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Abstract: This study utilized 16S rRNA high-throughput sequencing technology to analyze the
community structure and function of endophytic bacteria within the roots of three plant species in
the vanadium–titanium–magnetite (VTM) mining area. The findings indicated that mining activities
of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria
within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed
in the populations of Nocardioides, concurrently with substantial increments in the populations of
Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental
stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities
within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt
to the environmental stress caused by mining activity. Functional enrichment analysis revealed
that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose
degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the
endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that
this plant can adapt well to environmental stress. This study represents the primary investigation
into the influence of VTM mining activities on endophytic bacterial communities and the functions
of nearby plant roots, providing further insight into the impact of VTM mining activities on the
ecological environment.

Keywords: mining activity; soil pollution; bioremediation; microecology

1. Introduction

Vanadium–titanium–magnetite (VTM) is a common polymetallic ore that includes a
range of metals, including iron (Fe), vanadium (V), titanium (Ti), cobalt (Co), and chromium
(Cr), with Fe, V, and Ti being the predominant elements present in VTM [1]. VTM is a
significant source of Fe, as well as a primary source of V and Ti. Therefore, it has significant
value for comprehensive utilization [2]. The world’s VTM resources are primarily found in
China, Canada, Australia, Russia, New Zealand, and South Africa, totaling a global reserve
of almost 48 billion tons [3–6]. China has reserves of 9.38 billion tons of VTM resources,
primarily located in the Panxi region, with the most substantial reserves of 3.6 billion tons
found in the Hongge reserves in the Panzhihua–Xichang region [7–10]. V and Ti mainly exist
in VTM as associated ores. V and Ti are crucial rare metals that find extensive applications
in steel, metallurgy, chemicals, batteries, aerospace, and various other industries [11–14].
In the iron and steel industry, V is a commonly utilized component. The addition of V to
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steel can improve the wear resistance, strength, hardness, ductility, and other properties
of steel [11]. Ti and its alloys have excellent properties, such as corrosion resistance, high
strength, good strength at high and low temperatures, non-magnetic properties, good
adaptability to humans, shape memory, and superconductivity [15]. Due to its lightweight
and high-strength characteristics, it has been widely used in aerospace and other fields. In
recent years, its application has gradually expanded to include shipbuilding, petrochemical
equipment, offshore platforms, electric power equipment, medical treatment, and high-end
consumer goods [15,16]. With the increasing demand for V and Ti, the mining scale of
VTM is also increasing. Nevertheless, during mineral mining and ore processing processes,
significant quantities of VTM tailings are produced, which are frequently disposed of
in dams, resulting in various environmental consequences, including the discharge of
harmful contaminants into the nearby surroundings. These conditions pose a danger to
the local ecosystems [17–19]. However, the impact of VTM mining on local plants and
microorganisms has not been determined.

Endophytic bacteria, which are present in healthy plant tissues, are essential microbial-
plant symbionts and valuable microbial resources that do not pose a significant threat to
the host [20–23]. Multiple studies have proven that a high quantity of endophytic bac-
teria can live within plant tissues, developing a variety of mutually beneficial symbiotic
partnerships [24–26]. While colonizing plant tissues, these microbes may also enhance
plant adaptability in contaminated soil [27,28]. Moreover, endophytic bacteria can pro-
mote seed germination and growth through various mechanisms [29–34]. Some Bacillus,
Pseudomonas, and Pantoea species can synthesize secondary metabolites with antibacterial
properties, exhibiting strong antagonistic effects against plant pathogenic bacteria [35–37].
Furthermore, endophytic bacteria are essential components of plant microbial communities
and possess substantial potential for use in protecting plants [38]. Endophytic bacteria,
like beneficial microbes present in different ecosystems, can function as transporters for
emerging bioactive substances, thereby holding importance in medicine, agriculture, and
industry [22,25,39]. The diversity of plant endophytes and the establishment of community
structures are closely related to factors such as plant variety, growth environment, and
geographic location [40]. Endophytic bacteria, which are associated with plant health and
productivity, have become a focal point of interest in scientific and commercial realms
worldwide in recent years [22,41,42]. However, the effects of VTM mining on the diversity
and function of endophytic bacteria in the root systems of nearby plants, as well as the
response strategies of root endophytes, have not been determined.

In this study, three local plant species (Dodonaea viscosa, Carex L., and Eleusine indica)
were used as the research objects, and the influence of these three plant species on the
diversity and function of the endophytic bacterial communities in the roots was investigated
through 16S rRNA high-throughput sequencing. Meanwhile, the response strategies of
these three plant root endophytic bacteria to VTM mining were analyzed. This study
addresses the gap in understanding the ecological effects of VTM mining and provides
insights into the ecological remediation of pollution caused by VTM mining.

2. Materials and Methods
2.1. Collection of Plant Roots and Extraction of Endophytic Bacterial DNA from the Roots

The sampling site was located in the VTM mining area near Hongge Village (101◦56′ E,
26◦32′ N), Yanbian County, Panzhihua City, Sichuan Province, China. The site has an
average annual rainfall of 1065.6 mm, an average annual temperature of 19.2 ◦C, an average
annual sunshine of 2307.2 h, and a relative humidity of 66.6%. We chose three different
species of plants with the best local growing conditions for our study: D. viscosa, Carex, and
E. indica. To collect the plants, we used the five-point sampling method. First, the midpoint
of the diagonal line was determined as the center sampling point. Next, four points were
selected on the diagonal line with a distance of 20 m from the center sampling point as
sample points. Three plants of each species were randomly collected and a total of 45 plants
were collected. In addition, we used the same sampling method to collect these three plants
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as control samples from the soil of a non-VTM mining site located 3 km away from the mine
site. Extracted from the soil, the roots of these three plants had the adhering soil shaken
off to obtain the root systems. The plants were subsequently placed in sterile sample bags
filled with ice packs, shipped to the laboratory, refrigerated at 4 ◦C, and treated within
24 h. The residual soil on the surface of the plant roots was washed with sterile distilled
water, soaked in 70% ethanol for surface disinfection, and finally rinsed repeatedly with
sterile distilled water. All plants were treated in this manner, and each plant had three
biological replicates. About 50× g of plant roots were weighed from each sample into a
15 mL sterile centrifuge tube for bacterial diversity analysis. Following this, 18 samples
were transferred to the laboratory in a foam box with ice packs for DNA extraction and 16S
rRNA sequencing. Genomic DNA was extracted from plant root samples by utilizing the
Omega Bio-Tek Plant DNA Kit (Norcross, GA, USA). The DNA was then separated on a
1% (w/v) agarose gel for the purpose of evaluating the quality of the extracted DNA. The
samples of D. viscosa, Carex, and E. indica from the VTM mining area were represented as
VT-Dvi, VT-Car, and VT-Ein, respectively. The control samples of these three plant species
were represented as CK-Dvi, CK-Car, and CK-Ein, respectively.

