
Citation: Nazzicari, N.; Franguelli, N.;

Ferrari, B.; Pecetti, L.; Annicchiarico, P.

The Effect of Genome Parametrization

and SNP Marker Subsetting on

Genomic Selection in Autotetraploid

Alfalfa. Genes 2024, 15, 449. https://

doi.org/10.3390/genes15040449

Academic Editor: Hongyan Xu

Received: 1 March 2024

Revised: 21 March 2024

Accepted: 27 March 2024

Published: 2 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

The Effect of Genome Parametrization and SNP Marker
Subsetting on Genomic Selection in Autotetraploid Alfalfa
Nelson Nazzicari * , Nicolò Franguelli, Barbara Ferrari, Luciano Pecetti and Paolo Annicchiarico

Council for Agricultural Research and Economics (CREA), Research Center for Animal Production and
Aquaculture, Viale Piacenza 29, 26900 Lodi, Italy
* Correspondence: nelson.nazzicari@crea.gov.it

Abstract: Background: Alfalfa, the most economically important forage legume worldwide, features
modest genetic progress due to long selection cycles and the extent of the non-additive genetic
variance associated with its autotetraploid genome. Methods: To improve the efficiency of genomic
selection in alfalfa, we explored the effects of genome parametrization (as tetraploid and diploid
dosages, plus allele ratios) and SNP marker subsetting (all available SNPs, only genic regions,
and only non-genic regions) on genomic regressions, together with various levels of filtering on
reading depth and missing rates. We used genotyping by sequencing-generated data and focused
on traits of different genetic complexity, i.e., dry biomass yield in moisture-favorable (FE) and
drought stress (SE) environments, leaf size, and the onset of flowering, which were assessed in
143 genotyped plants from a genetically broad European reference population and their phenotyped
half-sib progenies. Results: On average, the allele ratio improved the predictive ability compared
with other genome parametrizations (+7.9% vs. tetraploid dosage, +12.6% vs. diploid dosage), while
using all the SNPs offered an advantage compared with any specific SNP subsetting (+3.7% vs.
genic regions, +7.6% vs. non-genic regions). However, when focusing on specific traits, different
combinations of genome parametrization and subsetting achieved better performances. We also
released Legpipe2, an SNP calling pipeline tailored for reduced representation (GBS, RAD) in medium-
sized genotyping experiments.

Keywords: legumes; alfalfa; genomic selection; SNP calling pipeline; autotetraploidy; polyploidy;
genome parametrization; SNP subsetting

1. Introduction

Alfalfa (alias lucerne, or Medicago sativa L. subsp. sativa) is the most widely grown
perennial forage legume in Mediterranean-climate and temperate-climate regions [1]. As a
crop, it is prized for its high nutritional content, serving as a vital feed for various livestock
species due to its rich protein, vitamin, and mineral composition. As a legume, alfalfa is
capable of fixing atmospheric nitrogen through symbiosis with nitrogen-fixing bacteria,
thus enhancing soil fertility and diminishing the reliance of growers on synthetic fertilizers
in crop rotation systems [2]. Additionally, its deep root system enables alfalfa to access
water and nutrients from deeper soil layers, making it resilient in drought conditions and
contributing to soil stabilization and erosion control [3].

