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Abstract: The aim of this study was to identify genetic markers in the HBB Cluster; HBS1L-MYB
intergenic region; and BCL11A, KLF1, FOX3, and ZBTB7A genes associated with the heterogeneous
phenotypes of Sickle Cell Anemia (SCA) using next-generation sequencing, as well as to assess
their influence and prevalence in an Angolan population. Hematological, biochemical, and clinical
data were considered to determine patients’ severity phenotypes. Samples from 192 patients were
sequenced, and 5,019,378 variants of high quality were registered. A catalog of candidate modifier
genes that clustered in pathophysiological pathways important for SCA was generated, and candidate
genes associated with increasing vaso-occlusive crises (VOC) and with lower fetal hemoglobin (HbF)
were identified. These data support the polygenic view of the genetic architecture of SCA phenotypic
variability. Two single nucleotide polymorphisms in the intronic region of 2q16.1, harboring the BCL11A
gene, are genome-wide and significantly associated with decreasing HbF. A set of variants was identified
to nominally be associated with increasing VOC and are potential genetic modifiers harboring phenotypic
variation among patients. To the best of our knowledge, this is the first investigation of clinical variation
in SCA in Angola using a well-customized and targeted sequencing approach.

Keywords: sickle cell anemia; next generation sequencing (NGS)

1. Introduction

Sickle Cell Disease (SCD) is a group of inherited diseases where a single nucleotide
substitution in the gene HBB causes an amino acid substitution from glutamic acid to
valine in the β-globin subunit. This substitution affects hemoglobin behavior, forming poly-
mers under deoxygenated conditions [1], and patients are predisposed to vaso-occlusion,
ischemia, hemolysis, and inflammation [2]. It is estimated that worldwide, each year,
300,000 babies are born with SCD, with more than three-fourths of these cases being
reported in Sub-Saharan Africa [3].

The most common and severe form of SCD is Sickle Cell Anemia (SCA), where two βS
alleles are present. Chronic Hemolytic anemia, frequent painful crises, and extensive organ
damage are common in these patients, although they tend to present very heterogeneous
phenotypes with different levels of severity and life expectancy [1].

Fetal hemoglobin (HbF) is an important modulator of the SCA phenotype, having
an impact on the clinical and hematological features of this disease, as high levels of
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HbF reduce the mean corpuscular HbS concentration and inhibit copolymerization be-
tween hemoglobin tetramers [4,5]. HbF is the most prevalent hemoglobin in the last two
trimesters of gestation in humans, although some individuals continue to produce measur-
able amounts in adulthood. Persistent high concentrations of HbF improve overall survival
and lower the number of painful crises, acute chest syndromes, and osteonecroses [5]. The
variation between individuals in the regulation of HbF levels seems to be caused, in 60–90%
of cases, by heritability. In approximately 50% of the cases, it is caused by single nucleotide
polymorphisms (SNP) in BCL11A, HBS1L-MYB, and HBB [4–6].

Genotype–phenotype association studies are a necessity to identify new genetic mark-
ers and modifiers, better understand the different levels of severity, better establish progno-
sis, and even identify new potential drug targets in an era where we all intend to pursue
personalized medicine. The aim of this study was to identify genetic markers associated
with the heterogeneous phenotypes of SCA and assess their influence and prevalence in
an Angolan population. In that regard, the HBB Cluster; HBS1L-MYB intergenic region;
and BCL11A, KLF1, FOX3, and ZBTB7A genes were sequenced by NGS from samples from
192 Angolan SCA children. Moreover, we intend to compare our results with published
sequences from other African populations with SCD.

2. Materials and Methods
2.1. Assessment of Hematological and Biochemical Parameters

Blood samples from 192 Angolan SCA children naïve to Hydroxyurea were collected
from a cohort of Hospital Pediátrico David Bernardino and Centro de Investigação em
Saúde de Angola at Hospital Geral do Bengo during routine follow-up appointments.
The hematological parameters measured were complete blood count, hemoglobin, mean
corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) using the XT-2000i
Hematology Analyzer (Sysmex Corporation, Kobe, Japan). The hemoglobin fractions
were quantified by High-Performance Liquid Chromatography (HPLC) (Biorad Variant
II, Hercules, CA, USA). Biochemical blood tests included Lactate dehydrogenase (LDH),
Aspartate Aminotransferase (AST), urea, creatinine, total and direct bilirubin, and Alanine
Aminotransferase (ALT) using Mindray BA-88A (Mindray, Shenzhen, China) and Cobas
C111 (Roche Diagnostics, Rotkreuz, Switzerland).

2.2. Sample Characterization

The data were analyzed according to two phenotype groups stratification. Chil-
dren with previous stroke and mean LDH > 664U/L (measured in three different routine
appointments) were classified as having the Hemolytic phenotype (n = 21, mean age
6.38 ± 2.20), children with no previous stroke and previous vaso-occlusive/painful crisis
were classified as having the VOC phenotype (n = 138, mean age 6.75 ± 2.54), and the
remaining children were classified as having the less severe phenotype (n = 33, mean age
6.21 ± 2.55). Children with HbF ≥ 7.65% (3rd Quartil value) were included in the High-HbF
phenotype (n = 48, mean age 5.90 ± 2.60), and children with HbF < 7.65% were included in
the Low-HbF phenotype (n = 143, mean age 6.84 ± 2.43). Data were presented as mean
(SD). The t-test was used to compare the means between two independent groups and the
non-parametric Kruskal–Wallis tests were applied when comparing three separate groups.
Bonferroni adjustments were used for multiple testing.