2.2. PCR Amplification and Detection

The concentration of DNA was quantified by Nanodrop One. The extracted ge-
nomic DNA was diluted to 1 ng/µL with sterile water, and the 16S rRNA V3-V4 region
of the sample was subsequently carried out with primers that included a barcode (341F:
5′-cctacgggaggcagcagg-3′; 806R: 5′-GGACTACNVGGGTWTCTAAT-3′). PCR was per-
formed using 15 µL of Phusion® High-Fidelity PCR Master Mix from New England Biolabs,
2 µL of forward and reverse primers, and 10 ng of template DNA. During thermal cycling,
denaturation at 98 ◦C for 1 min was repeated 30 times, including denaturation for 10 s,
annealing at 50 ◦C for 30 s, extension at 72 ◦C for 30 s, and storage at 72 ◦C for 5 min. After
completion of PCR, the products were first mixed with an equal volume of loading buffer
containing SYBR Green, after which the PCR products were detected via electrophoresis on
a 2% (w/v) agarose gel. When amplification was complete, the PCR products were purified
using the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).

2.3. Library Preparation, Sequencing, and Raw Data Processing

As per the manufacturer’s guidelines, we proceeded to generate sequencing libraries
using the TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA,
USA), which included index codes. For assessing the library’s quality, we used both a
Qubit@2.0 Fluorometer (Thermo Scientific, Waltham, MA USA) and an Agilent Bioanalyzer
2100 system. Subsequently, the library underwent sequencing with the Illumina NovaSeq
platform to yield a 250 bp paired-end sequence. The reads were identified according to their
individual barcodes. Following this, the barcodes and primer sequences were eliminated.
The merging of paired-end reads was carried out using FLASH V1.2.7 [43]. To obtain
high-quality labels, the original labels underwent processing following the quality control
procedure of QIIME V1.9.1 [44]. After comparing the labels to the Silva reference database,
the dataset was cleansed of the identified chimeric sequences [45].

2.4. OTU Cluster and Species Annotation

By utilizing Uparse v7.0.1001, sequences exhibiting a similarity of 97% or higher were
categorized into operational taxonomic units (OTUs) [46]. For the purpose of annotation
facilitation, a specific sequence was chosen to represent each OTU. The representative
sequences were assigned the classification information from the Silva database utilizing the
Mothur algorithm [45]. To analyze the phylogenetic relatedness of OTUs and the variation
in dominant species among different samples or taxa, we utilized MUSCLE v3.8.3 for
multiple sequence alignment [47]. Normalization of OTU abundance data was carried
out by aligning it with a benchmark sample that had the fewest sequences. Utilizing the
normalized data, further analyses were conducted on α and β diversity.
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2.5. α and β Diversity Analyses

We used seven indicators, Pielou evenness, Simpson, Chao1, observed species, Shan-
non, Good’s coverage, and Faith_pd, to analyze species diversity in each sample. For
the calculation of these indicators, QIIME 1.7.0 software was used, and the results were
displayed using R v2.15.3 [44]. For community richness evaluation, we employed three
indicators: Pielou evenness, Chao1, and observed species. For community diversity assess-
ment, we utilized the Shannon and Simpson indices. β diversity analysis was employed
to examine the changes in species complexity among the samples. Lastly, the R vegan
software was used to conduct Non-metric Multidimensional Scaling (NMDS) analysis and
Principal Coordinates Analysis (PCoA).

2.6. Functional Prediction of Endophytic Bacteria

PICRUSt2 can elucidate the functions of endophytic bacteria within the root system [48,49],
which utilizes the Gene Ontology (GO), KO, and MetaCyc databases [50,51]. Before the cluster
analysis, we employed the FactoMineR and ggplot2 software packages in R v2.15.3 to conduct
PCoA in order to decrease the dimensionality of the original variables.

2.7. Statistical Analysis

Statistical analysis was employed to identify the significance of differences among the
samples. The t-test was applied for the direct comparison of two groups of samples, while
Tukey’s test was used to analyze multiple sample groups. A p-value below 0.05 signifies a
statistically significant difference between the groups.

3. Results
3.1. High-Throughput Sequencing Statistics of Endophytic Bacterial Communities

Utilizing 16S rRNA high-throughput sequencing technology, we examined the endo-
phytic bacteria within the root systems of D. viscosa, Carex, and E. indica samples obtained
from both the VTM mining region and the non-VTM mining region in this study. In
Figure A1, the curve for the sparse OTUs is displayed. The incremental increase in the
observed species was positively associated with the growing quantity of sequencing reads.
When the number of sequencing reads reached over 20,000, the sparse curve gradually
stabilized, indicating that the sequencing results were close to saturation. There were
enough reads to effectively capture the comprehensive profile of endophytic bacteria resid-
ing in the root system of the sample. Therefore, the large amount of sequencing data can
provide insight into the bacterial diversity present in the sample. After removing chimeras,
poor-quality reads, and short reads, an average of 97,932 clean reads were successfully
acquired per sample. These clean reads were then allocated to OTUs using a 97% similarity
threshold. The number of OTUs per sample varied across all samples, ranging from a
minimum of 380 to a maximum of 1283, with the average number across all samples being
723 OTUs.

