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Abstract: In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-
based for clinical use. These drugs have improved the precision of treatment and reduced adverse
effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and
also represents the future direction of development. With the continuous advancements in gene
sequencing and high-throughput screening, research and development strategies for personalized
clinical drugs have developed rapidly. This review elaborates the recent personalized treatment
strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and
computation-aided drug design. These technologies rely on the molecular classification of diseases,
the global signaling network within organisms, and new models for all targets, which significantly
support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such
as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects
based on genetic mutations. This review also highlights potential challenges in interpreting genetic
mutations and combining drugs, while providing new ideas for the development of personalized
medicine and pharmacogenomics in cancer study.

Keywords: personalized therapy; pharmacogenomics; personalized medicine; anticancer;
natural products

1. Introduction

In recent years, with the completion of the Human Genome Project, the development
of genomics, proteomics, and imaging technology and the advent of molecularly targeted
drugs, personalized medicine has come into being [1–3]. Personalized medicine is an
emerging field, in which physicians utilize diagnostic tests to determine which medical
treatments will work best for each patient or apply medical interventions to alter molec-
ular mechanisms that impact health. By combining data from diagnostic tests with an
individual medical history, circumstances, and values, medical staff can develop targeted
treatment and prevention plans with their patients. According to the concept of personal-
ized medicine, the treatment plan is selected and determined based on information about
the patient’s individual genetics, environment, and lifestyle. In this way, each patient
can achieve the maximum health benefits, while reducing ineffective treatments and side
effects [4]. Up to 2018, 355 pharmacogenomic biomarkers and 284 drugs have been ap-
proved by the FDA. Those pharmacogenomic biomarkers approved for use in personalized
medicines are usually specific genetic variants (i.e., gene tags) or abnormally expressed
proteins [5]. They can help distinguish those who will or will not respond to a drug, prevent
adverse drug reactions, and play an important role in optimizing drug dosing [6–8]. For
those personalized medicines, anti-tumor drugs have a larger proportion, which mainly
resulted from the discovery of oncogenic driving genes and the development of molecular
targeted drugs [9]. These personalized oncology drugs mainly include receptor tyrosine
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kinase inhibitors, small molecule inhibitors, vaccines, antibodies/small molecule–antibody
conjugates, and monoclonal antibodies [10–12]. Besides new personalized drugs, reposi-
tioning drugs is also an important approach to personalized drug discovery, which mainly
involves developing and gene-tagging “complementary diagnostic” biomarkers for drugs
already on the market [13–15]. In the case of the lung cancer drug ramucirumab, for exam-
ple, the FDA cautions that patients treated with this drug must be those with epidermal
growth factor receptor (EGFR) and ALK receptor tyrosine kinase (ALK) mutations [16,17].
The new use of old drugs can not only save a lot of time and cost while ensuring efficacy,
but also reduce safety risks and speed up drug approval [18]. These drugs are mainly
used in cancer, neuropsychiatric diseases, infections, cardiovascular diseases, metabolic
diseases, and other areas [19–23]. With the advent of increasingly personalized medicine,
Big Data analytics is creating a model of precision medicine that allows for a more detailed
treatment plan according to the comprehensive situation of a person’s genes, lifestyle,
environment, and other factors. This can not only reduce the safety risks of drugs, but
also greatly improve their effectiveness [24]. Based on the theme of personalized medicine,
this review mainly discusses the strategies of discovering novel drugs, chemical antitumor
agents, natural antitumor products, and so on.

2. Technical System for the Development of New Drugs and Personalized Medicine

The main goal of personalized medicine is to enable precise treatment with drugs for
specific populations and types of diseases through design, screening, and optimization [25,26].
With the continuous innovation and development of life sciences and technologies, the research
and development strategies for new drugs have changed in recent years from the traditional
models based on a disease phenotype, local signaling pathway, and single target. These
new models are based on the molecular typing of the disease, the global signaling network
in the organism, and all targets [27–29]. They have also greatly promoted the research and
development of personalized medicine. The rapid development of new omics technologies,
rapid accumulation of multidimensional and large-scale omics data, advent of molecular
imaging, advent of supercomputers, and continuous improvement of correlation analysis
and mining algorithms have all contributed [30–37]. Next, we will focus on the emerging
research in personalized medicine and the development of new key technologies for systematic
deployment (See Table 1 for more supplementary information).