2.3. Targeted Sequencing

After DNA extraction using the QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden,
Germany) and quantification with Qubit™ dsDNA HS fluorometric assay (ThermoFisher
Scientific Inc., Waltham, MA, USA), the samples were sequenced with a custom enrich-
ment panel (Supplementary Table S1A). Paired-end sequencing was performed on the
NextSeq550 equipment (Illumina, Inc., San Diego, CA, USA) using the NextSeq 500/550
Mid-Output kit v2 (300 cycles). Reads were aligned with the reference GRCh37/hg19
human genome.
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2.4. Variant Calling Quality Control and Annotation

Joint variant calling was conducted using GATK and BCFTOOLS [7,8]. We applied
VariantMetaCaller [9] to combine and optimize the accuracy of variant calls based on the
consensus of their statistical properties and discovery. The resulting VCF files were filtered
using the GATK tool “VariantFiltration”.

2.5. Variant Annotation and Mutation Prioritization

We annotated the resulting VCF files using ANNOVAR [10] and independently per-
formed gene-based annotation in each final VCF dataset to determine whether SNPs cause
protein-coding changes and produce a list of the affected amino acids. We obtained the
population frequency and pathogenicity for each variant from 1000 Genome data, Exome
Aggregation Consortium (ExAC), targeted exon datasets, and COSMIC with ANNOVAR
database settings [10]. We leveraged ANNOVAR’s library and RefGene to extract gene func-
tion and different functional predictions. ANNOVAR has up to 21 different mutation score
tools including SIFT, LRT, MutationTaster, MutationAssessor, FATHMM and FATHMM-
MKL, RadialSVM, LR [11], PROVEAN, MetaSVM, MetaLR, CADD, GERP++, DANN,
M-CAP, Eigen, GenoCanyon, Polyphen2-HVAR and HDIV, PhyloP, and SiPhy [11–28].
In addition, conservative and segmental duplication sites were included, and dbSNP
code and clinical relevance were reported in dbSNP. From the resulting functional anno-
tated dataset, we independently filtered for predicted functional status (of which each
predicted functional status is “deleterious” (D), “probably damaging” (D), “disease-causing-
automatic” (A), or “disease-causing” (D). We selected candidate mutation based on the
following: (1) casting vote approach implemented in our custom python script, retaining
only a variant if it had at least 17 predicted functional status of “D” or “A” out of 21 and
(2) further filtering for rarity, exonic variants, and nonsynonymous mutations and with a
high-quality call from the retained variants from step 1 above.

2.6. Network and Enrichment Analysis

From the obtained candidate lists of predicted mutant variants, we reconstructed their
functional, physical, and co-expression-interacting network GeneMania [29]. We further
examined how these genes within the constructed networks were associated with human
phenotypes, pathways, biological processes, and molecular functions using Enrichr [30].
The most significant pathways enriched for genes in the networks were selected from
various bioinformatics databases [30]. Gene ontology terms and annotations from the
Gene Ontology databases were extracted for cellular components, biological processes, and
molecular functions.

2.7. Principal Component Analysis (PCA)

To evaluate the extent of substructure within Angolan SCA, we leverage the curated
192-phased haplotypes dataset, which resulted from Eagle [31], to perform genetic structure
analysis based on Principal Component Analysis (PCA) using smartpca [32]. Genesis
software http://www.bioinf.wits.ac.za/software/genesis was used to plot PCA (accessed
on 10 January 2024).

We further performed a PCA analysis to investigate the genetic structure of Angola
HbF patients with other population groups. We accessed VCF files from the 1000 Genomes
Project (1KGP) Consortium, 2015, and the African Genome Variation Project (AGVP), which
recently characterized the admixture across 18 ethnolinguistic groups from Sub-Saharan
Africa [33]. A quality control check was conducted on these VCF files using Plink [34],
and we ultimately retained 2504 and 2428 samples from 1KGP and AGVP, respectively.
Based on sample description (population or country labels), population ethnolinguistic
information [35,36] was utilized to categorize the obtained data per ethnolinguistic cultural
group as described in Supplementary Table S2, resulting in 20 ethnolinguistic cultural
groups and our samples. The first 20 principal components were computed from EIGEN-

http://www.bioinf.wits.ac.za/software/genesis
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STRAT package via smartpca, comparing Angolan SCA and these groups; the second PCA
compared SCA patients among themselves, and phylogenic trees were also plotted.

2.8. Distribution of Minor Allele Frequency and Gene-Specific in SNP Frequencies

The distribution of the minor allele frequency (MAF) was investigated to examine the
extent of common and rare variants across 9 selected ethnic groups (KhoeSan, Niger–Congo
Bantu, Niger–Congo Volta Niger, Niger–Congo West, European South, European–USA,
East Asian, South Asian, and African-American) and Angola SCA patients group. Similarly,
a second comparison was conducted just among Angola SCA groups, including SCA VOC,
SCA Hemolytic, SCA Low and High HbF. To this end, the proportion of minor alleles was
categorized into six ranges (0–0.05, >0.05–0.1, >0.1–0.2, >0.2–0.3, >0.3–0.4, >0.4–0.5) with
respect to each ethnic group with a disease. The MAF per SNP for each category was
computed using Plink software. Furthermore, the fraction of gene-specific SNP frequency
for each gene was computed, assuming SNPs upstream and downstream within a gene
region are close and possibly in Linkage Disequilibrium (LD), obtained from dbSNP
database [17]. MAF per SNP was aggregated as per our previous studies [37,38].