Unfortunately, alfalfa may appear to be a less attractive choice for growers when
compared with other crops, especially cereals. Indeed, progress in alfalfa variety im-
provement has been slow, owing to a number of concurring factors such as long breeding
cycles, low heritability of traits, and a complex genetic structure [1]. More specifically,
progress on biomass yield improvement is constrained by a high ratio of non-additive
genetic variance due to complementary alleles in the repulsion phase at different loci and
intra-locus allelic interactions, as allowed for by autotetraploidy [4]. In practical terms,
alfalfa suffers heavily from inbreeding depression and does not allow the creation of pure
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lines or real hybrids [5]. Since the intrinsic complexiy of the genetic architecture appears
irreducible, crop improvement could benefit from advancements in related topics such as
sequencing, genomic parametrization, and genomic regression models. Alfalfa genomic
selection through models constructed by genotyping parent plants and by phenotyping
their half-sib progenies is convenient for synthetic variety development (which can only
exploit the additive genetic variance), not only on a theoretical basis [1] but also in view
of the relatively greater efficiency of half-sib progeny-based selection relative to other
selection schemes for crop yield improvement in this species [6]. Indeed, this genomic
selection approach has proved promising for improving biomass yield and key forage
quality traits in pioneering studies [7]; however, these used a diploid representation of the
tetraploid genome (by pooling the three heterozygous classes of Aaaa, AAaa, and AAAa
into a single class) because of largely insufficient SNP reading depth for tetraploid dosage
parametrization.

The development of second- and third-generation sequencing platforms has greatly
enhanced the creation of genomic resources for polyploid genomes. Reduced-target next-
generation sequencing techniques, such as genotyping-by-sequencing (GBS), have enabled
the sequencing of numerous polyploid species and facilitated SNP discovery. Moreover, a
variety of software tools and scripts tailored for polyploid crop data analysis has become
available. Different SNP calling pipelines for GBS, such as fast-GBS [8], UGbS-Flex [9],
and PolyRAD [10], are being utilized in polyploid research [11]. However, no clear a
priori indication about the best approach for sequencing and genomic parametrization
(i.e., SNP numeric representation) is available. For example, when using a simulated
dataset for highly polyploid species, it was found that including allele dosage could
improve genomic selection [12]. Other studies instead highlighted a positive effect of
allele-ratio parametrization, where the SNPs are just represented as the ratio of observed
alleles [13]. Moreover, for practical applications, the cost entailed by an increased reading
depth aimed toward tetraploid genome parametrization ought to be justified by a sizable
improvement in trait predictive ability compared to a diploid genome representation. The
availability of a large number of SNP markers allowed for the effective implementation of
genomic selection, by which the phenotyping and genotyping data of a training genetic
base (reference population) are combined into a model that estimates breeding values for
the target population that will undergo actual selection [7]. Choices on the treatment and
representation of genomic data can affect the final performance metric of choice, usually, the
predictive ability of the regression. It is, thus, possible to explicitly measure and compare
the effect of different strategies, and, consequently, select the optimal combination. In
practical terms, the complete set of data (genotypes and phenotypes) is available only
for the reference population, while for the target population, only data on genotypes are
available. Thus, optimization of the whole regression pipeline is performed on the training
population, usually in a cross-validation scheme [14].

The aim of this study was to optimize genomic regressions for alfalfa breeding under
the hypothesis that genomic data representation and filtering affect predictive ability. In
particular, we investigated the effects of (1) genome parametrization (tetraploid allele
dosage vs. diploid vs. observed allele ratios); (2) subsetting SNPs located only in the
genic areas, i.e., comparing the effects of keeping markers located only in coding regions of
the genome vs. all the available markers; (3) filtering the genomic data based on various
thresholds regarding the missing rate and reading depth. The plant material used was
from a European reference population obtained by intercrossing several elite semi-dormant
cultivars bred in different countries. The material was grown in either a moisture-favorable
or a drought-prone environment. Together with the analyses, we release Legpipe2, an
open-source SNP calling pipeline that guarantees reproducibility.
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2. Materials and Methods
2.1. Plant Material and Phenotyping