2.1. Artificial Intelligence Technology

Artificial intelligence is a branch of computer science that aims to simulate human
thought processes, learning abilities, and knowledge reserves [38,39]. In recent decades,
the improvement of computer speed and the rapid development of artificial intelligence
(AI) have promoted the study of drug discovery and personalized medicine [40,41]. As one
part of the development of personalized medicine, large-scale biomedical data were being
used to identify the biological principles behind drugs to more accurately simulate and
predict the complex effects of drug molecules in vivo [42]. In late 2016, Goldman Sachs
Group published a comprehensive report on artificial intelligence in the ecology and future
of AI. This report pointed out that the application of AI and powerful algorithms will help
to get rid of the risks in the development of new drugs [43]. In 2021, one study reported
that machine learning was able to predict the higher accuracy equal to 76% for the outcome
of phase III clinical trials of anti-tumor agents for the treatment of prostate cancer [44]. In
the field of disease diagnosis, a study has shown that melanoma diagnoses using machine
learning can reach the level of well-experienced dermatologists [45]. In addition, Google
company has developed DeepMind’s Deep Learning algorithm, which can quickly and
accurately detect early signs of diseases, such as age-related macular degeneration and
diabetic retinopathy, to prevent and treat them in advance [46,47]. Artificial intelligence
technology, with its powerful automatic feature extraction, complex model building, and
image processing, opens up new possibilities for the analysis, processing, and application
of biomedical Big Data [48–50].
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2.2. Approaches with Multidimensional Omics Data

Theoretically, large-scale integrated analysis of multidimensional omics data can pro-
vide comprehensive and complete insight into the molecular mechanisms of complex
diseases and specific drugs. That is, genome-wide data encompassing the genome, tran-
scriptome, proteome, metabolome, and other various dimensions can help to analyze
the target, regulatory mechanism, and biological effect of drugs at different molecular
levels [51,52]. In this way, the targeting and off-target effects of the drug can be revealed
globally, and different drugs can be combined according to the different characteristics
of each drug to improve efficacy and reduce side effects. Thus, personalized and accu-
rate guidance for drug treatment of diseases is achieved [53]. Meanwhile, new potential
targets, novel genetic variants, and regulatory mechanisms can be screened out from the
genome-wide approaches, which will help to improve the effectiveness and successful
probabilities of the new use of old drugs to a certain extent [54,55]. At present, the strategies
of personalized medicine discovery based on multi-omics data are not yet mature, but
they have been tentatively applied in the phase of personalized medicine discovery [56].
Recent studies have shown that by integrating multi-omics data, including SNP and copy
number variants, mRNA expression profiling, and protein profiling of lung adenocarci-
noma, normal tissue, and tumor xenograft models. It has been predicted that the changed
proteins that cannot been found from the single-omics data are strongly correlated with cell
metabolism and survival in patients with lung cancer and other cancer [57,58]. In addition,
integration analysis between transcriptomic and proteomic data from 24 human tumor
xenograft models of breast cancer patients has shown that proteomics can better detect
dynamic changes in some proteins and protein phosphorylation, including AKT and ARAF,
BRAF, and HSP90AB1 [59]. All in all, multi-omics integration can provide strong technical
support for clinical personalized treatment and personalized medicine development [60].

2.3. Study on High-Throughput Targets with Chemical Proteomics Technology

The function of chemical proteomics technology is to exploit the specific interaction
between the drug and the target protein. By combining various enrichment methods with
high-resolution biomass spectroscopy, the target proteins and molecular regulatory mech-
anisms can be studied [61]. This method can identify binding targets of small-molecule
compounds from complex biological samples (cells or tissues), with the advantages of
high throughput and unbiasedness. Chemical proteomics technology can provide im-
portant information for further analysis of the full target spectrum of active molecules
at the cellular level and evaluation of drug activity, toxicology, and indications [62,63].
Currently, chemical proteomics-based technologies are being used to identify drug targets.
These primarily cover affinity-based protein profiling, activity-based protein profiling,
thermal proteomic profiling, and affinity-dependent drug target stability [64]. We listed the
principles, advantages, and disadvantages of those four technologies.