2.9. Identity by Descent (IBD) and Functional Genomics

Leveraging the 192 samples of Angola SCA, we examine the overall genomic identity
by descent (IBD) sharing between pairs of SCA patients, aiming to look at the genomics
regions of interest or long-shared segments. After phasing the data using Eagle 2.0 [31],
we inferred the segments of IBD from the Refined IBD algorithm [39]. The genomic IBD
segments among the 192 Angola SCA patients were evaluated, and the shared segments
between the SCA groups (VOC, Hemolytic, Low/High HbF) were compared. A cut-off
of 250 kb was applied to retain segments of shared IBD, and genes were mapped to these
genomic regions to examine their potential functional biological network and, in addition,
their functional partners. Additional enrichment analyses were explored to gain insight
into potential disease-compromised networks.

2.10. HbF Association Testing

HbF association testing was performed using EMMAX [40] on curated dataset as a
result of genetics association quality-control guidelines. EMMAX was run to detect possible
associations, and we generated a pairwise relatedness matrix from the dataset, which is
representative of the structure of the samples using EMMAX-kin. Given the SNPs for
association with HbF, we, therefore, used a genome-wide significance level of 0.05/m
where m is the total number of tested variants.

2.11. Meta-Analysis of Angolan HbF and Other African Ancestry HbF

To identify associations with small effect sizes, which are not usually detected by
standard genetic association methods, summary statistics from Tanzania [41] and African-
Americans [42] were combined with those from our study in a single association dataset.
A fixed effects model [43] based on inverse-variance weighted effect size was used to
combine the log odds ratio and standard error from the combined GWAS summary statistics
dataset. Random effects and binary effects models, as described in the MetaSoft program,
were applied [43], and the p-values from fixed effect model and M-values (the posterior
probability that the effect exists in the study) were used to assess the level of significance.
Variants were retained to be significant for M-values > 8.5 across all the studies, and
p-values from fixed effect were lesser and equal to 0.05/M, where M is the total number of
variants tested for meta-analysis.

2.12. Rare-Variant Association and Burden Tests

To account for rare variants and sample size and leverage possible effects from variants
not included in association test and meta-analysis above and those not meeting the genome-
wide significance level, an optimal unified sequence kernel association test (SKAT-O) [44],
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aggregating SNP effects at gene level, was performed to discriminate quantitative traits
appropriately. We utilized the linear weighted kernel within SKAT-O and set the missing
cut-off to 0.9 to calculate the permutation p-value while adjusting for age and principal.

2.13. Estimating Functional Heritability from GWAS Dataset

Approaches based on association summary statistics gained critical interest in the
“Omics” era due to the privacy advantages they present and, particularly, their reduc-
tion of computational cost [45,46]. We applied LDAK [47] to estimate the functional
SNP-heritability of HbF from summary statistics. Briefly, we excluded the major His-
tocompatibility Complex (MCH) region (25,000,000–40,000,000) on chr6 and the sickle
cell (HbS) region on chr11:2,500,000–6,500,000 to avoid potential biases. We constructed
Genomic Relatedness Matrix (GRM) from pruned, high-quality, independent autosomal
SNPs (independent pairwise 50 10.2) and obtained a list of samples with a relatedness
threshold >5%. We then computed GRMs using all SNPs for each cohort and excluded one
of any pair of samples with relatedness threshold >5%, and the functional enrichment and
SNP-heritability were estimated as recommended [48]

3. Results
3.1. Participant Characteristics and Targeted Variant Discovery

The study sample consisted of 192 SCA Angolan children (99 female), aged be-
tween 3 and 12 years old (mean (SD): 6.6 (2.5)). The percentage of HbF ranged between
0.7 and 23.8% (5.65 (3.98)). The children were grouped according to the value of HbF (Low
HbF < 7.65% and High HbF ≥ 7.65%) and according to previous manifestations/phenotype
(Hemolytic, vaso-occlusive, and less severe phenotypes) (Table 1).

Table 1. Hematological and clinical characteristics of the patients according to their phenotype and
HbF groups (Low and High).

Phenotype HbF Groups

Hemolytic
(n = 21)

Vaso-
Oclusive
(n = 138)

Less Severe
(n = 33) p-Value *

(Kruskal–Wallis)

Low—HbF
(n = 143)

High—HbF
(n = 48) p-Value

(t-Test)
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Fetal
Hemoglobin
(%)

5.11 (3.07) 5.62 (3.94) 6.14 (4.61) 0.765 3.89 (1.96) 10.92 (3.79) -

Hemoglobin
(g/dL) 7.02 (1.01) 7.38 (0.98) 7.34 (0.89) 0.188 7.17 (0.91) 7.81 (1.01) <0.001

Reticulocyte
(%) 11.55 (3.2) 9.94 (4.84) 11.1 (4.54) 0.022 10.43 (4.75) 9.98 (4.44) 0.999

Erythrocytes
(1012L) 2.68 (0.45) 3 (0.65) 2.88 (0.56) 0.059 2.9 (0.61) 3.07 (0.66) 0.999

MCV (fL) 80.1 (6.41) 76.45 (9.21) 77.61 (7.67) 0.072 76.7 (8.83) 78.02 (8.55) 0.999
MCH (pg) 26.44 (2.37) 25.12 (3.07) 25.88 (2.81) 0.098 25.2 (2.96) 25.95 (3.01) 0.999
White blood
cells (109L) 13.48 (3.38) 14.07 (5) 14.12 (3.99) 0.735 14.11 (4.87) 13.77 (4.119 0.999