The 10 contributing cultivars were selected according to breeders’ indications on best-
performing material in seven countries, encompassing more cultivars for countries with
larger alfalfa cropping areas. The cultivars were Beatrix, Costanza, and Cuore Verde from
Italy, Fado and Galaxie from France, Cezara from Romania, Dara from Bulgaria, Mediana
from Serbia, Morava from the Czech Republic, and Vanda from Slovakia, which underwent
two generations of intercrossing by bumble bees (Bombus terrestris) under insect-proof
cages. A set of 143 genotypes was randomly chosen for this study, followed by genotyping
them and phenotyping their half-sib progenies in a two-year experiment carried out in
Lodi, northern Italy, on a large phenotypic platform. The platform consisted of 6 large
(24.0 m × 1.6 m × 0.8 m deep) bottomless containers made of concrete 6 cm thick, filled with
local sandy-loam soil, under a rainout shelter provided with a double-rail irrigation boom.
Three separate containers represented replicates of a managed environment with imposed
severe drought stress, while the other three containersthe replicates for a moisture-favorable
managed environment. All containers were separated by alleys 75 cm wide. The irrigation
boom above each container was provided with lateral baffles that prevented water from
drifting between contiguous containers, which was especially important when they repre-
sented different environments. Moreover, the concrete floor of the alleys was paved with a
water-proof rubber layer, further preventing undesired leakage and infiltration beneath
the containers of any water that dripped onto the alleys. The experiment was established
as an α lattice with 16 incomplete blocks of 9 plots each within each replication (a ‘filler’
entry was added to the 143 half-sib families). The area of each plot measured 0.24 m2

(0.8 m × 0.3 m) and included 4 rows of 10 plants, each spaced 7.5 cm within and across
the rows (plant density = 166.7 m−2). The four front plants of the plot were treated as
border plants and discarded from the harvest area. The sowing took place in late winter
(early March 2022) into plug trays kept in a greenhouse, and seedling transplantation was
performed in the platform after eight weeks (early May). Mineral fertilization was incor-
porated into the seedbed prior to transplantation at the rates of 27 kg ha−1 N, 46 kg ha−1

P2O5, and 50 kg ha−1 K2O. After an initial period of favorable growth, supplying 180 mm
of irrigation to all containers, the 2 conditions of water availability were applied, starting
from the beginning of July 2022. The two conditions were meant to represent contrasting
environments for semi-dormant material across Italy, namely, the rainfed, stressful environ-
ment mostly occurring in Central Italy, and the favorable, irrigated environment mainly
occurring in the northern part of the Po Valley. During the first year (July–December 2022),
the moisture-favorable condition plots received 445 mm of irrigation (in 2 applications
per month) while the stressful condition plots received 230 mm of irrigation (in 1 appli-
cation per month). In the second year (January–December 2023), the irrigation amounts
were 825 mm and 375 mm, respectively. The dry biomass yield was recorded on a plot
basis in both conditions by hand-clipping all the living plants within the harvest area at
a cutting height of 5 cm from the ground, then immediately oven-drying the whole plot
biomass at 60 ◦C for 4 days to a constant weight. Four harvests were made in the first year
(between mid-July and late October), and six in the second year (between mid-April and
mid-October). However, due to growth impairment caused by the drought stress, only
two harvests were made from the stressed treatment plots in the first year (skipping the
harvests in August and September), and three in the second year (skipping the harvests
in June, July, and early September). We analyzed the total dry matter yield across years,
which spanned across 10 harvests for the moisture-favorable condition plots and 5 harvests
for the drought-stressed plots since this variable meaningfully represented the crop yield
(irrespective of the number of harvests in each condition). The onset of flowering was
recorded as the number of days from the day of harvest to the date when open flowers
were visible on 10% of the plants per plot. The character was assessed on the regrowth
that followed some harvests across the two years (twice in the first year, once in the second
year). Leaf size was recorded in early July of the first year, just before the implementation of
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the two moisture treatments, by measuring the maximum length and width of the central
leaflet of a representative leaf (usually, the third or fourth from the uppermost vegetative
node) from four random plants per plot and computing the leaf area, expressed in cm2, as
length × width.