2.4. Computer-Aided Drug Discovery (CADD) System

CADD technology can be used in various phases of the development of new personal-
ized medicine. These comprise drug target identification, lead discovery and optimization,
therapeutic marker and predictive model discovery, drug combination and repositioning
research, ADME and safety research, etc. [65–68]. CADD can reduce costs and shorten the
time of research and development, while greatly improving the successful risk [69]. We
will focus on the application of computational methods in target identification and lead
discovery in personalized medicine. (1) Target identification: currently, there are still a
large number of potential targets to be explored for effective drug development [70]. The
potential targets of chemical compounds can be predicted using approaches that incorpo-
rate bioinformatics and cheminformatics at multiple levels to improve the reliability of
data analysis and effectively promote the use of computers. These include chemical struc-
ture similarity searches, data mining using machine learning methods, reverse molecular
docking, and algorithm-based bioactivity profiling [71–73]. Keiser et al. (2018) developed
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the similarity ensemble approach to enable large-scale searches for known drug targets
by comparing the molecular fingerprint similarities of thousands of compounds [74]. In
addition, the dynamic structure and thermodynamic dynamics parameters of molecules
and protein can be fully obtained by simulating molecular dynamics, which is helpful in the
search for new personalized drug targets [75,76]. (2) Lead compounds discovery: Molec-
ular docking is the most commonly used method for designing drugs based on receptor
structure [77]. These related software programs include Gold, AutoDock, GLIDE, etc. [78].
In addition, molecular dynamics (MD) can also be used to study the dynamic structure of
proteins, such as AMBER (Amber Molecular Dynamics), GROMACS (GROningen MAchine
for Chemical Simulations), and NAMD (NAnoscale Molecular Dynamics) [79]. The free
energy of the binding of the protein to the ligand was calculated using MD, and then
the binding mode and the binding activity of the two were predicted to screen the lead
compounds [80]. For ligand-based drug design methods, compound similarity analysis,
quantitative structure–activity relationship (QSAR), and pharmacophore model analysis
have been successfully used for lead discovery [81,82]. For example, Mueller et al. (2012)
used QSAR to identify 27 allosteric modulators of the mGlu5 receptor that can be used to
treat anxiety disorders, Parkinson’s disease, and schizophrenia [83]. In addition, Ijjaali et al.
(2007) performed ligand-based virtual screening of 2 million compounds and identified 16
highly active human T-type calcium channel blockers that could be used to treat epilepsy
and neuropathic pain [84]. All these approaches have helped to identify the new drug
design process, and they are usually combined multiple approaches to design and optimize
lead structures.

3. Anti-Cancer Personalized Medicine

The main purpose of personalized therapy is to develop effective targeted drugs
for different sub-phenotypic patients. The application of personalized anti-cancer drugs
has been widespread due to the discovery of oncogenic-driving genetic mutations in the
development of molecular targeted drugs. These personalized anticancer drugs mainly
include tyrosine kinase inhibitors, small molecule inhibitors, vaccines, antibodies/small
molecule antibody conjugates, and monoclonal antibodies [12,85,86]. Among these per-
sonalized medicines, a great number of drugs were found from drug repositioning, which
identifies new therapeutic opportunities for existing drugs. For example, pembrolizumab,
novolumab, and other FDA-approved drugs are used for personalized treatment through
drug repositioning [87,88]. We have summarized the FDA-approved personalized anti-
tumor drugs (see Table 2 for details). Here, we focused on personalized anti-cancer agents
targeting ALK and EFGR receptors.

Table 1. Screening and comparison of drug targets based on chemical proteomics.

Technology Principle Advantage Disadvantage

AfBPP
Affinity of target proteins to

active small molecules on
stationary phases

1. No bias;
2. Systematic study of total protein;
3. It can enrich the target and is suitable
for identification of low-abundance
proteins.

1. A detailed understanding of the
structure–activity relationship of active
molecules is required;
2. Chemical derivatization of active
molecules is required;
3. Targets with low abundance and low
affinity are easy to be washed off;
4. Probes usually cannot enter cells.

ABPP
The target protein forms a

covalent bond with a covalent
small molecule.

1. No bias;
2. Systematic study of whole protein;
3. It can enrich the target and is suitable
for identification of low-abundance
proteins;
4. Grasp low-affinity targets;
5. Probes usually get into cells.

1. A thorough understanding of the
structure–activity relationship of active
molecules is required;
2. Chemical derivatization of active
molecules is required;
3. Non-specific covalent binding is easy
to occur.
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Table 1. Cont.

Technology Principle Advantage Disadvantage

TPP

The thermal stability of the target
protein increases after binding

with small molecules, and it is not
easy to precipitate

1. No bias;
2. Systematic study of whole protein;
3. No derivations of small active
molecules are required.

1. Limited effect on extreme conditions,
such as heat insensitivity or
heat-unstable proteins;
2. Further measures should be taken to
reduce the complexity of samples so as
to realize the identification of
low-abundance proteins.

DARTS

The stability of the target protein
increases after binding with small

molecules and is not easily
degraded by enzymes

1. No bias;
2. Systematic study of whole protein;
3. No derivations of small active
molecules are required.

1. The protein that is not sensitive to
enzyme digestion has limited effect;
2. Further measures should be taken to
reduce the complexity of samples so as
to realize the identification of
low-abundance proteins.

Table 2. FDA approved personalized anti-cancer drugs.