Neutrophil
(109L) 6.15 (2.15) 5.88 (2.34) 5.91 (2.55) 0.616 5.96 (2.31) 5.82 (2.49) 0.999

Platelet (109L)
382.32

(122.85)
440.89

(180.74)
448.97

(152.62) 0.182 437.08
(180.36) 432.8 (143.78) 0.999

Transfusions/year 0.86 (0.91) 0.34 (0.47) 0.35 (0.32) 0.009 0.46 (0.59) 0.22 (0.31) <0.001
Hospitalizations/year0.9 (0.77) 0.45 (0.47) 0.37 (0.3) 0.003 0.54 (0.54) 0.31 (0.32) 0.011

A total number of 5,019,378 variants (1.7% insertion, 1.9% deletion, 5.4% structural
variants, 0.012% multi-nucleotide variants, and 91% SNPs) were called in the targeted
sequence dataset, of which 1.3% and 54% were exonic and intergenic, respectively, and
they were distributed as 0.001% stop loss, 0.02% stop gain, 0.9% synonymous, 0.56%
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non-synonymous, and 0.05% splice site variants in the dataset. Supplementary Figure S1
illustrates the quality control of the sequence alignment data.

3.2. In Silico Mutational Burden of Genes in Participants

To examine potential genetic modifiers, we performed mutation prioritization and
examined the in silico biological functional pathways’ relationship to these mutations
through reconstructing their physical, functional, and co-expression networks as well as
enrichment analysis. Among 192 SCA patients, we detected significant differences in the
burden of non-synonymous, function-altering variants in a total of 26 genes (Supplementary
Table S1B,C) ranging in chromosome 11: p11.2, p15.4, p15.5, q13.1, q13.2, q13.4, and q25;
chromosome 2: p23.3, q11.2, and q37.1; chromosome 6: p21.31, p21.32, and p21.33; and
chromosome 7: p11.2, q22.1, q32.1, q34, and q36.1. The physical, co-expression, and
functional networks of these genes (Figure 1A) are enriched with pathways (Figure 1B)
such as Oxidative phosphorylation (p = 2.359 × 10−16), Respiratory electron transport (p =
3.346 × 10−16), and Arginine biosynthesis (p = 0.009). These pathways point to relevant
pathophysiological mechanisms, including some that are already therapeutic targets.
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Figure 1. (A) Physical, co-expression, and functional networks of the 26 genes where significant
differences in the burden of non-synonymous, function-altering variants were identified among the
192 SCA patients. (B) Pathways associated with the 26 genes where significant differences in the
burden of non-synonymous, function-altering variants were identified among the 192 SCA.

Our findings from the rare variant-based gene-burden association tests (Table 2) in-
cluded most of the variants found to harbor recurrent deleterious variants (Supplementary
Table S1C) targeting, in LD, several variants from the study’s targeted regions.
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Table 2. Significant genes from gene-set rare-variant association analyses in Angola Sickle Cell
Diseases.

Gene CHR Start
Position

End
Position Band Gene

Biotype p Nbr
Marker

Marker
Tested

Marker
Rare

Marker
Common

LHFPL3 chr7 104328603 104908561 q22.2 protein-
coding 1.65 × 10−5 40 31 31 9

ZNF559-
ZNF177 chr19 9324174 9382617 p13.2 protein-

coding 0.00012 8 5 5 3

TMEM181 chr6 158536436 158635429 q25.3 protein-
coding 0.0033 40 29 29 11

PAPOLG chr2 60756253 60802086 p16.1 protein-
coding 0.0035 39 33 33 6

3.3. Population Structure and Distribution of Gene-Specific in SNP Frequencies

HbF samples from Angola were merged with a combined 4932 samples from 1KGP [49]
and the AGVP [33], resulting in 237,572 common variants from the study’s targeted sequence
data. Based on sample description population and country labels, these 4932 samples were
grouped (Supplementary Table S2) based on culture and ethnolinguistic information [35,36],
resulting in 20 worldwide ethnolinguistic cultural groups (WECG).

PCA based on these 237,572 common variants showed that the study samples clustered
separately from the rest of these 20 WECG (Figure 2). It particularly formed a clearly
distinct cluster from the Khoisan group. PCA plots (Supplementary Figure S2 and Figure 2)
showed no global population differences among the SCA patients, i.e., Hemolytic and
VOC patients clustered together, except for three patients with VOC-independent outliers.
Supplementary Table S3 illustrates the genetics distance (FST) among the 20 WECG and
SCA Angola.
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Figure 2. Principal Component Analysis (PCA) of Sickle Cell Disease cohorts from Cameroon and
Tanzania. (A) PCA plot of the first and the second eigenvectors for 20 ethnic groups with SCD from
Cameroon and Tanzania. (B) Phylogeny tree showing evolutionary partnership between SCD cohorts
and general populations from 20 ethnic groups. (C) PCA plot of only Africa-specific ethnicities with
SCD cohorts in the first and the second eigenvectors.
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We observed a variation in the distribution of minor alleles at rare variants within MAF
range 0.0–0.05 and as well as at MAF range 0.1–0.2 between SCA Angola and nine selected
major WECG (Figure 3A). Among SCA Angola samples, variations in the distribution of
MAF were observed in SNP frequencies ranging between 5% and 20% (Figure 3B), sug-
gesting possible mutations and genetic modifiers may result in heterogeneous phenotypes
of SCA observed in our study. The substantial variation of gene-specific SNP frequencies
from the selected top pathogenic genes (Supplementary Table S1B) was observed within
SCA Angolan samples (Figure 3D) and between Angolan and the selected nine WECG
(Figure 3C). This may support the hypothesis that genetics modifiers may result in potential
clinical variability of SCA phenotypes.
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Figure 3. (A,B) The distribution of the minor allele frequency categorized into 6 ranges (0–0.05,
>0.05–0.1, >0.1–0.2, >0.2–0.3, >0.3–0.4, >0.4–0.5) with respect to each ethnolinguistic cultural group
regarding SNPs associated with (A) HIV-, (B) TB-, (C) Malaria-, (D) Sickle Cell Disease-, and ACG-
specific genes. C-D gene-specific SNP minor allele frequency: The distribution of the minor allele
frequency at gene level for HIV, TB, Malaria, Sickle Cell Disease, and ACG (actionable genes) among
20 ethnolinguistic cultural groups.

