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Abstract: The number of thoracic vertebrae (NTV) in pigs is an important economic trait that
significantly influences pork production. While the Licha black pig is a well-known Chinese pig
breed with multiple thoracic vertebrae, the genetic mechanism is still unknown. Here, we performed
a selective signal analysis on the genome of Licha black pigs, comparing individuals with 15 NTV
versus those with 16 NTV to better understand functional genes associated with NTV. A total of
2265 selection signal regions were detected across the genome, including 527 genes and 1073 QTL that
overlapped with the selection signal regions. Functional enrichment analysis revealed that LRP5 and
SP5 genes were involved in biological processes such as bone morphogenesis and Wnt protein binding.
Furthermore, three genes, LRP8, DEF6, and SCUBE3, associated with osteoblast differentiation and
bone formation, were located within or close to the QTL related to bone development and vertebrae
number. These five genes were hypothesized to be potential candidates for regulating the NTV trait
in Licha black pigs. Our findings revealed several candidate genes that play crucial roles in NTV
regulation and provide a theoretical foundation to understand the genetic mechanism of the NTV
trait in pig breeding.

Keywords: Licha black pig; number of thoracic vertebrae; selection signal regions; functional genes

1. Introduction

The number of vertebrae in pigs is an economically important trait, composed of
cervical vertebrae, thoracic vertebrae, lumbar vertebrae, sacral bone, and caudal vertebrae.
The number of thoracic vertebrae (NTV) varies from 13 to 17 and is equivalent to the
number of ribs, potentially influencing carcass length and body weight [1,2]. Therefore, in
the pig industry, selecting multi-vertebral pigs by molecular breeding means can increase
pork production and economic benefits.

China has a wealth of pig genetic resources, accounting for roughly one-third of the
world’s total pig breeds [3]. Numerous indigenous pig breeds in China display distinctive
traits, including disease resistance, efficient feed conversion, and high fertility [4]. The
preservation and utilization of these indigenous pig breeds are essential for maintaining
biodiversity and for the development of new pig breeds with improved traits. The Licha
black pig is a popular local pig breed, primarily found in the Jiaodong Peninsula of
Shandong Province, China. It is worth mentioning that Licha black pig is distinguished
from other local breeds by a multi-vertebral trait manifested by one additional thoracic
vertebrae [5].

NTV has a moderate heritability of approximately 0.6 [1,6]. Previous research has
demonstrated that NTV is a polygenic trait influenced by multiple quantitative trait
loci (QTL). Yang et al. [7] discovered that the VRTN gene located on Sus scrofa chro-
mosome (SSC) 7 was significantly associated with NTV in the Duroc, Landrace, and White
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Duroc × Erhualian F2 population, and the VRTN mutation site potentially also influenced
carcass length and teat number. Niu et al. [8] revealed that the GREB1L and MIB1 genes on
SSC6 and the ABCD4 gene on SSC7 were related to NTV in the Beijing black pig population.
Furthermore, the FOS and BMPR1A genes, located on SSC7 and SSC14, respectively, were
identified as the candidate genes regulating NTV in a Large White × Minzhu intercross
pig population [9]. As previously stated, somite, formed from the presomitic mesoderm
during early embryogenesis, regulates the number of vertebrae [10,11]. Moreover, research
evidence on model organisms revealed that the Notch, Wnt, and Retinoic acid signal path-
ways can regulate somite development to ensure normal formation and differentiation via
segmentation clock regulation [12]. Among them, the Wnt signaling pathway is critically
linked to various developmental processes, including gastrulation, organ development,
and tissue homeostasis. In particular, during vertebrae development, the Wnt signaling
pathway influences the development of somites, some of which develop into vertebrae [10].

While candidate genes for NTV have previously been identified, the studies primarily
focused on Western pig breeds and hybrid bred from Western and Chinese pig breeds. On
the contrary, the Licha black pig is an indigenous breed formed by long-term breeding of
local residents, which is less impacted by modern hybrid breeding and has less introgression
of Western pig lineage. The purpose of the current study was to identify candidate genes
that play crucial roles in NTV regulation and to provide a theoretical foundation for the
increase of NTV in Licha black pigs.