3.2. α Diversity Indices

The diversity and richness of the samples were evaluated using seven indicators
(Shannon, Pielou evenness, Simpson, Chao1, observed species, Good’s coverage, and
Faith_pd), as illustrated in Figure 1. A higher α diversity index indicates a greater level
of community diversity among the endophytic bacteria present in the root system of the
sample. The Shannon and Simpson indices showed that the CK-Ein and CK-Car samples
had the highest levels of community diversity, while the VT-Dvi and CK-Dvi samples
had the lowest levels of community diversity. The VTM mining activities significantly
reduced the Shannon and Simpson indices of the VT-Ein and VT-Car samples compared
to those of the CK-Ein and CK-Car samples (p < 0.05). In contrast to the CK-Dvi sample,
the mining activities conducted by VTM did not have a notable impact on the community
diversity of the VT-Dvi sample. In addition, an analysis of community richness, including
observed species, Chao1, and Pielou evenness, showed that the CK-Ein sample exhibited
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the greatest diversity, while the VT-Car sample showed the least. The Chao1, observed
species, and Pielou evenness indices of endophytic bacteria in the root system of E. indica
and Carex within the VTM mining area exhibited a significant decrease compared to those
in the non-VTM mining area (p < 0.05). However, VTM mining did not significantly impact
the diversity of endophytic bacteria within the root system of D. viscosa. In comparison
to the CK-Ein and CK-Car samples, the Faith_pd index was significantly lower in the
VT-Ein and VT-Car samples (p < 0.05), while the Good’s coverage index was notably higher
(p < 0.05). Nevertheless, when compared to the samples of VT-Dvi and CK-Dvi, there were
no significant changes in any of the indices.
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Figure 1. Box diagram of the differences in the α diversity indices of endogenous root bacteria
between different samples. Colored dots represent values that are significantly different from other
data in this group. VT-Dvi, Dodonaea viscosa in VTM mining area; VT-Car, Carex in VTM mining
area; VT-Ein, Eleusine indica in VTM mining area; CK-Dvi, Dodonaea viscosa in non-VTM mining area;
CK-Car, Carex in non-VTM mining area; CK-Ein, Eleusine indica in non-VTM mining area.

3.3. Taxonomic Analyses of the Endophytic Bacterial Communities

By examining the abundance of the top 10 phyla, differences among the samples were
assessed (Figure 2A). Proteobacteria, the dominant phylum in the samples, was found to
make up an average of 74.36% of the total bacteria, followed by Actinobacteria (20.19%),
Firmicutes (3.44%), and Bacteroidetes (0.63%). Among all the samples, Proteobacteria (95.61%
on average) was the predominant phylum in the CK-Dvi sample, Actinobacteria (41.23%
on average) dominated the CK-Ein sample, while Firmicutes (14.83% on average) and
Bacteroidetes (1.35% on average) were the most abundant in the CK-Car sample. Compared
to the CK-Ein sample, there was a notable boost in the abundance of Proteobacteria within
the VT-Ein samples (p < 0.05), whilst a considerable decrease in the quantity of Actinobacteria
was observed (p < 0.05). Besides, the abundances of Firmicutes and Bacteroidetes decreased,
but not significantly. A notable change was observed in the abundance of Proteobacteria
in the VT-Car sample, which demonstrated a significant rise compared to the CK-Car
sample (p < 0.05). Furthermore, the abundance of Bacteroidetes in the VT-Car sample was
significantly reduced compared to the CK-Car sample (p < 0.05). Besides, the abundances
of Actinobacteria and Firmicutes were decreased in the VT-Car sample, but not significantly.
While a drop in the abundance of Proteobacteria was observed in the VT-Dvi sample com-
pared to the CK-Dvi sample, this difference was not found to be statistically significant.
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Additionally, the abundances of Actinobacteria, Firmicutes, and Bacteroidetes were increased,
but not significantly.
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Figure 2. Cumulative bar charts of the relative abundance of taxa (top 10) at the phylum (A), class (B),
order (C), and family (D) levels. VT-Dvi, D. viscosa in the VTM mining area; VT-Car, Carex in the VTM
mining area; VT-Ein, E. indica in the VTM mining area; CK-Dvi, D. viscosa in the non-VTM mining
area; CK-Car, Carex in the non-VTM mining area; CK-Ein, E. indica in the non-VTM mining area.

At the class level, Gammaproteobacteria predominated in all samples, comprising an
average of 64.82%, with Actinobacteria following at 18.23%, Alphaproteobacteria at 8.87%, and
Bacilli at 3.24% (Figure 2B). Compared to the CK-Ein sample, the VT-Ein samples exhibited
a significantly increased abundance of Gammaproteobacteria (p < 0.05), a notably decreased
abundance of Actinobacteria and Alphaproteobacteria (p < 0.05), and a reduced abundance of
Bacilli, but not significantly. In the VT-Car sample, it was noted that the relative abundance
of Gammaproteobacteria significantly increased compared to the CK-Car sample (p < 0.05),
while the abundances of Actinobacteria, Alphaproteobacteria, and Bacilli all showed decreases,
although not statistically significant. In the VT-Dvi sample, the abundance of Actinobacteria was
increased compared to the CK-Dvi sample, but not significantly. Additionally, the abundances
of Gammaproteobacteria, Alphaproteobacteria, and Bacilli were decreased, but not significantly.

At the order level, members of the Pseudomonadales were found to be the most prevalent
with an average abundance of 58.62%, followed by Micrococcales (6.77%), Betaproteobacteriales
(4.17%), and Rhizobiales (3.98%) (Figure 2C). In comparison to the CK-Ein sample, the VT-Ein
sample showed a notably higher abundance of Pseudomonadales (p < 0.05). Additionally, the
abundances of Betaproteobacteriales and Rhizobiales exhibited a significant decrease (p < 0.05),
while the abundance of Micrococcales also decreased, but not significantly. In the VT-Car
sample, the abundance of Pseudomonadales showed a significant increase compared to the
CK-Car sample (p < 0.05). A significant decrease in the abundance of Betaproteobacteriales
was observed (p < 0.05), with the abundances of Micrococcales and Rhizobiales also showing
decreases, although not statistically significant. Compared to the CK-Dvi sample, the
abundances of Pseudomonadales, Betaproteobacteriales, Micrococcales, and Rhizobiales in the
VT-Dvi sample were all reduced, but not significantly.