3.4. Association and Meta-Analysis

We analyzed data from 192 quantitative HbF based on variants discovered from the
study’s targeted sequence data. As expected, we did not observe a substantial population
substructure, and following data quality control, three sample outliers were removed. To
account for both population stratification and hidden relatedness, we applied the mixed
model approach EMMAX [40]. The Q-Q plots of genomic control factor effects shown in
Figure 4A are acceptable (λGC = 1.04) and suggest little departure from the null expecta-
tion, except at the right end tail of the distribution. As shown in Table 3 and Figure 4A,
two SNPs in the intronic region of chromosome 2q16.1, rs1427407 (p = 1.29 × 10−09,
MAF = 0.22), and rs71327644 (p = 7.39 × 10−08, MAF = 0.30) are genome-wide and signifi-
cantly associated with decreasing HbF. These SNPs are associated with the BCL11A gene.
Previous studies showed that the γ-globin repressor BCL11A is a target for the development
of therapies for β-hemoglobinopathies by reactivating HbF. BCL11A interacts with 43 genes
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(Supplementary Figure S3A) either in physical, co-expression, or both pathway networks.
Importantly, through the cross-HbF meta-analysis of Angola, Tanzania, and West Africa,
we replicated the chromosome region 2p16.1 of BCL11A, and the meta-analysis fixed effect
test enabled the recovery of five several variants near BCL11A within 2p16.1 harboring
another five genes, including IFITM3P9, RPL26P13, RNU6-612P, ATP1B3P1, and PAPOLG
(Table 4).
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Table 3. Top significant variants from the association analyses in Angola HBF Sickle Cell Diseases.
The HbF shows significant association with BCL11A and is nominally associated with 4 other genes,
including OR4C46, GFOD1, ACTR3BP2, and MUC3A.

CHR BP SNP MAF A1/A2 Gene Band Func β SE p
2 60718043 rs1427407 0.22 T/G BCL11A p16.1 intronic −3.11 0.49 1.29 × 10−9

2 60723096 rs71327644 0.30 C/CA BCL11A p16.1 intronic −2.55 0.46 7.39 × 10−8

2 60724087 rs1896296 0.3 G/T BCL11A p16.1 intronic −2.51 0.48 3.9 × 10−7

2 60724086 rs1896295 0.29 T/C BCL11A p16.1 intronic −2.45 0.48 7.36 × 10−7

2 60719970 rs766432 0.3 C/A BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7

2 60720589 rs10195871 0.35 A/G BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7

2 60720757 rs10172646 0.32 G/A BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7

2 60721347 rs7557939 0.3 G/A BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7

2 60720951 rs4671393 0.3 A/G BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7

2 60720318 rs34211119 0.3 gtt/gt BCL11A p16.1 intronic −2.43 0.48 9.38 × 10−7
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Table 3. Cont.

CHR BP SNP MAF A1/A2 Gene Band Func β SE p
2 60721311 rs7584113 0.30 A/G BCL11A p16.1 intronic −2.41 0.48 1.29 × 10−6

2 60720246 rs11886868 0.3 C/T BCL11A p16.1 intronic −2.37 0.48 1.72 × 10−6

2 60719074 rs1896294 0.3 C/T BCL11A p16.1 intronic −2.37 0.48 1.72 × 10−6

2 60725451 rs7606173 0.42 C/G BCL11A p16.1 intronic 1.81 0.41 2 × 10−5

2 60722040 rs6706648 0.38 T/C BCL11A p16.1 intronic 1.87 0.44 3.01 × 10−5

2 60710738 rs11692396 0.25 G/A BCL11A p16.1 intronic −1.98 0.5 9.03 × 10−5

11 51572589 1032:33:00 0.06 T/G OR4C46 q11 intergenic −3.51 0.92 0.00019
2 60723108 rs45606437 0.32 A/AC BCL11A p16.1 intronic 1.61 0.43 0.00024
6 13542533 rs1195623516 0.05 T/C GFOD1 p23 intergenic −3.59 0.97 0.00029
6 13542532 rs754078005 0.051 A/G GFOD1 p23 intergenic −3.59 0.97 0.00029
2 92312693 rs201391728 0.25 G/T ACTR3BP2 p11.1 intergenic −1.97 0.55 0.00045
2 92307971 rs201915260 0.18 G/T ACTR3BP2 p11.1 intergenic 2.02 0.58 0.00057
7 100550995 rs1394766104 0.088 G/A MUC3A q22.1 exonic 2.64 0.78 0.00081
2 92312692 rs200577446 0.22 G/T ACTR3BP2 p11.1 intergenic −1.94 0.58 0.0009

Table 4. Cross-meta-analysis of Sickle Cell Disease cohorts: Angola, Tanzania, and West Africa. Cross-
Sickle Cell Disease studies meta-analysis: African and Africa-American. The cross-meta-analysis
shows a significant association of HbF with several variants in chromosome region of 2p16.1 near
BCL11A, including 5 other genes within the region 2p16.1. P1, P2, and P3 stand for Angola, Tanzania,
and West Africa study P values. M1, M2, and M3 stand for posterior probabilities that the effect exists
within Angola, Tanzania, and West Africa studies, respectively.