Seq_ID Medicine Personalized
Tag

Approval
Time Molecular Formula Mechanism of

Action Disease

1 Crizotinib ALK+ 2011 ALK inhibitor

Metastatic
non-small-cell

lung cancer with
ALK or ROS1

positive

2 Ceritinib ALK+ 2014 ALK inhibitor Non-small-cell
lung cancer

3 Alectinib ALK+ 2015 ALK inhibitor Non-small-cell
lung cancer

4 Brigatinib ALK+ 2017 ALK inhibitor Non-small-cell
lung cancer

5 Lorlatinib ALK+ is
positive 2018

A dual-target
inhibitor of
ALK/ROS1

Non-small-cell
lung cancer

6 Gefitinib EGFR 2003 EGFR inhibitor Non-small-cell
lung cancer
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Table 2. Cont.

Seq_ID Medicine Personalized
Tag

Approval
Time Molecular Formula Mechanism of

Action Disease

7 Erlotinib EGFR 2004 EGFR inhibitor Non-small-cell
lung cancer

8 Afatinib EGFR 2013 EGFR inhibitor Non-small-cell
lung cancer

9 Osimertinib EGFR 2015 EGFR inhibitor Non-small-cell
lung cancer

10 Pembrolizumab PD-1 2015

C6534H10004N1716O2036S46

(PDB:5dk3)

PD-1 inhibitor Non-small-cell
lung cancer

11 Nivolumab PD-1 2014

C6362H9862N1712O1995S42

(PDB:5ggr)

PD-1 inhibitor Non-small-cell
lung cancer

12 Olaparib PARP 2014 PARP inhibitor Ovarian cancer

13 Rucaparib PARP 2016 PARP inhibitor Ovarian cancer

14 Palbociclib CDK 4/6 kinase 2015 CDK 4/6 kinase
inhibitor Breast cancer
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Table 2. Cont.

Seq_ID Medicine Personalized
Tag

Approval
Time Molecular Formula Mechanism of

Action Disease

15 Trastuzumab
Deruxtecan HER-2 2022 HER-2 inhibitor Non-small-cell

lung cancer

16 Tucatinib HER-2 2020 HER-2 inhibitor Colorectal cancer

17 Vemurafenib BRAF 2011 BRAF inhibitor Metastatic
melanoma

18 Larotrectinib Tyrosinase
kinase 2018 Tyrosinase kinase

inhibitor Solid Tumors

19 Ibrutinib Tyrosinase
kinase 2013 Tyrosinase kinase

inhibitor
Mixed lineage

leukemia

3.1. ALK Inhibitors

Anaplastic lymphoma kinase (ALK) is an important molecular marker of non-small-
cell lung cancer [89,90]. In 2007, EML-ALK, the ALK fusion gene, was found to be present
in 3%–7% of patients with non-small-cell lung cancer, triggering the research and develop-
ment boom of ALK personalized medicine [91]. (1) Crizotinib is an orally administered
ALK inhibitor that effectively inhibits phosphorylation of the NPMALK fusion protein in
human degenerative cell lymphomas Karpas-299 and SU-DHL -1 cells. Cell cycle arrest
and apoptosis were significantly increased after 24- and 48-h treatment with crizotinib.
In mice transplanted with a Karpas-299 tumor, oral administration of 100 mg/kg crizo-
tinib for 15 days resulted in complete tumor regression. This is consistent with antitumor
activity in vivo. (2) Ceritinib is a second-generation ALK inhibitor synthesized by Pierre-
Yves Michelly’s team at Novartis based on TAE684. Cell proliferation assays showed that
ceritinib significantly inhibited proliferation of Karpas-299 and BaF3 tool cells with high
expression of the ALK fusion protein. A 25 mg/kg dose of ceritinib significantly inhibited
the growth of subcutaneously transplanted tumors in nude mice with Karpas-299 and
NCLH2228 tumor cell lines. Ceritinib has some ability to cross the blood–brain barrier, and
the brain-tissue-to-plasma exposure ratio measured by isotopic labeling is approximately
15% [92–94]. (3) Alectimib is an orally active and highly selective inhibitor ALK. Cell-level
studies have shown that alectimib can inhibit the activation of ALK and downstream STAT3
and AKT signaling pathways in NCL-H2228 non-small-cell lung cancer cells. Meanwhile,
alectimib significantly inhibited the proliferation of NCI-H2228 non-small-cell lung cancer
cells. In nude mice, alectimib at a dose of 6 mg/kg significantly inhibited the growth of NCI-
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H2228 and KARPAS-299 cell transplantation tumors. In terms of the ability to overcome
mutations, 100 nM alectimib inhibited the phosphorylation of ALK in BaF3/EML4- ALK
-L1196M cells [95,96]. (4) Brigatinib is a dual-target inhibitor of ALK and EGFR. Subsequent
pharmacodynamic evaluation studies showed that at the molecular level, brigatinib signifi-
cantly inhibited kinase activity mutated by C1156Y, F1174L, L1196M, G1202R, and R1275Q
ALK and ALK, while brigatinib inhibited EGFR and other kinase activities mutated by
ROS1, FLT3, and D835Y. At the cellular level, brigatinib was shown to inhibit proliferation
and intracellular ALK protein phosphorylation of AlK-driven lymphoma cells Karpas-299,
SU-DHL -1, L-82, and SUP -M2 and lung cancer cells H3122 and NCLH2228.The results
showed that 50 mg/kg brigatinib could lead to shrinkage or even complete regression of
Karpas-299 and NCI-H2228 transplanted tumors in mice. No significant reversal of tumor
growth inhibition was observed 15 to 30 days after drug discontinuation. A 50 mg/kg
dose of brigatinib significantly inhibited intracranial lesions and prolonged survival in
mouse models of brain metastases containing transplanted NCLH2228 tumors. In mice
with BaF3/EML4- ALK -G1202R grafts, 25 mg/kg and 50 mg/kg brigatinib inhibited tu-
mors 55% and 88%, respectively [92,94,97]. (5) Lorlatinib, a third-generation ALK inhibitor,
showed significant inhibitory activity against ROS1 and ALK kinases. The tumor transplan-
tation experiment in mice showed that 25 mg/kg lorlatinib could significantly inhibit tumor
growth in H1322 and H3122/EM1A-ALKLSH312/EMLA-ALKG1269A mice. Lorlatinib
(10 mg/kg) can significantly inhibit transplanted tumor growth in the tissue-derived mouse
model of tumor transplantation, and a tumor can also significantly decline when lorlatinib
is replaced after crizotinib resistance. In an intracranial mouse transplant tumor model,
lorlatinib significantly inhibited internal tumor growth and significantly prolonged mouse
survival [98–100].