At the family level, Pseudomonadaceae had the highest proportion, representing an
average of 58.62% of the total population in the samples, with Burkholderiaceae (3.81%),
Micrococcaceae (3.74%), and Pseudomonocardiaceae (3.63%) following in abundance
(Figure 2D). In comparison to the CK-Ein sample, the VT-Ein sample exhibited a sig-
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nificantly higher abundance of Pseudomonadaceae (p < 0.05). Furthermore, the abundance
of Burkholderiaceae was notably lower (p < 0.05), while the abundance of Micrococcaceae
was also lower, but not significantly. Additionally, the abundance of Pseudomonocardiaceae
was greater, although not statistically significant. In comparison to the CK-Car sam-
ple, the VT-Car sample exhibited a significantly greater abundance of Pseudomonadales
(p < 0.05). The overall abundance of Burkholderiaceae decreased notably (p < 0.05), whereas
the decrease in Micrococcaceae was not statistically significant. Moreover, the prevalence of
Pseudomonocardiaceae was higher, although not statistically significant. Compared to the
CK-Dvi sample, the abundances of Pseudomonadaceae, Burkholderiaceae, and Micrococcaceae
in the VT-Dvi sample were all decreased, but not significantly, while the abundance of
Pseudonocardiaceae was increased, but not significantly.

At the genus level, Pseudomonas emerged as the most prevalent, representing an
average of 58.60% of the total bacteria in the samples, followed by Nocardioides (2.90%),
Pseudonocardia (2.44%), and Pseudarthrobacter (1.94%) (Figure 3). Compared to the CK-Ein
sample, the VT-Ein sample showed a significantly increased abundance of Pseudomonas
(p < 0.05) and a significantly reduced abundance of Nocardioides (p < 0.05). The abundance
of Pseudonocardia was also increased, but not significantly. Additionally, the abundance of
Pseudarthrobacter was decreased, but not significantly. In comparison to the CK-Car samples,
there was a significant increase in the abundance of Pseudomonas in the VT-Car sample
(p < 0.05). Moreover, there was a notable decrease in the amount of Nocardioides (p < 0.05),
while the abundance of Pseudonocardia increased, but not significantly. The abundance of
Pseudarthrobacter exhibited a decrease, although it was not statistically significant. Com-
pared to the CK-Dvi sample, the abundances of Pseudomonas and Pseudarthrobacter were
both reduced, but not significantly, while the abundances of Nocardioides and Pseudonocardia
were increased, but not significantly.
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Figure 3. Heatmap analysis of the 30 genes with the highest abundance of different taxa samples.
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ranging from blue to red indicate an increase in relative abundance. VT-Dvi, D. viscosa in the VTM
mining area; VT-Car, Carex in the VTM mining area; VT-Ein, E. indica in the VTM mining area;
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CK-Ein, E. indica in the non-VTM mining area.
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3.4. Structural Differentiation of Endophytic Bacterial Communities

An examination of the distinct OTUs and the OTUs shared among the samples in-
dicated the presence of 36 core OTUs in all samples. Additionally, there were 4717, 1377,
3937, 625, 799, and 671 OTUs specific to CK-Ein, VT-Ein, CK-Car, VT-Car, CK-Dvi, and
VT-Dvi samples, respectively (Figure 4). Among the three types of plant root systems
in the VTM mining area, the VT-Ein, VT-Car, and VT-Dvi samples had 1554, 783, and
809 specific OTUs and 201 shared OTUs, respectively. Among the three plant root systems
in the non-VTM mining area, the CK-Ein, CK-Car, and CK-Dvi samples had 4869, 4077, and
941 specific OTUs and 166 shared OTUs, respectively. Between the CK-Ein and VT-Ein sam-
ples, the CK-Ein sample contained 5673 specific OTUs, while the VT-Ein sample contained
1852 specific OTUs. There were 313 common OTUs between the two samples. Among the
CK-Car and VT-Car samples, the CK-Car sample contained 4865 specific OTUs, while the
VT-Car sample contained 996 specific OTUs. There were 287 common OTUs between the
two samples. Between the CK-Dvi and VT-Dvi samples, the CK-Dvi sample contained
1056 specific OTUs, while the VT-Dvi sample contained 1008 specific OTUs. There were
241 common OTUs between the two samples.
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Figure 4. Differential microbial comparison between different samples. VT-Dvi, D. viscosa in the
VTM mining area; VT-Car, Carex in the VTM mining area; VT-Ein, E. indica in the VTM mining
area; CK-Dvi, D. viscosa in the non-VTM mining area; CK-Car, Carex in the non-VTM mining area;
CK-Ein, E. indica in the non-VTM mining area.

We employed NMDS and PCoA to assess variations in endophytic bacterial commu-
nities within the root systems across different samples (Figure 5). The results indicated
that mining VTM resulted in variations in the composition of the endophytic bacterial
community within the root systems of Carex and E. indica when compared to areas without
VTM mining. In summary, the NMDS and PCoA analyses conducted on the bacterial
communities present in the roots of Carex and E. indica demonstrated that the VTM mining
activities significantly altered the overall structure and composition of the endophytic
bacterial community. However, there was no significant difference in the community
composition of endophytic bacteria in the root systems of D. viscosa between VTM min-
ing and non-VTM mining areas. This suggests that, for endophytic bacteria in the root
system of D. viscosa, internal environmental factors were more influential than external
environmental factors.
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Figure 5. β diversity analysis of the root endophytic bacterial community in different samples based
on NMDS (A) and PCoA (B). VT-Dvi, D. viscosa in the VTM mining area; VT-Car, Carex in the VTM
mining area; VT-Ein, E. indica in the VTM mining area; CK-Dvi, D. viscosa in the non-VTM mining
area; CK-Car, Carex in the non-VTM mining area; CK-Ein, E. indica in the non-VTM mining area.

