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Abstract: MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying
between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred
across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate
the gene expression in host organisms. The miRNAs present in the cluster bean, a drought tolerant
legume crop having high commercial value, might have also played a regulatory role for the genes
involved in nutrients synthesis or disease pathways in animals including humans due to dietary
intake of plant parts of cluster beans. However, the predictive role of miRNAs of cluster beans
for gene–disease association across kingdoms such as cattle and humans are not yet fully explored.
Thus, the aim of the present study is to (i) find out the cluster bean miRNAs (cb-miRs) functionally
similar to miRNAs of cattle and humans and predict their target genes’ involvement in the occurrence
of complex diseases, and (ii) identify the role of cb-miRs that are functionally non-similar to the
miRNAs of cattle and humans and predict their targeted genes’ association with complex diseases in
host systems. Here, we predicted a total of 33 and 15 functionally similar cb-miRs (fs-cb-miRs) to
human and cattle miRNAs, respectively. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis revealed the participation of targeted genes of fs-cb-miRs in 24 and 12 different pathways in
humans and cattle, respectively. Few targeted genes in humans like LCP2, GABRA6, and MYH14 were
predicted to be associated with disease pathways of Yesinia infection (hsa05135), neuroactive ligand-
receptor interaction (hsa04080), and pathogenic Escherichia coli infection (hsa05130), respectively.
However, targeted genes of fs-cb-miRs in humans like KLHL20, TNS1, and PAPD4 are associated
with Alzheimer’s, malignant tumor of the breast, and hepatitis C virus infection disease, respectively.
Similarly, in cattle, targeted genes like ATG2B and DHRS11 of fs-cb-miRs participate in the pathways
of Huntington disease and steroid biosynthesis, respectively. Additionally, the targeted genes like
SURF4 and EDME2 of fs-cb-miRs are associated with mastitis and bovine osteoporosis, respectively.
We also found a few cb-miRs that do not have functional similarity with human and cattle miRNAs
but are found to target the genes in the host organisms and as well being associated with human
and cattle diseases. Interestingly, a few genes such as NRM, PTPRE and SUZ12 were observed
to be associated with Rheumatoid Arthritis, Asthma and Endometrial Stromal Sarcoma diseases,
respectively, in humans and genes like SCNN1B associated with renal disease in cattle.

Keywords: plant-derived miRNAs; gene–disease association; cross-kingdom analysis; cattle diseases;
human health

1. Introduction

In the ecosystem, quite often organisms interact with each other directly or indirectly.
The prokaryotic cells communicate through quorum sensing whereas eukaryotic cells
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transmit signals through hormones and cytokines [1]. In living organisms, quite often
microRNAs (miRNAs) regulate multiple cell activities such as stress tolerance, plant defense
mechanisms, growth and development [2]. In recent years, it has been reported that
miRNAs might have been transmitted from one species to another [3] and might have
targeted the genes not only at the endogenous level but also at the exogenous level [4,5].
Moreover, the cross-kingdom mobility of miRNAs has been studied between bacteria and
animals [6], plants and insects [7], and plants and fungi [8]. Also, numerous exogenous
plant miRNAs exhibit perfect complementarity to human genes as well as to the genes
of other mammals [9]. The experimental detection of plant miRNAs in human plasma,
serum, urine, saliva and other body fluids have been reported in the recent past [10,11].
The RT-PCR technique reveals the stability of plant miRNAs in the human sera [12,13]
and such stability is achieved by the methylation at 2′-hydroxyl group of sugar at 3′ end
of miRNA [14]. The presence of plant miRNAs in humans has been reported when plant
products in the form of diet travelled through the gastrointestinal tract [15]. It was reported
earlier that plant miRNA “MIR168a” targets the low-density lipoprotein receptor (LDL)
adaptor protein 1 (LDLRAP1) of humans’ liver cells that led to the uptake of low-density
lipoprotein receptor from blood [3]. Additionally, it was showed that human miRNAs
might have translocated and regulated the genes responsible for growth of Plasmodium
falciparum [16]. The studies on virus–host interaction showed that viruses used host miRNA
biosynthesis machinery for the expression of their own miRNAs [17]. In addition, the oilve
miRNAs, viz., oeu-sR20, oeu-sR27 and oeu-sR34 showed functional homology with human
miRNA “hsa-miR34” that regulates the expression of genes in human tumor cells [15].
Recently, it was found that miRNAs of Avacado (Persea americana) regulate the function of
human genes like FLT1 (Fms Related Tyrosine Kinase 1) and SOCS3 (Suppressor of Cytokine
Signalling 3) [10]. The miR160 and miR2673 of Brassica oleracea reported to regulate the
expression of human lung-cancer-related genes [18].

The cluster bean, also known as guar, is a drought-tolerant crop of the legume family. It
is grown in India for vegetable, green manure and seed production. It is also recognized as
a medicinal plant and possesses a high quantity of phytochemicals [19,20]. It is commonly
used to cure various diseases like ulcer, secretion, hyperglycemia, and cathartic [21]. The
edible parts of this crop are consumed by humans and cattle as food and fodder. Through
such intake, probably the cluster bean plant-derived miRNAs might have been translocated
to humans and cattle. Subsequently, these miRNAs might have played different roles in the
regulation of gene–disease association in animals. Thus, in the present study, we tried to
identify the cluster bean miRNAs (cb-miRs) that are functionally similar and functionally
non-similar to miRNAs of humans and cattle. Further, we predicted the target genes of the
identified functionally similar cb-miRs (fs-cb-miRs) and functionally non-similar cb-miRs
(fns-cb-miRs), pathways involving the predicted genes, and the gene–disease associations.
Thus, the present findings may supplement the existing knowledge on the role of cb-miRs
in regulating genes associated with human and cattle diseases. Additionally, the findings
may help promote the use of cluster bean plant parts as dietary supplement for humans
and as fodder for animals. The findings may act as a remedial outbreak against various
diseases as well as in advising therapeutic strategies for animal diseases.