CHR SNP BP (hg19) A1/A2 p Values
FE

OR ±
STD FE

Pvalues
R E

OR ± STD
RE

p Values
BE P1 P2 P3 M1 M2 M3

2 rs147630502 60718043 T/G 5.0 × 10−29 0.2 ± 1.1 0.002 0.2 ± 1.7 4.2 × 10−30 1.2 × 10−9 2.2 × 10−24 0.17 1.0 1.0 0.2
2 2:60720951 60720951 A/G 3.9 × 10−23 0.2 ± 1.2 0.0005 0.2 ± 1.5 1.0 × 10−22 9.3 × 10−7 5.2 × 10−19 0.81 1.0 1.0 0.7
2 2:60719970 60719970 C/A 7.3 × 10−23 0.25 ± 1.1 0.0007 0.2 ± 1.5 1.5 × 10−22 9.38 × 10−7 8.1 × 10−19 0.64 1.0 1.0 0.7
2 2:60720757 60720757 G/A 1.3 × 10−19 0.3 ± 1.13 0.02 0.3 ± 1.7 2.8 × 10−22 9.38 × 10−7 9.04 × 10−19 0.79 1.00 1.0 0.7
2 2:60720589 60720589 A/G 2.2 × 10−19 0.3 ± 1.1 0.03 0.3 ± 1.7 2.2 × 10−22 9.38 × 10−7 7.7 × 10−19 0.95 0.9 1.0 0.6
2 2:60719074 60719074 C/T 2.0 × 10−18 0.3 ± 1.14 0.09 0.3 ± 1.9 2.2 × 10−23 1.71 × 10−6 6.1 × 10−20 0.31 1.0 1.0 0.0
2 2:60682447 60682447 G/A 1.2 × 10−12 2.6 ± 1.12 0.0003 2.2 ± 1.3 1.2 × 10−12 0.008 1.04 × 10−11 0.29 0.96 1.0 0.6
2 2:60755798 60755798 T/C 1.4 × 10−11 3.0 ± 1.17 1.4 × 10−11 2.9 ± 1.2 4.1 × 10−11 0.008 3.02 × 10−10 0.84 0.97 1.0 0.7
2 2:60757130 60757130 C/A 1.8 × 10−11 2.9 ± 1.17 1.8 × 10−11 3.0 ± 1.8 6.4 × 10−11 0.026 2.63 × 10−10 0.49 0.95 1.0 0.8
2 2:60750303 60750303 T/C 4.4 × 10−11 2.8 ± 1.16 4.4 × 10−11 2.8 ± 1.2 1.7 × 10−10 0.009 1.6 × 10−10 0.32 0.96 1.0 0.8
2 2:60697654 60697654 A/C 6.7 × 10−11 2.4 ± 1.14 6.7 × 10−11 2.4 ± 1.1 1.5 × 10−10 0.039 3.4 × 10−10 0.88 0.93 1.0 0.7
2 2:60755762 60755762 T/C 7.1 × 10−11 2.8 ± 1.17 7.1 × 10−11 2.8 ± 1.2 2.0 × 10−10 0.011 1.2 × 10−9 0.84 0.97 1.0 0.7
2 2:60756755 60756755 G/C 7.4 × 10−11 2.8 ± 1.17 7.4 × 10−11 2.8 ± 1.2 2.3 × 10−10 0.016 1.2 × 10−9 0.65 0.9 1.0 0.8
2 rs575474598 60710738 G/A 9.0 × 10−11 0.4 ± 1.14 0.32 0.5 ± 2.2 1.7 × 10−16 9.03 × 10−5 2.4 × 10−14 0.01 0.9 1.0 0.0
2 rs1236323224 60756504 T/C 1.3 × 10−10 2.8 ± 1.17 1.3 × 10−10 2.8 ± 1.2 4.3 × 10−10 0.016 2.05 × 10−9 0.72 0.9 1.0 0.8
2 2:60736852 60736852 A/G 1.8 × 10−10 2.6 ± 1.15 7.7 × 10−5 2.6 ± 1.3 4.2 × 10−10 0.002 6.4 × 10−9 0.41 0.9 1.0 0.7
2 2:60743605 60743605 G/A 3.6 × 10−10 2.5 ± 1.15 0.005 2.4 ± 1.4 2.2 × 10−10 0.005 1.5 × 10−9 0.51 0.9 1.0 0.5
2 2:60729702 60729702 G/A 1.1 × 10−8 2.4 ± 1.16 0.26 1.7 ± 1.7 4.6 × 10−9 0.011 1.9 × 10−8 0.15 0.9 1.0 0.3
2 2:60684034 60684034 C/T 4.8 × 10−7 3.1 ± 1.25 4.8 × 10−7 3.1 ± 1.3 2.0 × 10−6 0.054 6.1 × 10−6 0.17 0.9 1.0 0.8
2 2:60698461 60698461 T/C 5.9 × 10−7 1.9 ± 1.13 0.1 1.6 ± 1.4 1.2 × 10−7 0.092 1.06 × 10−7 0.7 0.8 1.0 0.2
2 2:60708597 60708597 C/T 9.2 × 10−7 0.5 ± 1.13 0.4 0.6 ± 1.8 1.1 × 10−9 0.004 8.01 × 10−9 0.02 0.9 1.0 0.004
2 2:60701335 60701335 C/T 1.4 × 10−6 1.8 ± 1.13 0.3 1.4 ± 1.4 1.2 × 10−7 0.6 2.8 × 10−8 0.57 0.4 1.0 0.1
2 2:60698397 60698397 C/A 3.8 × 10−6 1.8 ± 1.13 0.6 1.3 ± 1.8 3.7 × 10−8 0.06 4.3 × 10−8 0.01 0.8 1.0 0.01
2 2:60679942 60679942 C/T 4.5 × 10−6 0.5 ± 1.18 3.7 × 10−5 0.5 ± 1.2 2.1 × 10−5 0.01 0.0002 0.04 0.9 0.9 0.9
2 2:60748758 60748758 G/A 5.07 × 10−6 0.5 ± 1.14 5.0 × 10−6 0.6 ± 1.1 9.1 × 10−6 0.43 3.5 × 10−6 0.9 0.6 1.0 0.6
2 2:60696528 60696528 C/T 1.6 × 10−5 2.2 ± 1.2 0.06 2.4 ± 1.6 1.2 × 10−6 0.02 2.2 × 10−6 0.82 0.8 1.0 0.3