3.5. Function Prediction of the Endophytic Bacterial Communities

PICRUSt2 was employed to gain a thorough understanding of the specific functions
of the root endophytic bacteria present in the samples. According to the data in the
KEGG database, the various genes found in bacterial cells have been organized into six
broad categories (Figure A2). The largest group of these genes can be categorized as
metabolism genes, which were found to represent 81.78% of all the genes in the database.
The second largest group, representing 9.06% of the total genes, can be categorized as
genetic information processing genes, followed by cellular processes genes, which represent
5.10% of the total. At the second level, amino acid metabolism, carbohydrate metabolism,
metabolism of cofactor and vitamins, xenobiotics biodegradation, and metabolism of
terpenoids and polyketides were the most abundant and accounted for 14.16%, 12.93%,
10.37%, 8.82%, and 8.80%, respectively. Based on the COG database, approximately 84.28%
of bacterial genes were categorized into three groups (Figure A3). Metabolism stood out
as the most enriched function, encompassing 45.43% of the genes, while cellular process
and signaling accounted for 23.23%, and information storage and processing for 18.52%.
Second-level COG metabolism showed that genes involved in amino acid transport and
metabolism, transcription, inorganic ion transport and metabolism, and carbohydrate
transport and metabolism were the most abundant, accounting for 11.14%, 6.53%, 6.32%,
and 6.23%, respectively. According to the MetaCyc database, bacterial genes can be divided
into seven categories (Figure A4). In the observed data, it can be seen that biosynthesis is the
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most prevalent category among the samples, representing a staggering 62.15% of the total.
The second most common category is degradation/utilization/assimilation, accounting
for 20.04%, while the third is the generation of precursor metabolites and energy, making
up 13.91% of all samples. In the second level, the largest proportion of genes was found in
amino acid biosynthesis (14.79%), followed by cofactors, prosthetic groups, electron carrier,
and vitamin biosynthesis (13.71%), nucleoside and nucleotide biosynthesis (10.85%), fatty
acid and lipid biosynthesis (10.07%), and carbohydrate biosynthesis (5.19%).

We employed PCoA to evaluate variations in endophytic bacterial function across
different samples, as illustrated in Figure 6. The findings indicated that endophytic bacteria
in the root systems of Carex and E. indica exhibited variations when subjected to VTM
mining activities, as opposed to those from non-VTM mining areas. Moreover, the mineral
mining operations conducted by VTM resulted in a convergence of the functionalities of
endophytic bacteria within the root structures of these three plant species.
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Figure 6. PCoA of the functions of the root endophytic bacteria predicted by PICRUSt2. VT-Dvi,
D. viscosa in the VTM mining area; VT-Car, Carex in the VTM mining area; VT-Ein, E. indica in the
VTM mining area; CK-Dvi, D. viscosa in the non-VTM mining area; CK-Car, Carex in the non-VTM
mining area; CK-Ein, E. indica in the non-VTM mining area.

3.6. Functional Enrichment of Endophytic Bacteria

The analysis of the COG database revealed that the endophytic bacteria present in
the roots of E. indica from the VTM mining area contained significantly increased levels
of phage-related tail fiber protein (COG5301), uncharacterized protein (COG4285), un-
characterized protein (COG4688), ohage DNA packaging protein (COG4220), and un-
characterized protein (COG3056) compared to those from the non-VTM mining area
(p < 0.05). In contrast, the levels of the phage terminase large subunit (COG5362), predicted
archaeal methyltransferase (COG2521), predicted RNA methylase (COG4076), starvation-
inducible outer membrane lipoprotein (COG3065), and uncharacterized protein (COG4727)
were notably reduced (p < 0.05) (Figure 7). The levels of uncharacterized protein (COG3924),
Na+/panthothenate symporter (COG4145), uncharacterized protein (COG4873), predicted
membrane protein (COG4732), and uncharacterized protein (COG4848) in the endophytic
bacteria of the Carex root system from the VTM mining area were significantly lower
than those in the non-VTM mining area (p < 0.05). Compared to D. viscosa from the non-
VTM area, the endophytic bacteria in the root systems of D. viscosa from the VTM mining
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area had higher levels of the heme-binding NEAT domain (COG5386), uncharacterized
protein (COG5547), uncharacterized protein (COG1504), archaeal S-adenosylmethionine
synthetase (COG1812), and Mu-like prophage protein gp29 (COG4383), which were signifi-
cantly reduced (p < 0.05). In contrast, the contents of predicted RNase H-related nuclease
YkuK, DUF458 family (COG1978), predicted cation transporter (COG4756), uncharacter-
ized protein (COG1479), translation initiation factor 2B subunit, eIF-2B α/β/delta family
(COG1184), and predicted nuclease (RNAse H fold) (COG2410) were significantly reduced
(p < 0.05).
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ECM-receptor interaction (ko04512), Staphylococcus aureus infection (ko05150), flavonoid 
biosynthesis (ko00941), and Vibrio cholerae pathogenic cycle (ko05111), which 
significantly increased (p < 0.05). Meanwhile the content of endocytosis (ko04144), 
isoflavonoid biosynthesis (ko00943), Vibrio cholerae infection (ko05110), hypertrophic 
cardiomyopathy (ko05410), and D-arginine and D-ornithine metabolism (ko00472) 
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Figure 7. Based on the COG database, the functions of endophytic bacteria in plant roots were
significantly different between VTM mining areas and non-VTM mining areas. The vertical axis
represents the ID of the COG, the horizontal axis represents the log2-fold change, and different colors
indicate significant differences between samples at different levels. (A) VT-Ein vs. CK-Ein; (B) VT-Car
vs. CK-Car; (C) VT-Dvi vs. CK-Dvi.