2. Materials and Methods
2.1. Animal and Sample Collection

One-month-old Licha black pigs for this study were selected from the National Nucleus
Licha Black Pig Conservation Farm in Jiaozhou, Shandong Province, China. DUAL VET
X-Plus (Sedecal, Madrid, Spain), a portable X-ray machine, was utilized to take an X-ray
picture of each individual, and the number of thoracic vertebrae was accurately counted
by the staff. A total of 19 Licha black pigs, including 9 with 16 NTV and 10 with 15 NTV,
were selected for the subsequent analysis. We strictly followed the Animal Care and
Use of Qingdao Agricultural University (Qingdao, China) for the relevant experimental
procedures. Ear tissue samples were collected using scissors and placed in an anhydrous
ethanol-containing centrifuge tube. All the tools and equipment used for sample collection
were sterilized by heat or ultraviolet rays.

2.2. Whole Genome Resequencing

Genomic DNA from ear tissues was extracted using TIANamp Genomic DNA kits
(Tiangen Biotech, Beijing, China). The concentration and purity of genomic DNA were
detected using a NanoDrop™ 2000 (Thermo Fisher, Waltham, MA, USA). DNA samples
with a light absorption ratio (A260/280) between 1.8 and 2.0 and a concentration > 50 ng/µL
were used in the subsequent steps. DNA libraries were constructed for each individual
using an MGIEasy FS DNA Prep kit (BGI, Shenzhen, China) following the manufacturer’s
instructions. Paired-end sequencing using the MGISEQ-2000 platform (BGI, Shenzhen,
China) yielded 150 bp-sized sequencing reads.

2.3. Quality Control and Reads Mapping

To ensure the reliability of bioinformatics analysis, the NGS QC Toolkit [13] was used
to remove low-quality paired reads of the sequencing data. Reads containing greater
than 5% unidentified nucleotides (N) longer than 50% bases with phred quality less than
5 were eliminated. BWA 0.7.17 software [14] was used to map clean data to the reference
genome Sus scrofa 11.1 (https://www.ensembl.org/Sus_scrofa/Info/Index, accessed on 1
January 2023). SAMtools 1.12 software [15] was employed to perform local realignment
and eliminate PCR duplicates. Subsequently, SNP for each individual was detected using
the GATK 4.2.0 software [16], and the genotype data were quality controlled using Plink
1.90 software [17]. Individuals with genotyping call rates less than 90%, SNP with a call
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rate less than 90%, minor allele frequencies less than 0.01, Hardy–Weinberg equilibrium
p-value less than 1 × 10−6, and SNP on sex chromosomes were excluded.

2.4. Genome Scanning for Selective Signal Analysis

The whole genome selection signals were determined by comparing individuals
with 15 NTV to those with 16 NTV. A selective scanning analysis was performed using
VCFtools 0.1.16 software [18] and setting a 100 KB sliding window with a step size of
10 KB. The genetic differentiation value (FST) between the two groups was calculated,
with the empirical top 1% as the threshold (FSTtop0.01 = 0.18). Genes partially or completely
overlapping with selection signal regions were selected based on the Sus scrofa 11.1 genome
assembly using the BioMart data management (http://www.biomart.org/, accessed on 1
January 2023). Furthermore, these selection signal regions were also compared with pig
QTL from the animal QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/,
accessed on 1 January 2023).

2.5. Enrichment Analysis

To provide insight into the functional enrichment of genes, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
selected genes were performed using the KOBAS 3.0 software [19]. Fisher’s exact test was
employed to determine the significance of the enriched terms and pathways [20], with
p-value less than 0.05 deemed significant for enrichment analysis [21].

3. Results
3.1. Quality and Statistics of the Sequencing Data

The MGISEQ-2000 platform yielded 625.39 GB of raw sequencing data from 19 Licha
black pigs, with each sample generating 30.55~36.39 GB of raw data. Quality screening
yielded 616.94 GB of clean data. The average effective sequencing rate was 98.65%, with
an average Q30 of 90.34%. Clean reads were mapped to the pig reference genome using
the BWA 0.7.17 software, and the average mapping rate of the clean data was 99.09%.
The average effective depth of the reference genome coverage was 12.58-fold, ranging
from 11.33-fold in the MH-B4 sample to 13.95-fold in the MH-R12 sample. These findings
showed that all sequence data generated in this study were suitable for subsequent analysis
(Table S1).