2.2. Experimental Design Solution, BLUPs Computation, and Heritability

Broad-sense heritability was estimated according to [15] as the ratio of the genetic
variance σ2

g to the phenotypic variance σ2
p :

H2 =
σ2

g

σ2
p

(1)

where σ2
p depends on the variance components for genotype σ2

g , experimental error σ2
e and

the number of replicates nr, according to the formula:

σ2
p= σ2

g +
σ2

e
nr

(2)

Best linear unbiased predictions (BLUPs) were then used as phenotypic data for ge-
nomic regression [16]. The BLUPs were computed by solving a mixed-model equation
where the genotype effect is included as random, i.e., by summing the model intercept
(overall mean) to the random effects associated with each genotype, as described in [17].
Heritability and BLUP value computations were carried out using the R-package INTI [18].
For total dry matter measurement, recorded in two environments, we verified the occur-
rence of half-sib progeny × environment interactions in an analysis of variance including
the factor environment, progeny, and replication, and estimated the genetic correlation
coefficient for the half-sib progeny response across environments according to the method
used in [19].

2.3. DNA Extraction, Library Preparation, and Sequencing

Genomic DNA was extracted from the young leaves of each plant using the DNeasy
Plant Mini Kit (Qiagen, Milan, Italy). Nucleic acid was quantified by a Quant-iT™ PicoGreen™
dsDNA Assay Kit (P7589, Life Technologies, Milan, Italy), checking its quality by 1%
agarose gel electrophoresis. A trial digestion process was carried out on 10% of the DNA
samples using the Optizyme EcoRI restriction enzyme (25,000 U, Fisher BioReagents,
Rodano, MI, Italy), to compare bands of cut and uncut DNA. The reaction was performed
at 37 ◦C for 1 h and the enzyme was deactivated at 65 ◦C for 20 min. DNA samples were
sent to The Elshire Group Ltd. laboratory (Palmerston North, New Zealand) for outsourced
library preparation and sequencing. GBS data were generated according to Elshire et al.’s
method [20] with the following changes: we used 100 ng of genomic DNA and 3.6 ng
of total adapters and restricted the genomic DNA with the ApeKI enzyme (NEB New
England Biolabs, Ipswich, MA, USA, R0643L); then, the library was amplified with Kapa
Taq polymerase α (KAPA Library Amplification Readymix, Kapa Biosystems, Wilmington,
MA, USA, KK2611) by 14 PCR cycles.

The library was sequenced at the Elshire Group Ltd. facility (Palmerston North, New
Zealand) using an Illumina X Ten platform with 150 bp paired-end reads. Each sample
was repeated three times on three different lanes. The raw reads were collated before
demultiplexing.

The raw reads have been deposited in the NCBI RSA archive under submission
number PRJNA1092606.

2.4. SNP Calling, Filtering, and Genome Parametrization

SNP calling was executed using the Legpipe2 pipeline, which is released together with
this paper. The configuration file necessary to reproduce the actual SNP calling is available
in File S1 in the Supplementary Materials. As the reference genome, we used the sequence
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obtained from Long et al., 2022 [21], which consists of the full resequencing of each of the
four copies of each chromosome. For reads alignment, we selected the longest copy for
each chromosome.

The obtained variants were filtered for quality (phred score >= 40), minor allele fre-
quency (MAF ≥ 5%), with several levels of missing per marker (5%, 10%, and 20%) and of
minimum total reads (10, 20, 30, and 40). The combination of the above filtering produced
12 different genomic datasets, to be further analyzed in parallel.

After SNP calling, the data were transformed in three different genomic parametriza-
tions: allele ratios, tetraploid SNP dosage, and diploid SNP dosage.

Allele ratios are defined as:
AR = a/(A + a) (3)

where a is the number of reads containing the alternative allele and A is the number of
reads containing the standard allele. The allele ratios are, thus, defined in the [0, 1] interval.
Allele ratios were computed using a custom R script.