Owing to the impact of VTM extraction operations, the endophytic bacteria in the
root systems of E. indica from the mining area included β-Lactam resistance (ko00312),
ECM-receptor interaction (ko04512), Staphylococcus aureus infection (ko05150), flavonoid
biosynthesis (ko00941), and Vibrio cholerae pathogenic cycle (ko05111), which signifi-
cantly increased (p < 0.05). Meanwhile the content of endocytosis (ko04144), isoflavonoid
biosynthesis (ko00943), Vibrio cholerae infection (ko05110), hypertrophic cardiomyopathy
(ko05410), and D-arginine and D-ornithine metabolism (ko00472) significantly decreased
(p < 0.05) (Figure 8). The endophytic bacteria of the Carex root system from the VTM mining
area had significantly higher amounts of ECM-receptor interaction (ko04512), flavonoid
biosynthesis (ko00941), primary bile acid biosynthesis (ko00120), styrene degradation
(ko00643), and fluorobenzoate degradation (ko00364) than those from the non-VTM mining
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region (p < 0.05). Meanwhile, the abundances of genes involved in Alzheimer’s disease
(ko05010), endocytosis (ko04144), Wnt signaling pathway (ko04310), bacterial invasion
of epithelial cells (ko05100), and isoflavonoid biosynthesis (ko00943) were notably lower
(p < 0.05). Compared to D. viscosa from the non-VTM mining area, only the content of the
PPAR signaling pathway (ko03320) was significantly increased among endophytic bacteria
in the root system of D. viscosa from the VTM mining area (p < 0.05). Conversely, the degree
of ECM-receptor interaction (ko04512) and flavonoid biosynthesis (ko00941) was visibly
augmented in root-dwelling endophytic bacteria of E. indica and Carex from the vicinity of
VTM mining operations when contrasted with their counterparts unassociated with mining
activities (p < 0.05). However, the levels of endocytosis (ko04144), isoflavonoid biosynthesis
(ko00943), and Alzheimer’s disease (ko05010) in root endophytic bacteria of E. indica and
Carex from the VTM mining compared to non-VTM mines were significantly reduced
(p < 0.05).
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Figure 8. Based on the KO database, the functions of endophytic bacteria in plant roots were
significantly different between VTM mining areas and non-VTM mining areas. The vertical axis
represents the ID of the KO, the horizontal value is prelog2 (fold change), and different colors indicate
significant differences between samples at different levels. (A) VT-Ein vs. CK-Ein; (B) VT-Car vs.
CK-Car; (C) VT-Dvi vs. CK-Dvi.

According to MetaCyc analysis, it was indicated that the functions of polymyxin
resistance (PWY0-1338), nicotinate degradation I (PWY-722), glucose degradation
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(oxidative) (DHGLUCONATE-PYR-CAT-PWY), ADP-L-glycero-β-D-manno-heptose
biosynthesis (PWY0-1241), and 4-hydroxyphenylacetate degradation (3-HYDROXYPHEN
YLACETATE-DEGRADATION-PWY) were significantly enhanced in the root bacteria of
endophytic E. indica from the VTM mining area compared to those from the non-VTM
mining region (p < 0.05). Additionally, the levels of L-arabinose degradation IV
(PWY-7295), chitin-derivative degradation (PWY-6906), phospholipases (LIPASYN-PWY),
UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronate biosynthesis (PWY-7090), and vanillin
and vanillate degradation I (PWY-7097) were significantly lower (p < 0.05) (Figure 9). In com-
parison with the non-VTM mining area, the endophytic bacterial population within Carex
roots within the confines of the VTM mining area contained significantly increased levels of
vitamin B6 degradation (PWY-5499), L-valine degradation I (VALDEG-PWY), polymyxin
resistance (PWY0-1338), nicotinate degradation I (PWY-722), and glucose degradation
(oxidative) (DHGLUCONATE-PYR-CAT-PWY) (p < 0.05). On the other hand, L-lysine
biosynthesis II (PWY-2941), peptidoglycan biosynthesis II (staphylococci) (PWY-5265),
thiazole biosynthesis II (Bacillus) (PWY-6891), the superpathway of Clostridium aceto-
butylicum acidogenic fermentation (PWY-6590), and pyruvate fermentation to butanoate
(CENTFERM-PWY) were significantly reduced (p < 0.05). Nevertheless, the metabolic
pathways associated with endophytic bacteria in the roots of D. viscosa exhibited no dis-
cernible disparity between the VTM mining area and the non-VTM mining area. In addition,
compared to the non-VTM mining area, polymyxin resistance (PWY0-1338), nicotinate
degradation I (PWY-722), and glucose degradation (oxidative) (DHGLUCONATE-PYR-
CAT-PWY) were significantly higher in the endophytic bacteria in the roots of E. indica and
Carex from the VTM mining area.
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Figure 9. Based on the MetaCyc database, the functions of endophytic bacteria in plant roots were
significantly different between VTM mining areas and non-VTM mining areas. The vertical axis
represents the ID of the pathway, the value of pre-axis log2 (fold change), and different colors indicate
significant differences between samples at different levels. (A) VT-Ein vs. CK-Ein; (B) VT-Car vs.
CK-Car.



Genes 2024, 15, 526 14 of 24

3.7. Correlation Analysis of the Endophytic Bacteria Communities

Pearson correlation analysis revealed significant interactions among the 30 most abun-
dant genera of plant root endophytic bacteria from the VTM mining area (Figure 10).
Positive correlations were observed between Altererythrobacter, Actinoplanes, Asticcacaulis,
Solirubrobacter, 67–14, and Nocardioides (p < 0.05). Moreover, Dongia, Inquilinus, Flindersiella,
Actinophytocola, Promicromonospora, and Pseudonocardia were also found to be positively
correlated (p < 0.05). On the other hand, negative correlations were observed between
Bacillus, Intrasporangium, Nocardioides, Sphingomonas, Devosia, Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium, Massilia, Altererythrobacter, and Pseudomonas. Additionally, No-
cardioides, Devosia, Steroidobacter, and Methylobacterium were also negatively correlated
(p < 0.05). The study illustrated a significant interplay evident among the primary cohorts
of endophytic bacterial communities active within plant root systems.
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Figure 10. Pearson correlation analysis between the 30 genes with the highest abundance in different
samples. The Pearson correlation index is marked in a square color block, with a blue color block
indicating a negative correlation between two bacterial genera and a red color block indicating
correlation. One asterisk indicates a significant correlation between two bacterial genera at the
p < 0.05 level, two asterisks indicate a significant correlation between two bacterial genera at the
p < 0.01 level, and three asterisks indicate a significantly greater correlation at the p < 0.001 level.
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4. Discussion