We additionally performed a VOC versus Hemolytic logistic association test, and no
variant reached the genome-wide level of significance; however, several variants reached a
nominal level of significance (<0.05) at 18 chromosomal regions (Figure 4C, Supplementary
Table S4(1)), including chromosome 2 (p11.1, p24.1, q14.3, and q24.2), chromosome 6 (p22.3,
p24.2, q11.1, q16.1, and q21), chromosome 7 (p15.3, q11.21, and q21.11), chromosome 11
(p11.12, q11, and q13.2), and chromosome 16 (p11.2, p12.3, and q11.2). These identified
variants within the chromosomal regions are nominally associated with increasing VOC
(OR > 1, Supplementary Table S4(1)) and are potential genetic modifiers inducing phenotypic
variation among patients with VOC and Hemolytic phenotypes in Angola SCA. Conversely,
we conducted a lower versus higher HbF logistic association test, and no variants, at genome-
wide level of significance, were detected. However, variants in Figure 4D and Supplementary
Table S4(2) ranging in 12 chromosomal regions were nominally associated with lower HbF
(increasing the lowness of HbF, OR > 1, Supplementary Table S4(2)), including chromosome
2 (2p11.1, 2q24.2, 2p16.1, and q32.2), chromosome 16 (p11.2, q11.2, and q23.2), chromosome
6 (p22.1 and q16.3), chromosome 11 (q11 and q24.3), and chromosome 7q11.21. Most of the
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genes associated with these nominally significant variants, including BCL11A (Supplementary
Table S4(2)), are, interestingly, part of the BCL11A functional/physical and co-expression
network.

4. Discussion

The phenotype heterogeneity of SCA presents a challenge for patients’ clinical man-
agement. Our study addresses the issue of potential function-altering variants and genetic
modifiers of variation associated with these heterogeneous phenotypes. We utilized a
design that ascertained HbF individuals from the extremes of genetic risk, including
Hemolytic and VOC phenotypes. With this, we were able to generate a targeted sequence
catalog of 192 Angolan samples from high-quality variants, calling on 5,019,378 variants
with high confidence. An SCD-specific population structure study was conducted within
our population samples and between the 20 WECG, which showed that the study samples
clustered separately from the rest of these groups (Figure 2) and, particularly, formed a
clearly distinct cluster from the Khoisan group, an ethnic group from southern African with
fewer incidences of Malaria and SCA, which is not surprising because samples from Angola
were not included in the 1KGP. Additionally, we observed variation in the distribution of
minor alleles at rare variants within the MAF range of 0.0–0.05, as well as at the MAF range
of 0.1–0.2 between SCA Angola and WECG (Figure 3A). Within the SCA Angolan samples,
variation in the distribution of MAF was observed in SNP frequencies ranging between 5%
and 20% (Figure 3B), suggesting possible mutations and genetic modifiers may result in
heterogeneous phenotypes of SCA.

The first key finding points to significant differences in the burden of non-synonymous,
function-altering variants in a total of 26 genes (Supplementary Table S1B,C), of which
a strong variation in gene-specific SNPs was observed within SCA Angolan samples
(Figure 3D), as well as between Angolan and WECG (Figure 3C), supporting the hypothesis
that genetic modifiers may result in a potential clinical variability in SCA phenotypes.
These genes are enriched for deleterious and loss-of-function mutations in phenotypically
defined groups of Angolan SCA patients and with evidence of genetic association with
different phenotypes, providing support for the polygenic view of the genetic architecture
of SCD phenotypic variability.