3.2. EGFR Inhibitors

EGFR is a member of the epidermal growth factor receptor family of ErbB receptor tyrosine
kinases, which also includes BGFR, ErbB2 (HER2), ErbB3(HER3), and ErbB4(HER4) [101,102].
EGFR is a transmembrane receptor protein consisting of extracellular ligand-binding domains,
transmembrane domains, and intracellular kinase-active domains [103]. Upon binding of the
extracellular ligand-binding region to a ligand, homodimerization or heterodimerization occurs,
followed by autophosphorylation in the intracellular region, to activate its kinase. Phospho-
rylated EGFR terminals bind to various downstream adaptor proteins and perform various
physiological functions, such as maintaining cell growth and inhibiting cell apoptosis through
movement. EGFR is expressed in a variety of tissue cells [104]. Under normal physiological
conditions, EGFR regulates a number of biological processes, such as cell proliferation and
differentiation. For example, high expression of EGFR or abnormal activation is associated
with the development and progression of various tumors, such as non-small-cell lung cancer
(NSCLC), metastatic colorectal cancer (mCRC), head and neck cancer (HNSCC), glioblastoma
(GBM), ovarian cancer, and so on. Among these tumors, the occurrence and development of
NSCLC are most closely associated with EGFR, and the molecular mechanism of EGFR driving
the occurrence and development of NSCLC is also the most profound. Several EGFR inhibitors
have been used to treat NSCLC. The discovery of EGFR-activated mutations as sensitive mark-
ers for small-molecule EGFR inhibitors is not only a milestone in the history of lung cancer
treatment, but also a model for personalized tumor treatment [102–105].