2. Material and Methods
2.1. Data Source

A total of 171 and 21 cluster bean miRNAs were collected from [22] and [23], respec-
tively, after removing the redundancy. The prefixes Ct and Cte of cluster bean miRNAs,
used earlier [22,23], were retained as such in their ids. For functional-similarity study of
cb-miRs, a total of 1052 miRNAs of cattle and 2781 miRNAs of human were collected from
miRbase [24]. The mRNA sequences of cattle were downloaded from the National Center
for Biotechnology Information (NCBI), whereas human mRNAs available in the database
of psRNATarget server [25] were considered in the study. The miRNAs and mRNAs of
cattle and humans were used to carry out the cross-kingdom analysis.
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2.2. Cross-Kingdom miRNA Similarity

The cross-kingdom mechanisms involve cell communication as well as intra-species
and inter-species interactions through miRNAs. Here, a total of 192 cb-miRs (=171 + 21)
were considered to perform cross-kingdom analysis in human and cattle. The MirCompare
tool [26] was used to predict the similarity between cb-miRs and human miRNAs, cattle
miRNAs with suitable parameters (r-value 0.55, similarity ≥ 60% and seed-region threshold
value 5). The cb-miRs with the said remarkable and high similarity were considered as s-cb-
miRs. Further, the secondary structures of pre-miRNAs of cluster beans, humans and cattle
were predicted by RNA module of Vienna Package to filter out those s-miRNAs satisfying
the structural properties from the miRNAs identified by MirCompare, i.e., those s-miRNAs
(mature miRNAs of length 21 nt) localized on the secondary structure of pre-miRNAs.
While s-cb-miRs that have sequence homology < 60% with miRNAs of cattle and human
were considered as non-similar cb-miRs (ns-cb-miRs). Thus, the total miRNAs of cluster
bean were bifurcated into s-cb-miRs and ns-cb-miRs. The s-cb-miRs may have functional
and likely evolutionary importance while the ns-cb-miRs may have functional importance
alone. Therefore, both types of cb-miRs were studied for the regulation of genes and their
associated diseases in humans and cattle. The workflow meant for cross-kingdom analysis
of miRNAs is given in Figure 1.
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2.3. Identification of Functionally Similar cbmiRs (fs-cb-miRs) and Prediction of Potential Target
Genes in Humans and Cattle

The s-cb-miRs and their corresponding paired miRNAs in humans and cattle were
considered for target gene prediction and, thus, submitted in the psRNATarget server [25].
Subsequently, only those genes that are commonly targeted by the referred pairs (s-cb-
miRs and corresponding paired miRNA in the host system) are considered and referred
as “targeted genes” for further down-stream analysis on annotation, pathways and gene–
disease association whereas the s-cb-miRs in the referred pairs are referred as functionally
similar cb-miRs (fs-cb-miRs), as they along with their paired miRNAs target the same gene
in the host system (human, cattle), i.e., functionally similar while targeting the host gene.
Additionally, the ns-cb-miRs targeting genes in host systems are referred to as functionally



Genes 2024, 15, 448 4 of 23

non-similar cb-miRs (fns-cb-miRs). To identify the probable targeted genes, the parameters
(i) maximum expectation value = 3, (ii) length of complementary score = 20, (iii) maximum
energy to unpair target site = 25, and (iv) translation inhibition = 9 nt–11 nt range were set
in the psRNATarget Server [23,27,28] (Figure 1). As the mRNAs of cattle are not available
in the psRNATarget server, the mRNAs collected from NCBI were uploaded in said server
for identifying the genes targeted by s-cb-miRs, following the approach outlined above for
humans. However, the targeted genes of fns-cb-miRs were identified from the psRNATarget
server by submitting the fns-cb-miRs alone as input for humans and cattle separately.

2.4. Functional Annotation and Pathway Analysis of cb-miRs’ Targeted Genes

The human and cattle targeted genes of both fs-cb-miRs (33) and fns-cb-miRs (159)
were submitted to ShinyGO v.0.77 [29] and String v.11.5 [30] for functional annotation
and KEGG pathway [31] analysis, respectively. The gene ontology (GO) analysis was
performed through AgriGO v2.0 tool [32]. Subsequently, the WEGO tool [33] was used for
the representation of GO terms in different classes: biological process, cellular component
and molecular function. Further, the significant GO terms were filtered out on the basis of
p-value (<0.05) and FDR (<0.05). The pathway analysis of human and cattle genes targeted
by cb-miRs was carried by KEGG mapper [34]. Finally, the gene regulatory network
analyses involving the identified cb-miRs and their target genes of humans and cattle were
performed by Cytoscape v3.3.0 [35].