VTM is an important mineral resource, and with increasing market demand, the
mining scale of VTM is also constantly expanding. Nevertheless, significant VTM tailings
are created when mining VTM. Tailings are frequently disposed of in dams, leading to
the potential release of toxic pollutants into the surrounding environment, thereby en-
dangering human health [17–19]. In China, Panzhihua City is a major mining area for
VTM [52]. Therefore, we collected three types of plants near the mining area to study
the ecological effects of mining activities. Although existing studies have analyzed the
characteristics of microbial communities in the soil of the VTM mining area [53], no study
has demonstrated a relationship between VTM mining operations and the diversifica-
tion or population dynamics of endophytic bacterial communities within the plant roots
adjacent to such operations. Endophytes are crucial for enhancing plant growth, devel-
opment, stress resilience, and defense against pests and diseases, and some endophytes
can also protect plants from heavy metals [54–56]. However, reductions in the richness
of endophytes can elicit diminished plant attributes such as quality and resilience under
stress [57]. Consequently, the potential impact of VTM mining on the biodiversity of endo-
phytic bacteria within nearby plants necessitates careful evaluation. In this investigation,
specific focus has been placed on three indigenous plants in close proximity to the VTM
mining area, revealing the ramifications of VTM mining on the endophytic bacterial popu-
lations and functional activities within the root systems of these three plant species. These
findings significantly augment our comprehension of the ecological implications of VTM
mining activities.

4.1. Microbial Community Responses

Jose et al. demonstrated that increased levels of heavy metals result in alterations to
the diversity of soil bacterial communities, which is consistent with our findings [58]. Our
study showed that VTM mining activities directly led to a significant decrease in endo-
phytic bacterial diversity and community richness indicators in the root systems of E. indica
and Carex in the mining area. This could be attributed to the loss of soil nutrients caused by
mining activities, resulting in a decline in the quality of living conditions for microbes and
ultimately leading to a decrease in microbial diversity [53]. This result indicates that the
negative impact of VTM mining on the endophytic bacteria in the roots of nearby plants
may be due to the diffusion of harmful components, such as heavy metals, and alterations
in soil physicochemical characteristics induced by VTM mining activities. Further study
revealed that VTM mining activities resulted in the differentiation of endophytic bacterial
communities within the roots of E. indica and Carex in the mining area. Therefore, the eco-
logical impact of VTM mining deserves widespread attention. Furthermore, we observed
lower abundances of Nocardioides and Pseudarthrobacter in the roots of E. indica and Carex
from the vicinity of the VTM mining site compared to those present in the non-VTM mining
region. The findings uncovered the susceptibility of these two strains to environmental
alterations instigated by VTM mining. We detected Proteobacteria, Actinobacteria, Firmi-
cutes, and Bacteroidetes in our samples, which is similar to the findings of Zhang et al. and
Tang et al. that these bacteria are widespread in contaminated environments [59,60]. Al-
though environmental contamination from mining activities can severely damage the
microecology of native plants, there are microorganisms that have been able to adapt to
these adverse conditions under prolonged heavy metal stress [61]. These microorganisms
have developed a variety of anti-stress strategies to increase their tolerance and ultimately
mitigate the effects of toxicity [62,63]. Remarkably, we observed an enrichment of Pseu-
domonas within the root structures of E. indica and Carex growing in the vicinity of the
VTM mining area. This is similar to the findings of Tang et al., Xiao et al., and Zhang
et al., where the phylum Pseudomonas consistently constitutes the most dominant phylum
in environments contaminated with heavy metals [60,64,65]. In addition, the impact of
mining activities led to a significant increase in the relative abundance of Pseudomonas in
the root systems of E. indica and Carex. This suggests that Pseudomonas is well adapted
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to environments contaminated with heavy metals, and its extreme adaptability to heavy
metals can be explained by its efficient utilization of resources and metabolic activity [66,67].
It has been shown that Pseudomonas can reduce highly toxic pentavalent V to less toxic
tetravalent V under certain conditions, thereby reducing its toxicity [67]. At the same time,
some studies have shown that Pseudomonas has a certain resistance to heavy metals and is
widely used in heavy metal remediation [68–71]. Additionally, Actinobacteria and Firmicutes
were dominant among the root endophytes in these samples, which could be attributed to
their high tolerance to heavy metals. According to Pan et al., Actinobacteria were found to
be effectively enriched in heavy metal-contaminated soils, dominating all of the microbial
communities [72]. Meanwhile, the study by Wang et al. found that Firmicutes could also
play a role in reducing V to decrease exposure to toxicity. In addition, other dominant
microbiota may also be involved in the reduction of V, since V is also a metal that is easily
reduced by oxidation [73]. Therefore, these bacteria can be further developed and utilized
for bioremediation in VTM mining areas. The abundance of two bacteria, Proteobacteria and
Actinobacteria, accounted for a significant portion of the sum of all microbial communities
in the samples, which may be due to their unique ability to bind heavy metals, allowing
them to adapt to harsh heavy metal-contaminated environments [74–76].

Hierarchical taxonomic descriptions at the genus level allow for further analysis of the
more complex details of bacterial community structure. At this level of genus, Pseudomonas,
Nocardioides, Pseudonocardia, and Pseudarthrobacter are the dominant microbial communities.
It has been shown that these bacteria have good resistance to heavy metals, that they
coexist well with heavy metals, and that these bacteria are often isolated in a variety of
environments heavily contaminated with heavy metals [72,77,78]. In addition, other studies
have shown that Pseudarthrobacter is not only enriched in heavy metal-contaminated en-
vironments, but also plays a key role in promoting plant growth, and therefore, this
bacterium also has great potential for application in bioremediation at VTM mining
sites [79,80]. The strong resistance of these bacteria and their high tolerance to heavy
metals have led to their complete dominance among the endophytic bacteria in the root
systems of plants in VTM mining areas.