The second genomic parametrization is tetraploid SNP dosage and aims to model the
actual number of alternative alleles present at each SNP site. As such, for each SNP sample
pair, the final result is an integer number between zero (the homozygote of the same allele
found in the reference genome) and four (the homozygote of the alternative genome), with
in-between values of between one and three representing the three types of heterozygotes
possible in a tetraploid genome. This parametrization was obtained using the multidog
function from the updog R package [22] version 2.1.3, with the parameters ploidy = 4 and
model = ”norm”. Once the dosages were obtained, the SNPs were further filtered, discarding
the markers with the bias parameter outside the [e−1, e1] range.

The third genomic parametrization is of diploid SNP dosage and is a simplification of
the tetraploid SNP dosage obtained, collating the three possible heterozygotes in a single
bin of intermediate value between the two homozygotes. In practical terms, each SNP
sample pair was represented by an integer value between zero (the homozygote of the
reference allele) and two (the homozygote of the alternative allele). Regardless of the
dosage, all the possible heterozygotes were represented by a value of one.

SNPs were also qualified as belonging or not belonging to genic regions, using the
information available with the reference genome [21]. As such, we compared the regression
results using either the full set of SNPs or only the SNPs coming from genic regions, or
only the SNPs coming from non-genic regions.

2.5. Genomic Regression

The genomic predictions were investigated for all quantitative traits (dry matter in
favorable and stressed conditions, onset of flowering, and leaf size) by using a ridge
regression BLUP (rrBLUP) [23]. Genotypic data for the genomic regressions were produced
to test the effects of different levels of filtering (on the missing rate and number of reads),
genome parametrization (allele ratio, tetraploid, and diploid), and SNP selection (all SNPs,
genic regions only, and non-genic regions only) for a total of 144 different configurations.
For each configuration, the predictive ability of the model was measured as Pearson’s
correlation between true and predicted phenotypic values in a 10-fold cross-validation
scheme, repeated 10 times (and averaged) for numerical stability using the R package
GROAN [24] version 1.3.1.

3. Results
3.1. Phenotypic Analysis

Table 1 reports broad-sense heritabilities and descriptive statistics for the four focus
traits. Genetic variation among half-sib progenies was significant for every trait (p < 0.05).
The highest heritability was found for the onset of flowering (0.690), followed by leaf size
(0.550) and total dry matter in the favorable environment (0.529). The lowest heritability
(0.302) was observed for total dry matter in the drought-stressed environment. Due to the
plant growth reduction and the lower number of harvests caused by drought stress, the
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DMY was 6.84 t/ha in the stressed environment compared to 16.50 t/ha in the favorable
environment. The presence of stress also reduced the genetic coefficient of variation for
total dry matter yield from 9.2% in the favorable environment to 5.5% in the stressed
environment. The coefficient of variation for experimental error was almost identical for
yield in the two environments.

Table 1. Broad-sense heritabilities, coefficient of genetic variation (CVg, with significance levels
of ‘***’ 0.001, ‘**’ 0.01, and ‘*’ 0.05), coefficient of variation for the experimental error (CVe), mean
values and value ranges for the four studied traits, measured in either favorable (FE) or stressed
(SE) environments.

Trait Broad-Sense
Heritability CVg (%) CVe (%) Mean Range

Onset of flowering (FE) 0.690 6.2 *** 7.2 20.61 18.24–22.79
Leaf size (FE) 0.550 6.1 *** 13.4 3.31 2.94–3.78

Dry Matter (SE) 0.302 5.5 * 15.2 6.84 6.23–7.34
Dry Matter (FE) 0.529 9.2 *** 15.4 16.50 14.06–19.56

The genetic correlation for half-sib dry matter yield across the two environments
was relatively high, namely, rg = 0.82, despite the occurrence of highly significant half-sib
progeny × environment interactions (p < 0.001). Total dry matter yield in the favorable
environment displayed a modest positive phenotypic correlation with leaf size (r = 0.14)
and a negative correlation with the onset of flowering (r = −0.25), whereas the onset of
flowering and leaf size correlated positively (r = 0.27).