2.5. Disease Association with cb-miRs’ Target Genes

The targeted genes that were significantly annotated in human were mapped against
the DisGeNET database [36] for the analysis of their disease association. The evidence
levels of gene–disease association, developed by the NIH-funded Clinical Genome Re-
source (ClinGen), were qualitatively classified into (i) definitive, (ii) strong, (iii) moderate,
(iv) limited, (v) conflicting evidence and (vi) no reported evidence categories [37]. It was
reported earlier that the predicted cross-kingdom targeted genes of human have plausible
association with several diseases [38]. In case of cattle, the identified targeted genes were
searched in literature and CGRIS (http://bioinformatics.iasri.res.in/cgris; accessed on 29
June 2023) for gene–disease association.

3. Results
3.1. Identification of fs-cb-miRs and fns-cb-miRs to Human and Cattle miRNAs

With input of 192 cb-miRs and 2042 human miRNAs, the similarity hits were found
from the MirCompare tool. Similarly, while providing 192 cb-miRs and 206 cattle miRNAs
as input to the MirCompare tool. The functional similarities between cluster bean miRNAs
and human/cattle miRNAs are given in Figure 2 under different ranges of % similarity.
Subsequently, cut off values of parameters r < 0.55, similarity ≥ 60% and seed region = 5
were kept in the MirCompare tool. This has resulted in 33 as fs-cb-miRs and 159 as fns-cb-
miRs with human miRNAs, while 15 unique cb-miRs resulted as fs-cb-miRs and 177 as
fns-cb-miRs with cattle miRNAs (Figure 3). The predicted secondary structures of both fs-
cb-miRs and their corresponding human miRNAs were checked for the location of mature
miRNAs. As an example, the secondary structures of Ct-mir-3130 and hsa-mir-1910 are
given in Figure 4. The human miRNAs: hsa-miR-6754-3p and hsa-miR-6804-5p were found
to have similarity with the cb-miRs: Cte-miR824-3p and Cte-miR6183, respectively. The
percentage similarity in the former case was 73%, whereas in the latter case it was 71%.
The cattle miRNAs bta-miR-7865 and bta-miR-2338 were found to have similarity with
the cb-miRs Ct-miR-3061 and Ct-miR-3033 of cluster beans, respectively. The observed
similarities in the former and latter cases were 74% and 69%, respectively.

http://bioinformatics.iasri.res.in/cgris
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3.2. Prediction of Target Genes of cb-miRs in Human and Cattle

The identified 33 (~17%) and 15 (~7.8%) fs-cb-miRs along with their corresponding
paired miRNAs in humans and cattle, respectively, were subjected to the target gene
prediction using the psRNATarget server. Subsequently, a total of 32 and 5 fs-cb-miRs have
uniquely targeted 68 and 15 genes in human and cattle, respectively (Figure 3). Similarly,
we found 40 targeted genes for 40 fns-cb-miRs in case of human and 97 unique targeted
genes for 99 fns-cb-miRs in cattle (Figure 3). The perfect and near perfect complementary
matches of cb-miRs to their target mRNAs show the probability of post-transcriptional
gene expression by mechanisms such as translation inhibition and cleavage of mRNA [39].
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3.3. Functional Annotation and Pathway Analysis of Human and Cattle Genes Targeted
by cb-miRs

A total of 68 and 15 unique genes in humans and cattle, respectively, were identified
as targets for fs-cb-miRs from the psRNAtarget server. Subsequently, the ShinyGO v.0.77
and String v.11.5 were used to annotate and identify the involvement of targeted genes in
various pathways. The annotation terms were filtered out with p value < 0.05 resulting
in 846 terms in humans and 653 terms in cattle. Among the GO annotation terms of
human, 16.31% (138), 17.38% (147) and 66.31% (561) were found to be involved in cellular
component, molecular function and biological process, respectively, for targeted genes
of fs-cb-miRs whereas these annotation terms in cattle were 9.34% (61), 12.71% (83) and
77.95% (509) for targeted genes of fs-cb-miRs (Figure 5). A total of 24 and 11 KEGG
pathways were identified for targeted genes of fs-cb-miRs in human (Table 1) and cattle
(Table 2), respectively. It was also observed in the tables that few genes like HMGCS2, LCP2,
PPP2R5C and GABRA6 in humans and genes like ATG2B in cattle have participated in
more than five pathways. On the other hand, 40 fns-cb-miRs have targeted 40 human genes
and 99 fns-cb-miRs have targeted 97 distinct cattle genes. Among the GO annotation terms
of targeted genes of humans for fns-cb-miRs, 13.61% (230), 17.40% (294) and 68.99% (1166)
were found to be involved in the cellular component, molecular function and biological
processes whereas in the case of cattle the percentage of GO terms were 15.14% (157),
14.08% (146) and 70.78% (734) for targeted genes of fns-cb-miRs (Figure 6). Also, 46 and
44 KEGG pathways were identified for targeted genes of fns-cb-miRs in human (Table 3)
and cattle (Table 4), respectively.
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Table 1. List of human genes targeted by fs-cb-miRs and their involvement in KEGG pathways.