EGFR inhibitors include primarily gefitinib and erlotinib [106]. They bind to the
EGFR kinase region in a competitive ATP-binding manner, reversibly inhibiting EGFR
kinase activity and thus blocking downstream signaling. (1) Gefitinib was approved by
the FDA in 2003 for the treatment of patients with advanced NSCLC who have failed
chemotherapy [107]. (2) Erlotinib was approved by the FDA in 2004 for the treatment of
locally advanced or metastatic NSCLC and was subsequently approved in combination
with gemcitabine for the treatment of locally advanced or metastatic pancreatic cancer [108].
The discovery of the deletion mutation in exon EGFR19 (exon19del) and the base substi-
tution mutation L858R in exon 21 (L858R mutation), a sensitive marker, uncovered the
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reason why some people are sensitive to EGFR inhibitors. EGFR-sensitive mutations are
located in the intracellular ATP-linked pocket kinase region. They increase the affinity
between the binding pockets and ATP, leading to disruption of the EGFR self-inhibition
pathway and continuous activation of downstream signaling pathways, which in turn
causes carcinogenesis. The affinity of gefitinib and erlotinib for this mutant EGFR protein
is stronger than that of ATP molecules, leading to more severe clinical effects in patients
with these mutations. Therefore, EGFR mutation detection has been approved for first-line
clinical treatment of progressive EGFR-mutated NSCLC and has become routine clinical
practice in most cancer centers worldwide. Although gefitinib and erlotinib are effec-
tive in treating NSCLC with EGFR-sensitive mutations, patients develop drug resistance
within an average of 9 to 14 months after treatment, severely limiting the clinical use of
first-generation inhibitors [106,109–111]. The emergence of resistance mutations and the
activation of compensatory signaling pathways are the main causes of drug resistance. The
EGFR T790M mutation was the most common cause of drug resistance and accounted for
more than 50% of acquired drug resistance. Therefore, the research and development of
second-generation EGFR inhibitors targeting EGFR wild-type and EGFRT790M-resistant
mutations has attracted much attention. (3) Afatinib, which can covalently bind the EGFR
ATP binding site C797 in the pocket, has significant inhibitory activity against both EGFR
WT and T79M resistant mutations. The drug was approved in 2013 by the US FDA for
the treatment of advanced non-small-cell lung cancer and HER2-positive advanced breast
cancer, and in 2016 for the treatment of patients with advanced lung cancer, whose disease
has progressed after platinum-based chemotherapy [112]. However, afatinib has resulted
in significant side effects due to its potent inhibition of wild-type EGER activity and has
been unable to achieve the effective blood levels of EGFR T790M in humans. Therefore,
the research and development of third-generation EGFR inhibitors that selectively inhibit
resistant EGFR T7M mutations has attracted much attention [105,113]. (4) Osimertinib can
covalently bind to the cysteine site of EGFR 797 and selectively inhibit EGFR-sensitive
and drug-resistant mutations. Osimertinib weakly inhibits EGFR wild-type and clinically
shows good efficacy and few side effects in patients with drug-resistant mutations con-
taining EGFR T790M. Osimertinib was approved by the US FDA in November 2015 for
the second-line treatment of patients with metastatic NSCLC containing EGFR T790M.
In 2018, osimertinib was approved by the US FDA as a first-line treatment for patients
with EGFR-sensitive, mutation-positive metastatic NSCLC. In addition, osimertinib can
effectively cross the blood–brain barrier and is effective in patients with brain metastases
(including meningeal metastases) from lung cancer, which is a major advantage over other
small-molecule EGFR inhibitors [114–116].

4. Pharmacogenetics of the Anti-Cancer Natural Products

The action of drugs on the body is generally divided into two phases, the pharmacoki-
netic phase and the pharmacodynamic phase, and the actual action of drugs in vivo begins
with binding to targets; therefore, the pharmacodynamic phase cannot be ignored [117]. It
is caused by targeting specific molecular mechanisms and signaling pathways, and at the
same time, drug–target interactions are influenced by genetic variations in genes [118,119].
Numerous bioactive natural products have been discovered and isolated, but the role of
genetic variations in targets has not been adequately explored. Moreover, few pharmaco-
logical targets have been clearly confirmed in comparison with metabolizing enzymes and
transporters [120,121]. It is reported that in people with different pharmacological target
genotypes, the drug effects of natural products differ. Some genetic variations affect drug
action in other ways, such as modulating the functions of related proteins that are not the
direct target proteins, enzymes, or transporters [122]. As a result, the situation is more
complex, and more attention needs to be paid to drug-related pathways. For some natural
products, there are defined targets, but there are still a large number of natural products
that are linked not only to their direct targets, but also to other indirect reactions. However,
evidence of direct interactions has been found to be difficult to obtain, making the study
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of the molecular targets of natural products very challenging. The interactions between
natural products and target sites are mainly described in the following examples using
tumors (see details in Table 3).

Table 3. Pharmacogenetics in the pharmacological targets and pathways of natural products.

Seq_ID Natural Products Main Sources Molecular Formula Related Gene Disease

1 Trabectedin Ecteinascidia turbinata BRCA1, BRCA2 Soft tissue sarcoma,
Breast cancer

2 Vincristine Catharanthus roseus CYP3A enzymes,
ABC transporters

Leukemias,
Lymphomas,
Brain tumors,
Solid tumors

5 Paclitaxel Taxus baccata Linn ABCB1 G2677T/A
mutation Ovarian cancer

3 Gigantol Dendrobium draconis CD133, ALDH1A1 Non-small-cell lung
cancer

6 Chrysotoxine Dendrobium
pulchellum ABCG2 Lung cancer

Currently, genome-wide association studies (GWASs) and other techniques have
found many compounds with anti-tumor activities, including many natural products with
anti-tumor activities through various mechanisms, such as cytotoxicity [123,124]. This
biological action leads to a variety of biological responses, such as inhibition of mitosis,
DNA damage, DNA synthesis, and repair damage [125]. The cytotoxic pathways may be
related to the efficacy and adverse effects of natural tumor products.