Notably, pathways (Figure 1A,B), including Oxidative phosphorylation, Respiratory
electron transport, and Arginine biosynthesis pathways represented by these 26 genes,
point to relevant pathophysiological mechanisms and are already therapeutic targets [37,50].
Importantly, Arginine biosynthesis is a key factor in the hemolysis–endothelial dysfunction
observed in SCD and has become a target for therapeutic interventions [37,50]. This finding
is novel and noteworthy and will contribute to a greater understanding of the variability
in the clinical expression of SCA, and our identified genes and pathways suggest new
avenues for other interventions.

The second key finding of this paper suggests two SNPs in the intronic region of 2q16.1,
harboring the genome-wide BCL11A gene, which is significantly associated with decreasing
HbF. Interestingly, through the cross-HbF meta-analysis of Angola, Tanzania, and West
Africa, we replicate the chromosome region 2p16.1 of BCL11A, and the meta-analysis fixed
effect test enabled the recovery of several variants near BCL11A within 2p16.1, as well
as other five genes, including IFITM3P9 (processed pseudogene), RPL26P13 (processed
pseudogene), RNU6-612P (snRNA), ATP1B3P1 (processed pseudogene), PAPOLG (protein
coding). BCL11A is a potent silencer of fetal hemoglobin and controls the β-globin gene
cluster in concert with other factors. Our study demonstrated that BCL11A interacts with
43 genes (Supplementary Figures S3A and S4) either in physical, co-expression, or both
pathway networks. This network is enriched in the B Cell Receptor Signaling pathway
and associated with the Gastrointestinal stroma tumor (HP:0100723) human phenotype
(Supplementary Figure S3B).

Our study leveraged HbF association summary statistics based on targeted sequence
to partition the cumulative heritability into 65 different functional categories and biological
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pathways. We observed cumulative heritability in fewer categories, such as in fetal DNase I
hypersensitive site and lysine H3K27 acetylation (Supplementary Figure S4), supporting the
polygenic view of the genetic architecture of HbF SCD and demonstrating consistency with
the hypothesis that the vast proportion of complex, heritable traits/diseases is explained
by SNPs with small effect sizes.

Furthermore, this study identified a set of variants in 18 chromosomal regions
(Figure 4B) to nominally be associated with increasing VOC (Supplementary Table S4(1)).
This study also found that these variants are potential genetic modifiers causing phenotypic
variation among patients with VOC and Hemolytic phenotypes in Angola SCA. This study
additionally detected a set of variants ranging in 12 chromosomal regions to nominally
be associated with lower HbF (Supplementary Table S4(2)). Most of the genes associated
with these nominally significant variants, including BCL11A, are interestingly part of the
BCL11A functional/physical and co-expression network (Supplementary Figure S3A).

To our knowledge, this is the first investigation of clinical variation in SCA in Angola
using a well-customized and targeted sequencing approach. The strengths of the study in-
clude well-defined clinical groups, sites where treatment is unlikely to confound outcomes,
the use of several different but complementary analytical approaches, and the linking
of the identified genes and pathways to published therapeutic and transcriptomic data.
Nonetheless, the study has some limitations; some of our findings may depend greatly on
laboratory experiments, and the distribution of actionable genes across SCA phenotypic
groups may depend on continuous genetic diversity, natural selection, and genetic drift.
Such a study paves the way for the continuous analysis of SCA-specific actionable and
therapeutic genes and their genetic mechanism underpinning SCA.

In summary, we reported a well-customized and targeted sequence catalog of 192
Angolan samples from high-quality variants, more specifically, 5,019,378 high-confidence
variants. We generated a catalog of candidate modifier genes that clustered in patho-
physiological pathways important for SCA, supporting the polygenic view of the genetic
architecture of SCD phenotypic variability with implications for therapeutic intervention.
We also identified and replicated the association of BCL11A in decreasing HbF and con-
structed a physical, co-expression pathway network for BCL11A, harboring 43 other genes.
Moreover, we generated a catalog of nominally significant candidate genes associated with
increasing VOC and a set of nominally significant candidate genes associated with lower
HbF. This study fills an important knowledge gap by using a precise panel in a targeted
sequencing approach focusing on deleterious coding variants that are important in two
specific phenotypic categories of SCA patients (VOC and Hemolytic). This study, thus,
makes significant contributions to the present knowledge of the natural history and clinical
heterogeneity of SCA, with the potential to inform the design of new therapeutic measures.
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Figure S2: PCA plot of the phenotypic groups Hemolytic, VOC, and less severe; Supplementary
Figure S3: (A) BCL11A interaction with 43 genes either in physical, co-expression, or both pathway
networks. (B) Main functions of the 43 genes that interact with BCL11A; Supplementary Figure S4.
Partitioning heritability by functional annotation using genome-wide association summary statistics.
(A) Plot of proportion of heritability partitioning by functional annotation and (B) heritability enriched
by functional annotation. Supplementary Table S1A. Custom enrichment panel of targeting regions
based on which 192 sickle cell patients from Angola were sequenced; Supplementary Table S1B. Count
and proportion of pathogenic variants of the identified 26 mutant genes in 192 SCA Angolan samples;
Supplementary Table S1C. Genes with high burdens of deleterious and loss-of-function mutations in
192 SCA patients from Angola; Supplementary Table S2. Data obtained from 1000 Genomes Project
(1KGP) and the African Genome Variation Project (AGVP) and used for analysis; Supplementary
Table S3. Genetics distance (Fst) based on 237,572 common variants from the study targeted sequence
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data among the 20 ethnolinguistic cultural groups and HbF Angola; Supplementary Table S4. Top
nominal significant variants from (1) logistic association test of VOC against hemolytic and (2) logistic
association test of Lower versus Higher HbF.
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