Targeted Gene KEGG Id Pathway

HMGCS2

hsa00072 Synthesis and degradation of ketone bodies

hsa00280 Valine, leucine and isoleucine degradation

hsa00650 Butanoate metabolism

hsa00900 Terpenoid backbone biosynthesis

hsa01100 Metabolic pathways

hsa03320 PPAR signaling pathway

UBE2K hsa04120 Ubiquitin mediated proteolysis

MYH14

hsa04270 Vascular smooth muscle contraction

hsa05130 Pathogenic Escherichia coli infection

hsa04530 Tight junction

LCP2

hsa04810 Regulation of actin cytoskeleton

hsa04015 Rap1 signaling pathway

hsa04380 Osteoclast differentiation

hsa05135 Yersinia infection

hsa04611 Platelet activation

hsa04650 Natural killer cell mediated cytotoxicity

hsa04660 T cell receptor signaling pathway

hsa04664 Fc epsilon RI signaling pathway

GABRA6

hsa04723 Retrograde endocannabinoid signaling

hsa04727 GABAergic synapse

hsa04742 Taste transduction

hsa05032 Morphine addiction

hsa05033 Nicotine addiction

hsa04080 Neuroactive ligand-receptor interaction

Table 2. List of cattle genes targeted by fs-cb-miRs and their involvement in KEGG pathways.

Targeted Gene KEGG Id Pathway

ALDH18A1

bta00330 Arginine and proline metabolism

bta01100 Metabolic pathways

bta01230 Biosynthesis of amino acids

ATG2B

bta04136 Autophagy—other

bta04140 Autophagy—animal

bta05010 Alzheimer disease

bta05014 Amyotrophic lateral sclerosis

bta05016 Huntington disease

bta05017 Spinocerebellar ataxia

DHRS11 bta00140 Steroid hormone biosynthesis

EDEM2 bta04141 Protein processing in endoplasmic reticulum

SPTAN1 bta04210 Apoptosis
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Figure 6. (a) Number of GO terms involved in cellular component, molecular function and biological
process for human (blue) and cattle (orange) for targeted genes of fns-cb-miRs. (b) Functional
annotation and GO terms of targeted genes of fns-cb-miRs in cattle (red) and human (green).

Table 3. List of human genes targeted by fns-cb-miRs and their involvement in KEGG pathways.

Targeted Gene KEGG Id Pathway

ABI2 hsa04810 Regulation of actin cytoskeleton

COL22A1 hsa04974 Protein digestion and absorption

DNTT
hsa04640 Hematopoietic cell lineage

hsa03450 Non-homologous end-joining

FLI1 hsa05202 Transcriptional misregulation in cancer

FMO3 hsa00982 Drug metabolism—cytochrome P450

GABRA6

hsa04727 GABAergic synapse

hsa05032 Morphine addiction

hsa04080 Neuroactive ligand-receptor interaction

hsa05033 Nicotine addiction

hsa04723 Retrograde endocannabinoid signaling

hsa04742 Taste transduction
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Table 3. Cont.

Targeted Gene KEGG Id Pathway

HMGCS2

hsa00650 Butanoate metabolism

hsa01100 Metabolic pathways

hsa03320 PPAR signaling pathway

hsa00072 Synthesis and degradation of ketone bodies

hsa00900 Terpenoid backbone biosynthesis

hsa00280 Valine, leucine and isoleucine degradation

LCP2

hsa04664 Fc epsilon RI signaling pathway

hsa04650 Natural killer cell mediated cytotoxicity

hsa04380 Osteoclast differentiation

hsa04611 Platelet activation

hsa04015 Rap1 signaling pathway

hsa04660 T cell receptor signaling pathway

hsa05135 Yersinia infection

MYH14

hsa05130 Pathogenic Escherichia coli infection

hsa04810 Regulation of actin cytoskeleton

hsa04530 Tight junction

hsa04270 Vascular smooth muscle contraction

PDSS2 hsa00900 Terpenoid backbone biosynthesis

PHKA1 hsa04(020,922,910) signaling pathway (Calcium, Glucagon, Insulin)

PPP2R5C

hsa04261 Adrenergic signaling in cardiomyocytes

hsa04152 AMPK signaling pathway

hsa04728 Dopaminergic synapse

hsa05165 Human papillomavirus infection

hsa03015 mRNA surveillance pathway

hsa04114 Oocyte meiosis

hsa04151 PI3K-Akt signaling pathway

hsa04071 Sphingolipid signaling pathway

SLC1A3

hsa04724 Glutamatergic synapse

hsa05016 Huntington disease

hsa04721 Synaptic vesicle cycle

SLC36A4 hsa04974 Protein digestion and absorption

ST8SIA1
hsa00604 Glycosphingolipid biosynthesis

hsa01100 Metabolic pathways

UBE2K hsa04120 Ubiquitin mediated proteolysis
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Table 4. List of cattle genes targeted by fns-cb-miRs and involvement in KEGG pathways.

Targeted Gene KEGG Id Pathway

RB1
bta01522, bta04110, bta0421
bta04934, bta05160, bta0516,
bta05200

Endocrine resistance, Cell cycle, Cellular
senescence, Cushing syndrome, Hepatitis B,
Hepatitis C, Pathways in cancer

SCNN1B bta04742, bta04960 Taste transduction, Aldosterone-regulated
sodium reabsorption

CFLAR
bta04064, bta04140, bta04210
bta04217, bta04668,
bta05142, bta05160

NF-kappa B signaling pathway,
Autophagy—animal, Apoptosis, Necroptosis,
TNF signaling pathway, Chagas disease,
Hepatitis C

COL4A4

bta04933, bta05146,
bta04512, bta04510,
bta05200, bta04151,
bta04974, bta04926

AGE-RAGE signaling pathway in diabetic
complications, Amoebiasis, ECM-receptor
interaction, Focal adhesion, Pathways in cancer,
PI3K-Akt signaling pathway Protein digestion
and absorption, Relaxin signaling pathway,