3.2. Sequencing, SNP Calling, and Filtering

Sequencing produced an average of 7.5 Mreads per sample. Table 2 reports the result-
ing number of SNP markers, depending on the applied filters and on the required number
of reads per locus, allowed maximum missing rate, and parametrization. As expected, the
total number of SNP markers shrank as the filter parameters became more stringent (higher
required reads and lower accepted missing rates), ranging from 2387 to 19,668 markers.
The table does not report the number of markers for diploid parametrization since, by
construction, they are exactly the same as the tetraploid ones.

Table 2. Number of SNP markers for each combination of filtering on the minimum required number
of reads per locus and on the maximum missing rate per locus. Markers are reported as parametrized
as tetraploid dosage or as the ratio between alleles. Aside from the total number of markers, the
number of markers in genic regions only is also reported, given in absolute values and relative to the
total number of markers.

Minimum Reads
Per Locus

Maximum Missing Rate per
Locus

Dosage SNPs Ratios SNPs

All Genic (%) All Genic (%)

10 5% 5758 4342 (75.41%) 11,965 8771 (73.31%)
10 10% 11,440 8453 (73.89%) 15,422 11,197 (72.6%)
10 20% 17,933 13,088 (72.98%) 19,668 14,058 (71.48%)
20 5% 4162 3147 (75.61%) 7813 5758 (73.7%)
20 10% 8576 6338 (73.9%) 10,660 7791 (73.09%)
20 20% 13,491 9916 (73.5%) 14,243 10,321 (72.46%)
30 5% 3225 2439 (75.63%) 5688 4205 (73.93%)
30 10% 6715 5006 (74.55%) 8021 5919 (73.79%)
30 20% 10,876 8035 (73.88%) 11,306 8251 (72.98%)
40 5% 2387 1814 (75.99%) 4076 3024 (74.19%)
40 10% 5386 4034 (74.9%) 6248 4630 (74.1%)
40 20% 9065 6733 (74.27%) 9278 6822 (73.53%)
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Genome parametrization heavily influenced the final number of markers since many
markers were rejected during the SNP dosage calling, due to an insufficient number of
reads to support proper dosage estimation. This became particularly evident with stricter
filtering on the missing rate, e.g., minimum reads per locus = 10 and a maximum missing
rate = 5% resulted in about twice as many ratio markers as dosage markers. For comparison,
with a maximum missing rate = 20%, the number of resulting markers was about the same
as with the two genome parametrizations.

Table 2 also reports the number of SNP markers located in genic regions. While the
absolute values changed with filtering and parametrization, the fraction of markers in genic
regions was stable, at 73.9% on average.

3.3. Genomic Regressions

Genotypic data for genomic regressions were produced to test the effects of different
levels of filtering (on missing rate and number of reads), genome parametrization (allele
ratio, tetraploid, and diploid), and SNP selection (all SNPs, genic regions only, and non-
genic regions only) for a total of 144 different configurations. For each configuration, the
predictive ability of the model was measured as Pearson’s correlation between true and
predicted phenotypic values in a ten-fold cross-validation scheme. Figure 1 shows the
effects on the predictive ability of the choice of filtering (for missing rate and read depth)
and SNP subsetting (all markers vs. only genic regions, vs. only non-genic regions). The
figure presents the results for SNP ratio parametrization. Figure S1 does the same for the
tetraploid parametrization. The full list of results is reported in Table S1.

Figure 1. Predictive ability for different levels of minimum reads per locus (x-axis), maximum missing
rate per locus (rows), SNP selection (line color), and trait (column). SNPs are parametrized as ratios.
For tetraploid dosage parametrization, see Supplementary Figure S1.