Trabectedin is a marine-derived natural product originally isolated from the marine
ascidian Ecteinascidia turbinate. Trabectedin has a complex mechanism of action that affects
important cell biological processes in tumor cells and is the first marine anticancer agent
approved for patients with soft tissue sarcoma (STS) in the European Union [126]. The DNA
damage induced by the drug is largely caused by the nucleotide excision repair protein
(NER) and an arginine residue in Rad13 (Arg961). Trabectedin can kill cells by poisoning
the DNA NER machinery and DNA repair pathways of homologous recombination [126].
Trabectedin has a unique, multilayered mechanism involving transcriptional regulation
and DNA repair systems. In addition, transcription-coupled nucleotide excision repair
and homologous recombination repair (HRR) are the main features of its antiproliferative
activity. It also has the ability to modulate the tumor microenvironment, which can alter the
function and expression of DNA repair genes, such as BRCA1 and BRCA2 [127,128]. BRCA
proteins play a critical role in DNA repair, as they are essential for the repair of double-
strand breaks. Cancers that have a mutation in the BRCA1 or BRCA2 genes that reduce
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protein activity, as in ovarian and breast cancers, may increase the activity of drugs that
exert their cytotoxicity via DNA double-strand breaks [129,130]. As for BRCA2 mutations,
trabectedin showed higher antitumor activity in relapsed metastatic breast cancer patients
with germline BRCA2 mutations than in those with BRCA1 mutations. Loss of the wild-
type BRCA2 allele in the tumor results in an excellent early, complete metabolic response
due to a somatic aberration that likely leads to deregulation of the cellular HR function
responsible for increased sensitivity to trabectedin [128]. These reports demonstrate the
importance of BRCA1/2 mutations in the administration of trabectedin for the treatment of
tumors with defective DNA damage repair.

Vincristine is isolated from the plant Catharanthus roseus and is a drug widely used
in cancer treatment. It can be used to treat leukemias, lymphomas, brain tumors, and
also solid tumors [131]. The mechanism of tumor restriction is due to its interference with
microtubules in the mitotic spindle [132]. In the pharmacokinetics of vincristine, CYP3A
enzymes and ABC transporters may play an important role. As with other substrates
of CYP3A enzymes, genetic variants of CYP3A also lead to its adverse effects, such as
vincristine-induced peripheral neuropathy [133]. There are studies confirming that active
CYP3A5 expressors have a lower risk of VIPN than nonexpressers [134,135]. However, a
lower risk of VIPN has been observed in some children with the CYP3A5*3 genotype. This
is an inverse conclusion when toxicity is accumulated to the highest concentration without
CYP3A5 enzyme activity [136]. We need to pay more attention to the neurotoxicity caused
by genetic variations of vincristine and perform clinical optimization of its metabolism.

Gigantol, a bibenzyl phenolic compound derived from several medicinal orchids,
has been shown to inhibit proliferation, migration, EMT, and the cancer stem cell (CSC)
phenotype in lung cancer cells [137–139]. At non-toxic doses (below 20 µM), gigantol
isolated from Dendrobium draconis could suppress tumor spheroid formation and decrease
lung CSC marker proteins, including CD133 and ALDH1A1, in non-small-cell lung cancer
NCI-H460 cells. Additionally, gigantol inhibited cancer stem-cell-like phenotypes through
down-regulation of the AKT signaling pathway, which leads to reduced levels of Oct4 and
Nanog [137].

Paclitaxel (PTX) is one of the natural broad-spectrum antitumor drugs used as first-line
chemotherapy in ovarian cancer therapy [140]. The efficacy of paclitaxel is associated with
ABCB1 G2677T/A mutation. ABCB1, also known as MDR1, is the efflux pump of cells.
After paclitaxel enters human tumor cells, it is pumped out of the cells by ABCB1 [141]. The
mutation at position 2677 reduces the transport capacity of ABCB1, allowing the drug to
accumulate in tumor cells and achieve a good therapeutic effect. Studies have shown that in
patients with ovarian cancer, the G2677T/A mutation has a good effect on paclitaxel [142].