TRPA1 bta04750 Inflammatory mediator regulation of TRP
channels

FAT4 bta04392 Hippo signaling pathway—multiple species

ITGB7
bta05412, bta04514,
bta05414, bta05410,
bta04672, bta04810, bta05202

Arrhythmogenic right ventricular
cardiomyopathy, Cell adhesion molecules,
Dilated cardiomyopathy, Hypertrophic
cardiomyopathy, Intestinal immune network
for IgA production, Regulation of actin
cytoskeleton, Transcriptional misregulation in
cancer

PIP5K1A

bta05231, bta04144,
bta04666, bta00562,
bta01100, bta04070,
bta04072, bta05135

Choline metabolism in cancer, Endocytosis, Fc
gama R-mediated phagocytosis, Inositol
phosphate metabolism, Metabolic pathways,
Phosphatidylinositol signaling system,
Phospholipase D signaling pathway, Yersinia
infection

LOC533983 bta04740, bta04975, bta00561 Olfactory transduction, Fat digestion and
absorption, Glycerolipid metabolism

3.4. Gene Regulatory Network Analysis

The regulatory network between fs-cb-miRs and their targeted genes in humans and
cattle were visualized by cytoscape and depicted in Figure 7. The integrative analyses
of cb-miRs and their target genes responsible for diseases in cattle and human provide
useful information to understand complex biological systems and processes involved in
miRNA–mRNA–disease associations. A total of eight and five cb-miRs (ellipse shape)
showed their likely integration with the gene networks in humans and cattle, respectively.
The targeted genes in the network are shown in rectangular boxes (Figure 7a,b). The length
of edges in the network shows the strength of unpaired energy (UPE) that in turn depicts
the interaction between miRNA and mRNA. The fs-cb-miRs like Ct-miR-3037, Ct-miR-3169,
Cte-miR824-3p, Ct-miR-3135, Cte-miR8741, and Cte-miR7780-3p were found to target more
than four genes. The targeted genes of fs-cb-miRs, viz., DAZAP2, KLH20, TNS1, BBIP1,
HMGCS2, PAPD4, FAM212B and KIAA1549 are having disease associations. Similarly,
in the case of cattle, fs-cb-miRs like Cte-miR5084, Cte-miR531, Ct-miR-3061, Ct-miR-3069
and Ct-miR-3135 have targeted the genes having several gene associations. The genes
having disease associations are highlighted in yellow color. Further, a regulatory network
was developed for targeted genes of fns-cb-miRs and it was observed that few genes are
participating in the gene regulatory network in the case of humans (Figure 8) while no
regulatory network was formed in the case of cattle.
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Genes 2024, 15, 448 13 of 23

3.5. Association of Target Genes of fs-cb-miRs and fns-cb-miRs with Human and Cattle Diseases

The targeted genes of fs-cb-miRs in human were found to be associated with multiple
diseases given in DisGeNET database, which is one of the largest available collections
of genes and variants involved in human diseases. A total of eight out forty targeted
genes were found to be associated with diseases based on first four evidence levels of
DisGeNET. Most of the gene–disease associations were categorized into “strong” (50%)
evidence level and others into “definitive” (3%), “moderate” (8%) and “limited” (39%).
The fs-cb-miRs, targeted genes and their associated diseases, disease association type, and
references are given in Table 5. Further, it was observed that the fs-cb-miR-targeted gene
KLHL20 was involved in Alzheimer’s disease (Figure 7a) while another gene, PAPD4, was
found as a biomarker for diseases Hepatitis C virus infection. Additionally, the variations
in the targeted genes: TNS1, FAM212B and KIAA1549 have led to the diseases such as
malignant tumors of the breast, Crohn’s disease and Pilocytic astrocytoma, respectively
(Table 5). In contrast, the fns-cb-miRs and their targeted gene-association information
along with references are given in Table 6. Here, the targeted genes like DNTT, PTPRE,
CNRIP1, CLEC4G, LMTK2, PHKA1, and KLHL were found associated with diseases
like Schrizophrenia, Asthma, Colorectal Carcinoma, Liver Carcinoma, Glycogen Storage
Disease, Chronic Lymphocytic Leukemia, Alcoholic Intoxication and Alzheimer diseases
with a disease association type as a biomarker (Table 6).

Table 5. List of fs-cb-miRs targeted gene–disease association in human and their involvement in
various disease.

cb-miR Id Targeted Gene Association Type Disease References

Ct-miR-3037 DAZAP2 Posttranslational
Modification Multiple myeloma [40]

Ct-miR-3169 KLHL20 Biomarker Alzheimer’s disease [41]

Cte-miR824-3p TNS1 Genetic Variation Malignant tumor of
breast [42]

Ct-miR-3135 BBIP1 Biomarker Bardet-Biedl
syndrome 18 [43]

Cte-miR8741 HMGCS2 Biomarker
3-hydroxy-3-
methylglutaryl-CoA
synthase deficiency

[44]

Cte-miR7780-3p PAPD4 Biomarker Hepatitis C virus
infection [45]

Ct-miR-3069 FAM212B Genetic Variation Crohn’s disease [46]

Cte-miR8577 KIAA1549 Genetic Variation Pilocytic astrocytoma [47]

Table 6. List of fns-cb-miRs targeted gene–disease association in human and their involvement in
various disease.