3.2. Selective Signal Analysis

We applied several criteria to filter the sequence data; 19 individuals and 19,436,395 SNPs
were retained for selective signal analysis. Through the analysis of the FST value (top 1%),
a total of 2265 selection signal regions were distributed on the 17 autosomes of the pig
genome (Figure 1), and these regions were listed in Table S2. In addition, the statistics
of selection signal regions on the pig autosomes are shown in Table 1. Of these, SSC1
contained the greatest number of selection signal regions (380), while SSC3 had the least
number of selection signal regions (4). The most significant region was located in the
199.28–199.38 MB of SSC13. Furthermore, 527 genes overlapping with selection signal
regions were selected to perform enrichment analysis (Table S3), and Table 2 listed the top
20 selection signal regions that contained the overlapping genes.

3.3. Functional Enrichment Analysis

GO analysis showed that these genes were significantly enriched in 130 GO terms,
including 78 GO terms in biological processes, 28 GO terms in cellular components, and
24 GO terms in molecular function (Table S4). The top 30 GO terms are outlined in Figure 2.
These GO terms were primarily related to biological processes, including regulation of
cell cycle, glucose transmembrane transport, adipose tissue development, regulation of
microtubule cytoskeleton organization, positive regulation of MAPK cascade, and negative
regulation of inflammatory response. We particularly focused on the terms highly likely
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related to bone development, including bone morphogenesis and Wnt protein binding,
with LRP5, SP5, and TRABD2B genes implicated in these processes.

Table 1. The statistic of selection signal regions on the pig autosomes.

SSC Selection Signal
Region Number Length (Mb) 1 Autosome

Coverage (%) 2 Gene Number 3

1 380 38 13.85 86
2 110 11 7.24 32
3 4 0.4 0.3 3
4 130 13 9.93 19
5 74 7.4 7.08 20
6 98 9.8 5.74 24
7 40 4 3.28 14
8 192 19.2 13.82 78
9 25 2.5 1.79 12
10 171 17.1 24.65 15
12 15 1.5 2.44 7
13 340 34 16.32 52
14 342 34.2 24.13 111
15 94 9.4 6.69 24
16 171 17.1 21.39 21
17 31 3.1 4.88 4
18 48 4.8 8.57 5

Total 4 2265 226.5 10 527
1 Represents the total length of the selection signal region on this autosome, and autosome length is expressed in
Mb units; 2 represents the proportion of the total length of the selection signal region on this autosome to the total
length of this autosome; 3 represents the number of genes overlapping with the selection signal region on this
autosome; 4 represents the total number and length of selection signal regions, and total number of overlapping
genes on the 17 autosomes.

Table 2. Top 20 selection signal regions overlapping with genes.

SSC Bin Start (bp) 1 Bin Eed (bp) FST
2 Gene Name 3

13 199,280,001 199,380,000 0.509862 LOC106505853, LOC110256478,
LOC106505851

13 198,830,001 198,930,000 0.425367 LOC106505851
13 198,650,001 198,750,000 0.410486 LOC106508030
13 198,630,001 198,730,000 0.401655 RUNX1

13 50,480,001 50,580,000 0.377898 ARL6IP5, LMOD3,
LOC110256266, UBA3

13 50,470,001 50,570,000 0.357269 TMF1
5 85,790,001 85,890,000 0.351059 LOC102160458
13 199,770,001 199,870,000 0.348404 CBR3, DOPEY2
14 49,210,001 49,310,000 0.34131 BCR

14 49,530,001 49,630,000 0.338639 GGT1, GUCD1, LRRC75B,
SNRPD3, SNRPD3, UPB1

14 49,550,001 49,650,000 0.335205 GGT5
14 49,200,001 49,300,000 0.334916 RAB36
14 49,580,001 49,680,000 0.333836 LOC100520275, SUSD2
14 49,270,001 49,370,000 0.33244 SPECC1L
14 49,590,001 49,690,000 0.324805 CABIN1
13 50,510,001 50,610,000 0.323567 FRMD4B
1 38,460,001 38,560,000 0.322458 NKAIN2
13 199,680,001 199,780,000 0.32011 LOC110256483

8 6,040,001 6,140,000 0.311989 LOC110262054, LYAR, OTOP1,
TMEM128, ZBTB49, DRD5

8 6,090,001 6,190,000 0.311252 DRD5
1 Represents the start and end of the selection signal regions, and autosome positions are expressed in bp units;
2 represents the FST value between the groups with different NTV; 3 represents the genes overlapping with the
selection signal regions.
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KEGG enrichment analysis revealed 25 significantly enriched pathways; further inves-
tigation of these pathways could reveal their biological relevance and potential significance
(Figure 3, Table S5). These pathways were implicated in various regulatory pathways,
including the PPAR signaling pathway, α-linolenic acid metabolism, glycerophospholipid
metabolism, arachidonic acid metabolism, oxytocin signaling pathway, mTOR signaling
pathway, and metabolic pathways. The involvement of these pathways suggests a complex
interplay between lipid metabolism, cellular growth, and energy regulation.
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The Y axis represents the function of enriched pathways. The X-axis represents the enrichment factor.
The size of the dot indicates the number of genes enriched in the pathway, and the color corresponds
to the different p-value ranges.