Figure 1 highlights several trends. The four traits exhibited different patterns, with
yield in the favorable environment showing predictive ability values that were always
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higher than yield in the stressed environment. Leaf size and onset of flowering showed
values closer to the yield in the favorable environment, if slightly lower. The use of markers
from non-genic regions was heavily penalized in the yield in favorable conditions, where
using the marker from genic regions yielded slightly better results than using all markers.
For yield in stressed conditions and leaf size, subsetting the markers to genic regions did
not appear influential, as shown by the three lines intertwined without a clear advantage.
The onset of flowering findings reversed the pattern found concerning yield in favorable
conditions, achieving the highest predictive abilities when subsetting the markers from
non-genic regions.

Table 3 reports the configuration for each trait giving the highest predictive ability,
which ranged from 0.168 (dry matter in the stressed environment) to 0.414 (dry matter
in the favorable environment). Three out of four traits maximized the predictive ability
when using the more stringent filtering on missing rate, the exception being dry matter in
a favorable environment, for which the loosest filtering was best. With regard to genome
parametrization, yield in stressed conditions and leaf size achieved the best performances
with diploid parametrization, while the onset of flowering was favored by tetraploid
parametrization, and yield in favorable conditions by the allele ratio. Regarding SNP
selection, two traits (yield in favorable conditions and leaf size) achieved the best results
by using SNPs from coding regions, while the other two traits achieved the best results by
using SNPs from non-coding regions.

Table 3. The configuration of SNP filtering and parametrization corresponding to the highest
predictive ability is reported for each trait.

Trait SNP Selection Parametrization Maximum Missing
Rate per Locus

Minimum Reads
per Locus

Predictive
Ability

Dry Matter (FE) coding regions tetraploid 20% 20 0.414
Dry Matter (SE) non-coding regions diploid 5% 30 0.168

Leaf size (FE) coding regions diploid 5% 10 0.347
Onset of flowering (FE) non-coding regions allele ratio 5% 40 0.301

By averaging the predictive ability results over all the tested configurations, it was
possible to single out the effect of specific filtering. On average, the allele ratio provided
an advantage in terms of average predictive ability (0.232), followed by the tetraploid
dosage (0.215) and the diploid dosage (0.206). Averaging over the SNP subsets revealed an
advantage using all SNPs (0.226), followed by genic regions (0.218) and then by non-genic
regions (0.210).

3.4. Released Software: Legpipe2

Together with this study, we are releasing LegPipe2 version 1.0, a SNP calling pipeline
aimed at reduced representation sequencing (GBS and RAD alike), which is freely available
at https://github.com/ne1s0n/legpipe2 (accessed on: 29 March 2024).

The design of Legpipe2 is inspired by existing pipelines like dDocent [25], with im-
provements in modularity, log management, and general flexibility. All operations depend
on a single configuration file, which can be shared together with the Legpipe2 version to
ensure data reproducibility. Apart from outputting a standard .vcf file [26], Legpipe2 already
contains filtering and data manipulation steps so that the data can easily be imported into
other software, e.g., into R/updog [27] version 2.1.3.

Internally, Legpipe2 uses the GVCF workflow from the GATK/HaplotypeCaller [28]
suite, thus ensuring low memory requirements. Other steps are implemented with standard
state-of-the-art software, such as Bowtie 2 [29] (for alignment), Picard, and SAMtools [30]
(for data manipulation and filtering), and FASTX [31] (for trimming).

https://github.com/ne1s0n/legpipe2
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4. Discussion