Cb-miR Id Targeted Gene Association Type Disease References

Ct-miR-3034, 3061 DNTT,
UHMK1 Biomarker Schizophrenia [48]

Ct-miR-3095 PTPRE Biomarker Asthma [49]

Cte-miR5084
cte-miR04

CNRIP1,
SLC36A4 Biomarker Colorectal Carcinoma [50]
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Table 6. Cont.

Cb-miR Id Targeted Gene Association Type Disease References

Ct-miR-3035, 3094
Cte-miR8713

CLEC4G,
LCP2, ST8SIA1 Biomarker Liver carcinoma [51]

Cte-miR5644,
824-3p NLRC5, TNS1 Altered

Expression Malignant neoplasm [52]

Ct-miR-3007 NRM Genetic Variation Rheumatoid Arthritis [53]

Cte-miR8577 KIAA1549 Genetic Variation Pilocytic
Astrocytoma [47]

Cte-miR1134 LMTK2 Biomarker Malignant neoplasm
of prostate [54]

Cte-miR531 SLC6A6 Biomarker Myocardial Ischemia [55]

Ct-miR-3104 TYW1 Genetic Variation Lymphocyte Count
measurement [56]

Cte-miR117 SUZ12 Genetic Variation Endometrial Stromal
Sarcoma [57]

Ct-miR-3096 SLC1A3 Causal Mutation Episodic Ataxia,
TYPE 6 [58]

Ct-miR-3041 PHKA1 Genetic Variation Glycogen Storage
Disease, Type IXD [59]

Ct-miR-3027 SHOX Genetic Variation Leri-Weill
dyschondrosteosis [60]

Ct-miR-3015 PPP2R5C Biomarker Neoplasm [61]

Ct-miR-3139 PDSS2 Causal Mutation Coenzyme Q10
Deficiency [44]

Cte-miR168 UBE2K Genetic Variation Angelman Syndrome [62]

Cte-miR8741 HMGCS2 Genetic Variation
3-Hydroxy-3-
Methylglutaryl-CoA
Synthase 2 Deficiency

[44]

Ct-miR-3097 GABRA6 Biomarker Alcoholic
Intoxication, Chronic [63]

Ct-miR-3169 KLHL20 Biomarker Alzheimer’s Disease [41]

In the case of cattle, the literature was searched for analyzing the gene–disease asso-
ciation. The fs-cb-miR targeted gene–disease association information and corresponding
references are given in Table 7. A total of 11 out of 15 targeted genes, PLIN3, EDEM2, ECM1,
SURF4, SEC14L5, DHRS11, LGALS9, ALDH18A1, SPTAN1, NXPE4 and FIZ1 of fs-cb-miRs,
were found associated with the diseases like bovine respiratory disease, mastitis resistance,
and Hyperprolinemia type II, etc. (Table 7). On the other hand, the fns-cb-miRs and their
targeted gene–disease association information are given in Table 8 the genes like CFLAR,
TRPA1, RB1 and SCNN1B were found involved in malignant glioma, respiratory disease,
sporadic retinoblastoma and renal disease, respectively, in cattle (Table 8).
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Table 7. List of fs-cb-miR targeted genes in cattle, disease associations and references.

Cb-miR Id Gene Description References

Cte-miR5084
PLIN3 Associated with various metabolic diseases,

primarily expressed in adipose tissue. [64]

EDEM2 Mutations leads genetic disorder, bovine
osteoporosis. [65]

Cte-miR531 ECM1 Mutations leads genetic disorder, bovine
hereditary angioneurotic edema (HANE). [66]

Ct-miR-3061

SURF4 In relation to milk production traits and mastitis
resistance. [67]

SEC14L5

Variations/mutation leads susceptibility to
mastitis, lead to reduced milk production and
quality and involved in regulating immune
function in response to bacterial infection.

[68]

Ct-miR-3069 DHRS11
Variations/mutation lead susceptibility to
infectious diseases like bovine viral diarrhea
virus in cattle.

[69]

Ct-miR-3135

LGALS9
Expressed in bovine respiratory disease (BRD,
and may be involved in the development and
progression of BRD.

[70]

ALDH18A1 Mutations lead Hyperprolinemia type II, rare
autosomal recessive disorder. [71]

SPTAN1 Mutations leads Cerebellar abiotrophy,
neurological disorder that affects the cerebellum. [72]

NXPE4
SNP (single nucleotide polymorphism) in the
NXPE4 gene was significantly associated with
milk yield and fat content in milk.

[73]

FIZ1 Variations lead BRD is a multifactorial disease. [74]

Ct-miR3033 GIPC3 Potential role in cell growth, differentiation and
survival. [75]

Table 8. List of fns-cb-miRs and their targeted genes of cattle and involvement in different disease.

cb-miR Id Gene Description References

Cte-miR824-3p CFLAR Malignant glioma, cancer [76]

Cte-miR5644 TRPA1 Respiratory diseases [77]

Ct-miR-3017 RB1 Mutations lead sporadic cases of retinoblastoma [78]

Ct-miR-3145 SCNN1B Dysfunctions in SCNN1B renal diseases [79]