Furthermore, our study also revealed that the levels of enrichment of endophytic bac-
teria within plant roots in the VTM mining area were different, indicating that plants have
certain screening and shaping abilities for endophytic bacterial communities. Throughout
the extended coexistence and integration of endophytic bacteria within the plant root
system, only competitive and adaptive bacteria are able to successfully colonize and form
an advantageous mutualistic association with the host organism [81].

Overall, our study revealed that VTM mining significantly influenced the distribution
of endophytic bacterial communities in the root systems of E. indica and Carex within the
mining region. Under contaminated environmental conditions, the microbial communities
in E. indica and Carex roots in VTM mining areas consist of heavy metal-resistant bacteria,
which is the result of long-term selection by plants. Studying changes in microbial com-
munities due to mining activities can help us identify bacteria with good environmental
adaptations to aid in the bioremediation of mining sites.

4.2. Functional Enrichment Analysis

We also used PICRUSt2 to infer the function of the endophytic bacterial community in
plant roots through three databases. We found that VTM mining also caused the develop-
ment of distinct functions in the endophytic bacterial community in plant roots. Plants in
VTM mining areas have different enriched microbial community functions compared to
plants in non-VTM mining areas. The VTM mining has a profound impact on the function-
ality of endophytic bacteria within plant root systems prevalent in VTM mining regions.
For example, the abundance of the phage-related tail fiber protein (COG5301), β-Lactam
resistance (ko00312), and ECM-receptor interaction (ko04512) functions significantly aug-
mented (p < 0.05). These functional changes revealed the local response mechanisms of
endophytic bacteria in plant roots to VTM mining and environmental stress.



Genes 2024, 15, 526 17 of 24

Jacquiod et al., found a high percentage of phage-related mRNA sequences in mRNAs
in soils chronically contaminated with Cu, which is similar to the results we found [82].
We suggest that in the root systems of plants in the VTM mining area, their endophytic
communities may maintain the stability of each function of the community by increasing
the expression of the phage-related tail fiber protein (COG5301) function. The up-regulation
of this function may potentially play a role in the survival of these microbial communities.
Some studies have shown that β-Lactam is a widely used antibiotic, which is commonly
used in the treatment of bacterial infections [83]. The functions of heavy metals and β-
Lactam have some similarities, and they are both effective in inhibiting bacterial growth [84].
In VTM mining areas, mining activities can lead to elevated levels of heavy metals in nearby
soil, posing a great challenge for the survival of local plants and microorganisms. There-
fore, in the function of plant rhizosphere endophytes in the VTM mining area, microbial
communities may reduce the repressive function caused by heavy metals by increasing
the expression of β-Lactam resistance (ko00312) function, which enables them to survive
in the heavy metal-exposed environment. Meng et al. found a significant enrichment of
the ECM-receptor interaction (ko04512) function in the digestive glands of Cu-exposed
Japanese scallops [85]. Similarly, Yao et al., also found a significant enrichment of this
function in the livers of antimony-exposed zebrafish [86]. Our results were similar to theirs;
the expression of the ECM-receptor interaction (ko04512) function was also significantly
elevated as a function of the endophytic bacterial community in plant roots in the VTM
mining area. ECM plays an important role in maintaining the structure and function of the
cell [87]. Therefore, endophytic bacteria in the root systems of plants in the VTM mining
area may ensure the function of the microbial community by enhancing the expression of
the ECM-receptor interaction (ko04512) function. In conclusion, our study found that endo-
phytic bacteria in the root systems of plants in the VTM mining area adapt to environmental
changes by modulating various functions.

Furthermore, it was determined for the first time that the community structure and
functional role of the endophytic bacteria within the roots of D. viscosa remained relatively
unaffected between the VTM mining area and the non-VTM mining area. This indicates
that D. viscosa itself has a strong adaptability to environmental changes. Therefore, it is also
possible to consider using D. viscosa for the ecological restoration of VTM mining regions.

5. Conclusions

This study examined the impact of VTM mining on the diversity, community compo-
sition, and metabolic function of endophytic bacteria in the roots of E. indica, Carex, and
D. viscosa. The study findings indicate that VTM mining negatively impacted the biodiver-
sity of endophytic bacteria in the root systems of E. indica and Carex in the mining area. The
Chao1, observed species, Shannon, Simpson, and Pielou evenness indices were all notably
lower (p < 0.05). Furthermore, VTM mining has induced alterations in the community
structure of endophytic bacteria within the root systems of E. indica and Carex, as opposed
to the non-VTM mining area. Due to VTM mining, the abundance of Nocardioides in both
E. indica and Carex notably reduced (p < 0.05). Interestingly, the abundance of Pseudomonas
in the roots of both plants significantly increased (p < 0.05), indicating that this bacterium
has good environmental adaptability. Through PICRUSt2 prediction, our study reveals
that the endophytic bacteria in the root systems of E. indica and Carex in the VTM mining
area responded to the environmental stress caused by mining activities through a series
of methods. These include the enhancement of β-Lactam resistance (ko00312), flavonoid
biosynthesis (ko00941), polymyxin resistance (PWY0-1338), and nicotinate degradation
I (PWY-722). Conversely, no substantive alterations were observed in the diversity, com-
munity composition, and metabolic functionality of endophytic bacteria within the root
tissue of D. viscosa following VTM mining activities. This shows that D. viscosa has good
environmental adaptability. This paper, for the first time, studied the effect of VTM mining
activities on endophytic bacteria in nearby plant roots. It emphasizes the ecological impact
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of VTM mining activities on endophytic bacteria in plant roots and provides a basis for soil
ecological remediation in VTM mining areas.
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Figure A1. Rarefaction curves of root endophytic bacteria OTUs in different samples. VT-Dvi,
D. viscosa in the VTM mining area; VT-Car, Carex in the VTM mining area; VT-Ein, E. indica in the
VTM mining area; CK-Dvi, D. viscosa in the non-VTM mining area; CK-Car, Carex in the non-VTM
mining area; CK-Ein, Eleusine indica in the non-VTM mining area.
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