3.4. Comparison of Selective Signal Regions and QTL Database

Compared with the QTL database in pigs, these selective signal regions harbored in or
partially overlapping with 1073 QTL (Table S6), related to traits such as average backfat
thickness, intramuscular fat content, corpus luteum number, teat number, body weight,
bone mineral content, glucose level, white blood cell number, and front feet conformation.
The presence of these regions highlights their potential as genetic markers in selective
breeding programs. In this study, we focused on QTL associated with bone development
and vertebra number, and 13 QTL, including bone mineral content, thoracic vertebra
number, lumbar vertebra number, cervical vertebra length, cannon bone circumference,
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and spinal curvature, were identified (Table 3). Moreover, 68 genes overlapping with
selection signal regions were also located within or close to these QTL (Table 3), with LRP8,
DEF6, and SCUBE3 genes playing critical roles in regulating osteoblast differentiation and
bone formation.

Table 3. The partial QTL and genes overlapping with selection signal regions.

SSC QTL Name QTL Start (bp) 1 QTL End (bp) Gene Name

2 Bone mineral
content 0 13,341,832

LOC110259708, BEST1,
FTH1, RAB3IL1, FADS3,

INCENP, C2H11orf24,
CHKA, KMT5B,
LOC102162815,

LOC100738812, LRP5,
LOC110259247, FADS2,

LOC106509334

2 Lumbar vertebra
number 21,047,891 146,185,081

LOC106509513,
LOC102164448, PAM,
YTHDC2, SLCO4C1,

LOC110255325,
LOC102158973,

LOC110259457, PPIC,
SNX24, C2H11orf91, CD59,

FBXO3, KIAA1549L,
LOC106509385

6 Thoracic
vertebra number 158,835,021 158,835,025 LRP8 2

7 Cervical
vertebra length 28,939,911 38,532,223 DEF6, TCP11, ZNF76,

SCUBE3, PPARD

7 Cannon bone
circumference 31,235,547 31,235,551 PPARD

7 Number of ribs 68,061,952 77,142,053 LOC100736765, MYH7,
NGDN, ZFHX2

7 Thoracic
vertebra number 104,557,779 104,557,783 FOXN3 2

8 Spinal curvature 6,099,724 6,099,728 LYAR

10 Vertebra number 13,546,750 69,196,799

CELF2, LOC110255590,
LOC106505197, USP6NL,

LOC110255605,
LOC110255591, ARMC3,

LOC106505172

12 Thoracic
vertebra number 0 50,491,372

BPTF, C12H17orf58,
LOC110256159, KPNA2,

TRNAR-CCG, HELZ,
CA10

13 Vertebra number 75,687,809 169,726,013 CMSS1, FILIP1L,
LOC100524713

14 Cervical
vertebra length 62,245,247 81,061,212

LOC110256649,
LOC110256651, PHYHIPL,

FAM13C

16 Number of ribs 28,477,997 34,396,617 LOC110257315, ARL15,
NDUFS4

1 Represents the start and end of the QTL, and autosome positions are expressed in bp units; 2 represents genes
located near these QTL.

4. Discussion

The Licha black pig is an important local pig breed in China, with qualities such as
feed efficiency, disease resistance, and high fertility rate. In addition, the Licha black pig
has one more NTV than other local pig breeds [22]. However, the genetic basis of the NTV
in Licha black pig is yet unknown, which may limit the full exploitation of their genetic
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potential. In the present study, we employed FST tests to detect selection signal regions in
the genome of Licha black pigs between individuals with 15 NTV and those with 16 NTV,
which will help us to identify genes related to vertebrae development and improve our
understanding of the genetic mechanisms of NTV trait in pig breeding.