4. Discussion

The cross-kingdom role of edible plant miRNAs, also known as food-derived miRNAs,
play an important role in inter-species regulation [3,38,80–83]. These studies further demon-
strated that the plant miRNAs act in a similar manner to human miRNAs after entering the
gastrointestinal (GI) tract [82]. The stability of plant-derived miRNAs has been studied un-
der high temperature and chemical degradation processes as well as in the gastrointestinal
tract of humans and animal serum [84,85]. The small-molecule carriers such as exosomes,
microvesicles and high-density lipoprotein are responsible for the stability of exogenous
miRNAs as they protect from degradation [5,86,87]. The miRNA-mir2911 of Chinese herb
honeysuckle (Lonicera japonica) is highly stable and helps in protecting against influenza
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virus (Zhou et al., 2015) and novel Coronavirus SARS-CoV-2 [88]. Similarly, “miR471”
and “miR519” from lettuce targeted the Hepatitis B virus (HBV) [81]. Recently, it was
reported that plant miRNA “miR159” helps in reducing the proliferation of breast cancer
cells [39]. Moreover, the plant derived miRNAs, which regulate multiple gene expression in
cross-kingdom species, may lead to a new approach to cast light on the nutritional and func-
tional value of plants [18]. It was suggested that exogenous miRNAs (plant miRNAs) have
targeted the genes in the human genome [6,89]. Similarly, the miRNAs of Moringa oleifera,
Ocimum basilicum and Medicago truncatula target the genes in human [26,90,91]. Likewise,
the role of plant-derived miRNAs has been studied in mammals including humans and
mice in the recent past. To be specific, the understanding of plant-derived miRNAs in
mammals encompassing antiviral, antitumor, anti-inflammatory, anti-apoptotic, immune-
modulating, and regulatory impacts on intestinal function were studied recently [82]. It
has also been studied that the MiR171 variant from the Arabidopsis and tomato targeted
the mTOR pathway of the HEK293 cell of humans [92]. Interestingly, the human miRNAs
“hsa-miR-21-5p” and “hsa-miR-24-3p” targeted the gene cyclin-dependent kinase inhibitor
Sol1 of Candida albicans and inhibit its cell growth [93]. These findings support the cross-
kingdom analysis. However, to our limited knowledge, the role of plant-derived-miRNAs
in cattle has been reported for the first time by us.

The present study is carried out to (i) identify functionally similar-cb-miRs (fs-cb-
miRs), i.e., cbmiRs having sequence similarities with human and cattle miRNAs as well
as satisfying structural properties of miRNAs and target the same gene as that targeted
by their corresponding similarity pairs in host organisms (human, cattle), (ii) identify
functionally-non-similar-miRNAs (fns-cb-miRs) that regulate genes in the host (human,
cattle) organisms, and (iii) the involvement of targeted genes in regulatory networks,
pathways and disease association. The fs-cb-miRs were studied for functional and probable
evolutionary importance in the host systems like humans and cattle. Whereas fns-cb-miRs
were studied for their functional role in humans and cattle. The targeted genes of both
fs-cb-miRs and fns-cb-miRs in host systems have also been studied through regulatory
network and pathway analysis. In addition, the disease associations of the targeted genes
have been studied.

Our results revealed high similarity to the extent of more than 70% between human
miRNA “hsa-mir-6754-3p” and cb-miR “Cte-mir824-3p” as well as between “hsa-mir-6804-
5p” and “Cte-mir6183”. The hsa-mir-6754-3p and hsa-mir-6804-5p target the genes TNS1
and FNDC3A, respectively. These targeted genes code for the corresponding transcription
factors that are responsible for the regulation of gene expression [42]. Similar findings have
been reported that 84 miRNAs of wheat have targeted the 787 human genes [94]. Our
findings on fs-cb-miRs fall in line with the results reported earlier [95] about the similarity
between the human miRNA “hsa-mir341” and olive plant miRNAs:oeu-sR20, oeu-sR27,
oeu-sR34.

In the case of cattle, the fs-cb-miR “Ct-mir-3061” has 74% similarity with the cattle
miRNA “bta-miR-7895” and was observed to interact with the FIZ1 gene responsible
for regulating cellular processes as well as being associated with various biological func-
tions [74]. Whereas the fs-cb-miR “Ct-miR-3033” has 69% similarity with the cattle miRNA
“bta-mir-2338” and was found interacting with a GAIP-interacting protein C-terminus
(GIPC3) gene that has a potential role in cell growth, differentiation, and survival [75].

The gene regulatory networks play an important role in various vital processes of
life including cell differentiation, metabolism, cell cycle and signal transduction [95]. The
fs-cb-miR “Cte-miR824-3p”, which is functionally similar to the human miRNAs hsa-miR-
4279, hsa-miR-6754-3p, hsa-miR-6845-3p, hsa-miR-6887-3p, hsa-miR-877-3p and hsa-miR-
6894-5p, was found to interact with the human genes TNS1, SLC34A2, KSR2, NYAP1,
HSPB7, CMTM5, PLXND1, ARNT2, and CDC42BPA involved in regulation of phosphate
homeostasis [96], cell growth and differentiation [97], neuronal development and synaptic
plasticity [98], maintaining cardiac structure and function [99], tumor suppression [100],
angiogenesis during development [101], neuronal development [102], and cytoskeletal
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organization [103] and cancer [104], respectively. Similar findings on the regulation of
genes by miRNAs have also been reported in Bacopa monnieri [105] and wheat [94].