Agriculture is a water-intensive activity, and drought exacerbates the competition
for water resources, particularly in regions already facing limitations in water availability.
Alfalfa is known for its fairly high resilience to drought, but further genetic improvement
of its drought tolerance would be needed in several regions because of the changing
climate, a process that is challenged, among other reasons, by the difficulty of coping
with an autotetraploid genome. In this study, the definitely lower genomic prediction
ability for total dry matter yield observed in the drought-prone environment relative to
the moisture-favorable one (0.17 vs. 0.41) agrees with earlier findings [7,32]. In particular,
for a Mediterranean alfalfa reference population using diploid genome parametrization,
a progressive decrease in predictive ability was found across the managed environments,
ranging from moisture-favorable (0.35) to moderately stressed (0.26), to heavily stressed
(0.03), as well as prediction abilities in the range of 0.12–0.23 for drought-prone agricultural
environments. It was previously found [32] that a decreasing predictive ability regarding
increasing drought stress was paralleled by a progressive increase in experiment error CV
(12.6% vs. 19.5% vs. 30.1%) in the presence of a similar genetic variance. In this study,
the same pattern was found for the genetic coefficient of variation, probably because of
the smaller variations in drought tolerance that one could expect in European germplasm
relative to a Mediterranean reference population. Due to the controlled experimental
conditions, the experiment error CV was, however, more stable here, with stressed and
favorable conditions showing almost the same values (15.2% and 15.4%, respectively).

Our study provides an unprecedented assessment of the potential advantage of allele
dosage imputation for alfalfa genomic predictions. The extent of this advantage varied
largely in earlier studies on other species. A study of the perennial autotetraploid forage
grass Panicum maximum reported a remarkable advantage of allele dosage imputation
over the diploid model when pooling the heterozygote classes, with increases in predic-
tive ability of about 50% for leaf dry matter, 42% for crude protein content, and 18% for
in vitro digestibility [33]. In contrast, the advantage of allelic dosage imputation was
minimal for predicting the agronomic traits of interspecific hybrids of the tropical grass
Urochloa spp. [34], possibly because of the segmental allotetraploid (partly autotetraploid
and partly allotetraploid) genome of this material. In highly polyploid species like sugar-
cane and sweet potato, it was shown that the inclusion of allele dosage improves genomic
prediction only when there is a high frequency of heterozygous genotypes [12]. In con-
trast, in blueberry, it was found that with low depth sequencing, the use of allele ratio
parametrization and simplified diploidization brought results similar to those for full
polyploid parametrization [13].

In this study, the disadvantage of a diploid genome representation relative to a tetraploid
genome or its approximation as provided by the allele ratio was not large, suggesting that
using a diploid representation, as necessarily required when adopting lower sequencing
effort, may be convenient for some traits in terms of genomic selection cost efficiency in
comparison with more expensive, albeit more informative, genotyping options.

Identifying the optimal combinations of data treatment, filtering, and genome repre-
sentation may be important to maximize the genome-enabled predictive ability of alfalfa.
Our comparison of the allele ratio relative to the tetraploid allele dosage, based on the same
sequencing data, suggested that the allele ratio could be the preferred alternative, bringing
an average +7.9% increase in predictive ability when compared to tetraploid dosage (+12.6%
when compared to diploid). This approach, which is computationally simpler and avoids
the problems associated with the misclassification of genotypic classes, produced genomic
selection models that were about as accurate as those based on estimated genotype classes
in an earlier blueberry study [35]. However, the advantage of the allele ratio held true
only on average in our study. In fact, allele ratio parametrization was selected as the best
configuration in only one trait out of four. A similar pattern was found when examining the
effect of SNP selection. While using all available markers was preferable on average (+3.7%
vs. genic regions, +7.6% vs. non-genic regions), that choice was never the best-performing
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option when looking for the best configuration for each single trait. This finding highlights
the layered interactions between data representation, data filtering, and genomic regression
performances. From the methodological perspective, we propose, therefore, that genome
parametrization and SNP marker selection become part of the options routinely explored
when optimizing genomic regression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15040449/s1, Figure S1. Predictive ability for different
levels of minimum reads per locus (x-axis), maximum missing rate per locus (rows), SNP selection
(line color), and trait (column). SNPs are parametrized as tetraploid dosage. Table S1. Predictive
ability for all tested SNP filtering configurations. File S1. Legpipe2 configuration.
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