processes and the specific
discrimination between PCa patients and BPH with a high sensitivity, as we can observe
from ROC curves.

Cochetii et al. reported that miR-106a-5p was downregulated in the serum of PCa
patients compared to in that of BPH patients, and it was correlated with increased malig-
nancy. It considerably decreased in high-risk patients, allowing for differentiation between
pGS6 and pGS7 from pGS8 [15]. Mir-106a-5p may be considered an essential target for
treating metastatic PCa. Apelin, an endogenous peptide implicated in the progression of
multiple cancers, including lung, hepatocellular, and colon cancer [27], facilitates TIMP-2-
dependent PCa cell migration and invasion. The overexpression of miR 106-a-5p mediates
the promotion of PCa motility induced by apelin via the c-Src/PI3K/Akt signaling cas-
cades. Inhibition of apelin has been found to reduce PCa metastasis in an orthotopic mouse
model. These findings suggest that apelin could be a novel therapeutic target in metastatic
PCa [28]. Dhar et al. showed that miR-106a-5p expression is significantly associated with
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PCa progression and validated a PTEN tumor suppressor as a critical target of this on-
comiR in PCa cells with a possibility of being used as a chemopreventive and predictive
biomarker in the development of PCa [29]. Yang et al. also support the implications
of miR-106a-5p in the therapy of PCa through the long non-coding RNAs MAGI2-AS3.
The expression pattern showed miR-106a-5p to be upregulated in hormone-sensitive and
castration-resistant PCa. MAGI2-AS3 was abnormally decreased in castration-resistant PCa
and negatively associated with GS and lymph node involvement. Decreased MAGI2-AS3
could serve as a predictor of poor prognosis in PCa. MAGI2-AS3 is primarily cytoplasmic
and inhibits the initiation and progression of PCa by mediating the expression of RAB31
through miR-106a-5p [16]. This finding underscores the importance of exploring miRNAs
as potential targets for developing novel treatment strategies for PCa.

The dysregulation of miR-148a-5p has been observed across various types of cancer,
such as colorectal, gastric, and hepatocellular carcinoma. Studies have shown that miR-
148a-5p is a tumor suppressor by targeting oncogenes or genes in tumor progression
pathways [30]. Therefore, the decreased expression of miR-148a-5p in cancer tissues versus
normal tissues suggests its potential as a diagnostic biomarker for cancer.

Dybos et al. have identified miR-148a-3p as a promising diagnostic marker for PCa.
Mir-148a-3p was upregulated in the serum of patients with PCa compared to that of healthy
controls. It was also detected in prostate tissue; however, distinguishing it was challenging
due to the heterogeneity of prostate tissue. It appears that miR-148a-3p is present in both
BPH and pGS4 [17]. Another study reported that the expression of miR-148a-3p was
increased in both tissue and plasma samples compared with those of healthy controls [31].

Moreover, miR-148a-3p can be used for PCa diagnosis, cancer stage assessment, and
postoperative recurrence prediction in PCa patients. According to He W et al., miR-148a-3p
can discriminate between GS < 7 and GS ≥ 7 cases. However, preoperative serum levels of
miR-148a-3p in combination with miR-485-5p provide a much improved prediction [32].

Elevated levels of miR-148a-3p have been observed in the serum and urine of PCa
patients compared to those of healthy controls [17,33] in prostate tumor tissue compared
to in adjacent prostatic normal tissue [34]. In contrast, miR-148a-3p levels have been
reported to be lower in CRPC cell lines PC3 and DU145 compared to in lines that represent
a therapy-responsive model for the study of this disease [35]. Likewise, in PCa patients,
the downregulation of miRNAs has been observed in CRPC versus BPH cases and in high-
grade versus low-grade tumors [18,36]. Also, there have been reports of a decrease in the
expression of miR-148a-3p in patients at a high risk of experiencing biochemical failure [37].
The value of the downregulated expression of miR-148a-3p in predicting biochemical
recurrence-was also validated by Zhao Z et al. [38]. Furthermore, the downregulated
expression of miR-148a 3p has a high potential to predict lymphatic spread in locally
advanced PCa [39].

Some studies have demonstrated the increased expression of miR-148a-3p in PCa,
while contradictory findings have also been reported. Our analysis revealed that the
expression of miR-148a-5p was downregulated in plasma samples compared to in BPH
samples. Our study found that only 13.79% of patients had low-risk PCa and 41.37% had
high-risk PCa. After the final histopathological examination, only 6.89% had a GS of 6. This
finding could explain the decrease in miR-148a-3p expression observed in the PCa group
compared to in the BPH group.

Despite inconsistent reports on the expression of miR-148a-3p in the literature, studies
evaluating its biological role in PCa commonly indicate a tumor-suppressive effect. Sen-
gupta et al. demonstrated that miR-148a-3p is downregulated in CRPC and identified DNA
methyltransferase DNMT1. This gene is upregulated in various cancers and is considered
an miR target [40]. Li G et al. illustrated the role of miR-148a-3p in PCa development.
Methiltransferase-like 3 (METTL3) promoted by miR-146a-3p favors apoptosis and inhibits
prostate tumor growth in nude mice [41]. MiR-146a-3p may target reticulon-4 (RTN4) in
PCa tissues and cell lines. RTN4 may be phosphorylated by MAPKAPK2 and FYN at
tyrosine 591 and serine 107, respectively. This suggested that RTN4 might somehow be
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involved in prostate tumor progression which opens up the potential for the creation or
identification of selective agents targeting RTN4 for PCa therapy [42]. These studies prove
that miR-148a-3p plays a role in the formation of a tumor-suppressive phenotype that
inhibits cell survival, including PCa cells. This leads to it serving as both a reliable indicator
of tumor progression and a possible biomarker for assessing the effectiveness of treatments
in PCa.

Certain limits should be known when understanding the above findings. Firstly, the
miRNA expression profiling was conducted on PCa patients versus BPH plasma; this might
be additionally validated in urine samples. This might need to be additionally validated in
urine samples. These transcripts will strengthen the robustness and clinical applicability of
our results.

5. Conclusions

In conclusion, we identified a tumor-specific miRNA signature comprising two miR-
NAs. Combining these two transcripts has led to a slight improvement in overall sensitivity.
This signature has the potential to serve as a novel minimally invasive biomarker for the
diagnosis of PCa. Further validation of these miRNAs in larger patient cohorts and across
different stages of PCa may strengthen their candidacy as clinically relevant biomarkers
for PCa diagnosis and prognosis, particularly to recognize high-risk groups of PCa based
on altered miRNA patterns. Additionally, investigating miRNAs’ biological functions and
downstream targets could deliver insights into the molecular mechanisms underlying PCa
pathogenesis.
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