The KEGG pathway analysis of the targeted genes of fs-cb-miRs in both humans
and cattle revealed that the targeted genes were involved in multiple pathways (Table 1).
For example, the targeted gene LCP2 is involved in eight pathways including important
pathways like, Rap1 signaling pathway, osteoclast differentiation, Yersinia infection, platelet
activation, T-cell receptor signaling pathway, and Fc epsilon RI signaling pathway [51].
Whereas in the case of cattle, only two genes ALDH18A1 and ATG2B were involved in
more than one pathway [31].

Further, we investigated the gene–disease associations in human and cattle by us-
ing cb-miRs targeted genes through DisGeNET database [36] and literature, respectively.
Here, 17 targeted genes of fs-cb-miRs show their involvement in 16 different diseases in
human. Few targeted genes of fs-cb-miRs like TNS1 (Cte-miR824-3p), UBE2K (Cte-miR168),
FNDC3A (Cte-miR6183) and PAPD4 (Cte-miR7780-3p) were involved in malignant tumors
of the breast, Alzheimer’s disease, Angelman syndrome and Hepatitis C virus infection,
respectively. The gene–disease associations (Table 5) were reported earlier [42,45]. These
findings are in line with earlier reported findings such as the miRNAs “pku-miR167a-5p”
and “pku-miR167b-3p” from Picrorhiza kurroa having targeted the genes:“PPP3R2” and
“MYOZ3”, respectively, involved in astheno-zoospermia and muscular dystrophy in hu-
mans [106]. In the case of cattle, it was observed that six cb-miRs have targeted twelve genes.
The targeted genes, PLIN3, EDEM2, SURF4, and LGALS9, with mutations/variations have
led to metabolic diseases, bovine osteoporosis, mastitis resistance and bovine respiratory
disease, respectively. These mentioned gene–disease associations were reported earlier
in the literature [64,65,67,70]. Interestingly, lncRNA “LOC788142” was targeted by the
fs-cb-miRs and found expressed in various tissues in cattle, including muscle, liver, and
adipose tissue [107].

Our findings also revealed that fns-cb-miRs target the human genes HMGCS2, PPP2R5C,
LCP2, and GABRA6 involved in more than four pathways such as signaling pathways,
metabolism regulation pathways and a few disease related pathways. The signaling path-
ways are calcium, Glucagon, insulin, AMPK, and PI3k-Aktin. Further, the gene regulatory
network was developed between the targeted genes and fns-cb-miRs. The gene–disease
association study revealed that 22 targeted genes were associated with 17 different diseases.
Here, mostly genes are working as biomarkers in gene–disease-associations. Three genes,
namely, CLEC4G, LCP2, ST8SIA1 are acting as biomarkers in liver carcinoma [51]. Simi-
larly, gene DNTT and UHMk1 are predicted as biomarkers in Schizophrenia. The targeted
genes of fns-cb-mirs of cattle were also studied and we found that nine targeted genes are
involved in forty-four pathways. These pathways were mainly related to signaling, but few
disease-related pathways were also found. Furthermore, four fns-cb-miRs and their respec-
tive targeted genes were associated with several diseases in cattle. Here, dysfunction in the
fns-cb-miR’s targeted gene SCNN1B lead to renal disease in cattle [79]. Thus, the above
findings may pave the way for insights into the role of plant-derived miRNAs in animal
cells. However, wet-lab validation of findings is required for a deeper understanding and
confirmation of the role of plant-derived miRNAs across the animal kingdom.

5. Conclusions

The plant-derived miRNAs are likely to have an expected functional similarity with
the miRNAs of cross-kingdom species like humans and cattle due to the use of plant
parts as their dietary intake. In the present study, we found fs-cb-miRs and fns-cb-miRs
having functional similarity and functional non-similarity with the miRNAs of humans
and cattle through an in silico approach. These fs-cb-miRs were found to target various
genes like LCP2, GABRA6, and MYH14 in humans and ATG2B and DHRS11 in cattle.
Mostly the fs-cb-miRs’ targeted genes of humans were involved in the signaling pathways
like PPAR, Rap1, T cell receptor, Fc epsilon RI, and Retrograde endocannabinoid. The
gene–disease-association in humans showed that targeted genes of fs-cb-miRs like KLHL20,
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BBIP1, and PAPD4 have acted as biomarkers for the diseases such as Alzheimer’s disease,
Bardet-Biedl syndrome 18, and Hepatitis C virus infection, respectively. In cattle, the
targeted genes of fs-cb-miRs are involved in Apoptosis, Necroptosis, Chagas disease and
Hepatitis C. Further, the gene–disease-association showed that mutation/variation in
the genes like EDEM2, ECM1, SURF4, and DHRS11 caused bovine osteoporosis, bovine
hereditary angioneurotic edema, mastitis resistance and bovine viral diarrhea in cattle. In
contrast, fns-cb-miRs’ targeted genes in humans and cattle also showed their involvement
in various pathways and diseases. Genes like NRM, SLC6A6, and PTPRE are involved in
Rheumatoid Arthritis, Myocardial Ischemia and Asthma diseases in humans. In the case
of cattle, genes like TRPA1, RB1 and SCNN1B are predicted to be involved in respiratory
diseases, retinoblastoma and renal diseases, respectively. Thus, our findings reflect the
translation of plant/food derived miRNAs in cross kingdom species and their functional
significance in the gene–disease associations. In the future, these plant-derived miRNAs
may become an alternative to current trend of using synthetic-miRNA-based drugs, which
are time-consuming and expensive compared to the natural miRNA supplements.
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