Chrysotoxine, a bibenzyl compound isolated from stems of Dendrobium pulchellum, has
been reported to sensitize anoikis and inhibit metastasis of lung cancer cells in an anchorage-
independent fashion. Bhummaphan et al. (2019) investigated the suppressive effect of
chrysotoxin on CSC-rich populations of H460 and H23 cells and primary CSCs in three-
dimensional (3D) cultures. The result showed that non-toxic doses (≤20 µM) of chrysotoxin
inhibited CSC-like phenotypes and decreased CSC markers CD133, CD44, ABCG2, and
ALDH1A1, which was mediated by a Src-AKT-Sox2-dependent mechanism [143].

5. The Challenges of Personalized Therapy

Although a significant number of gene variants’ specific anti-tumor drugs have been
approved by the FDA, the percentage of personalized medicines is less than 10% of all the
FDA-approved drugs [144]. The development of personalized medicines still confronts
some challenges: (1) Interpretation of genetic variations: thousands of mutant genes are
scattered throughout the genome of cancer cells, and there are hundreds of different mutant
genes associated with cancer [145]. According to current clinical statistical data on person-
alized tumor treatment, only 30–50% of patients can link the tumor to the corresponding
mutations. Moreover, only 3–13% of patients can choose personalized therapy through
individual genomic analysis [146]. At present, genome sequencing technology, especially
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single-cell sequencing and omics analysis, has been rapidly developed. We are able to
obtain whole genome data in a relatively short time and at low cost [147–149]. Therefore,
people need to not only interpret gene functions, but also decipher the functional effects of
gene mutations. (2) Dynamic molecular changes of cancer: the pathogenic genes in cancer
patients can usually evolve and escape the therapeutic effect of drugs on the lesion through
genetic mutation, which is referred to as secondary drug resistance. After secondary drug
resistance, current diagnostic and treatment methods may no longer be applicable in the
original disease state. Due to our limited understanding of complex signal transduction
pathways, the development of personalized treatment options based on basic research
cannot resolve the new disease molecular state with some variants and mutants [150].
Therefore, we have to confront significant challenges in monitoring the molecular typing
of patients, identifying and defining the occurrence of drug resistance, and finding new
treatment options for the protective mechanism of tumors. (3) Combination of drugs: In de-
veloping personalized treatment, it is rare for a single drug to act on all the gene mutations
causing a patient’s disease. Therefore, it is more beneficial to use a combination drug to
treat diseases with multiple genes [151]. Currently, drug combinations are commonly used
for cancer, infectious diseases, cardiovascular diseases, and other areas to obtain reasonable
strategies for the development of drug combinations and prediction methods for different
molecular disease types in order to enhance the synergistic effect between drugs and reduce
the occurrence of side effects [152–154].

6. Conclusions and Future Perspectives

Personalized medicine is changing the way diseases are diagnosed and treated [155].
The development of modern medicine, especially the advances in drug discovery and
development based on new technologies and genomics, provides a solid foundation for per-
sonalized treatment. With the continuous advances in science and technology, personalized
drug matching, combination therapy, and natural product-based therapy have gradually
entered the practice and provide better treatment options for cancer patients. Advances in
genomics allow us to better understand the genetic basis of disease and identify individuals
most likely to benefit from specific treatments. Pharmacogenomics has proven essential for
developing personalized treatment options for patients [6]. By identifying genetic variants
that affect drug metabolism, efficacy, and toxicity, clinicians can tailor drug therapy to each
patient’s unique genetic makeup, thereby improving clinical care, reducing adverse drug
events, and optimizing drug dosing and selection. The development of new technologies
has provided the basis for deeper evaluation of genomic data and identification of new
therapeutic targets [156]. The development of new technologies and a better understanding
of the underlying biology of the disease have enabled the development of more effective
targeted therapies [157]. Currently, some chemotherapeutic agents, such as pembrolizumab
and nivolumab, are used for the individualized treatment of tumors. Meanwhile, studies
have shown that natural products, such as vinblastine, have antitumor effects, in addition
to synthetic drugs [158]. Previous studies have confirmed that some natural products
are related to pharmacogenomics, which can affect enzymes and transporters of drug
metabolism. It is suggested that natural products and traditional Chinese medicine may be
potential sources for personalized treatment [159].

In general, the development of personalized therapy has far-reaching prospects, but
the challenges cannot be ignored. In the future, we must not only continue to advance
research, but also strengthen collaboration and holistic thinking in various aspects. In this
way, we can better put personalized treatment into practice and improve patients’ quality
of life and the effect of treatment. The integration of pharmacogenomics and other cutting-
edge technologies is providing new insights into disease mechanisms and leading to the
development of personalized therapeutic strategies. As our understanding of the genetic
and molecular mechanisms of disease increases, further breakthroughs in personalized
medicine can be expected. These include, in particular, the identification of new drug



Genes 2024, 15, 468 13 of 19

targets and the development of more effective therapies based on natural products and
traditional medicine.
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