A total of 527 genes overlapping with selection signal regions were subjected to func-
tional enrichment analysis in the present investigation; we focused more on functional
genes associated with somite formation and bone development. According to the results
of functional enrichment analysis, LRP5, SP5, and TRABD2B genes were discovered to be
involved in biological processes such as bone morphogenesis and Wnt protein binding;
understanding their roles can provide insights into the molecular mechanisms of bone
formation. The LRP5 gene on SSC2 potentially plays a pivotal role in the processes of
somite formation and bone development via the Wnt signaling pathway. This pathway is
instrumental in the regulation of cell fate and differentiation during embryonic develop-
ment, particularly in the formation of the axial skeleton. LRP5 functional loss mutations
can lead to a low bone mass phenotype, whereas LRP5 functional gain mutations result
in a dominant high bone mass phenotype [23]. Meanwhile, osteocyte-secreted sclerostin
can serve as an endogenous Wnt signaling inhibitor by blocking the interaction of the
Wnt ligand and LRP5, regulating bone mass and strength [24]. The SP5 gene, located on
SSC15, encodes a member of the SP family of Zinc-finger DNA binding proteins, which
has been described as a Wnt/β-catenin target gene capable of acting upstream or within
bone morphogenesis [25]. The role of the SP5 gene in bone morphogenesis is multifaceted.
It can control the balance between bone formation and resorption, which is essential for
maintaining skeletal integrity. Huggin et al. [26] discovered that the SP5 gene could induce
the termination of a transcriptional program initiated by Wnt signaling, and this type
of dampening gene expression is crucial for ensuring the completion of developmental
processes. As a result, we hypothesize that both LRP5 and SP5 genes potentially may play
a role in the regulation of NTV trait in Licha black pigs.

Moreover, we compared the selection signal regions with the pig QTL database,
focusing on QTL related to bone development and vertebrae number. Of note, 68 genes
overlapping with selection signal regions were found within or close to these QTLs, which
aided in precise positioning and narrowing of the target area. Finally, three genes, LRP8,
DEF6, and SCUBE3, were revealed as functional genes related to the NTV trait. The
LRP8 gene is located on SSC6, close to the QTL associated with thoracic vertebra number,
and exerts a similar function to the LPR5 gene, primarily playing a role in the formation
and development of bones. Zhang et al. [27] discovered that LRP8 could function as
a positive regulator of the Wnt signaling pathway, promoting Wnt-induced osteoblast
differentiation; this finding underscores the importance of LRP8 in maintaining normal
skeletal development. Moreover, LRP8 knockout mice induce a defect in bone formation.
Both DEF6 and SCUBE3 genes, located on SSC7, overlap with the QTL of cervical vertebra
length. The DEF6 gene, also known as IBP or SLAT, is first identified as an activator of Rho
GTPases with distinct molecular structures [28]. Pei et al. [29] were the first to discover
the association of DEF6 with bone mineral density at different bone sites. Deng et al. [30]
later investigated the role of DEF6 in osteoblast differentiation and bone formation, and
their results indicated that DEF6 inhibited osteoblast differentiation and mineralization
both in vitro and in vivo, and DEF6 knockout mice displayed an osteoporotic phenotype
with increased osteoclast formation. The SCUBE3 gene encodes a member of the signal
peptide family, which can function as co-receptors for various growth factors [31]. Bone
morphogenetic protein (BMP), a growth factor, plays a critical role in bone formation and
cartilage development. SCUBE3 can modulate the BMP signaling pathway, enhancing the
response and ensuring proper cellular differentiation and tissue formation. SCUBE3 can
also function as a BMP co-receptor, and its aberrant function of SCUBE3 in mice impairs
BMP-mediated chondrogenesis and ossification [32]. The regulation of SCUBE3 is essential
to prevent skeletal abnormalities and maintain the balance of bone and cartilage formation.
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In addition, previous studies showed that the 7.5–9.5 days period of mouse gestation is
a critical stage for the development of somite [8,33]. Therefore, based on the transcriptomic
data of three mouse embryonic development at 9.5 days in a public database (https://
figshare.com/s/496d0d17ad585717080c, accessed on 1 January 2023), we obtained the
expression levels of the genes, expressed as the number of fragments per kilobase of exon
per million mapped fragments (FPKM), and found that LRP5, SP5, LRP8, DEF6 and SCUBE
genes can be expressed during the critical stage of mouse somite development (Figure 4).
Among them, the expression of the SCUBE gene was the highest, while the expression of
the DEF6 gene was the lowest. We further inferred that LRP5, SP5, LRP8, DEF6, and SCUBE
genes are potential candidate genes associated with NTV traits in Licha black pigs.
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