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Abstract: Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is
a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies
have improved the diagnosis and our understanding of the molecular pathophysiology of HM.
Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion
channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However,
approximately 75% of HM patients are negative for these mutations, indicating there are other genes
involved in disease causation. In this review, we explored our current understanding of the genetics
of HM. The evidence presented herein summarises the current knowledge of the genetics of HM,
which can be expanded further to explain the remaining heritability of this debilitating condition.
Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM
are also discussed in this review.
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1. Introduction

Migraine is a severe, debilitating neurovascular disorder that is significantly influenced
by genetic factors. One prominent clinical feature of migraine is the manifestation of
episodes of reversible focal neurological symptoms, including visual, sensory, or speech
disturbances called aura [1]. The International Headache Society (ICHD-III, 2018) has
classified migraine into two major types based on the existence of aura: migraine with aura
(MA), which is less common type, and migraine without aura (MO) [1].

Hemiplegic migraine (HM) is a very rare and severe subtype of MA that is charac-
terised by the presence of motor weakness in one side of the body, called hemiplegia [2].
HM is an early-onset disorder that affects people during the first or second decade of their
lives [3]. HM often resembles other complex disorders, such as stroke, which may present a
challenge for clinical diagnosis [3,4]. Current research shows that HM is a far less prevalent
subtype of MA that affects ~0.01% of European populations [3,5]. HM is split into two
classes according to whether family history is involved. The first class is familial hemiplegic
migraine (FHM), which can be clinically recognised in patients for whom medical history
consists of the presence of at least one first- or second-degree family member with HM.
FHM tends to follow an autosomal mode of inheritance, and missense mutations have
been robustly implicated in the three known genes, which are CACNA1A, ATP1A2, and
SCN1A [6]. The second class is called sporadic hemiplegic migraine (SHM), which can be
diagnosed in patients for whom family history lacks the presence of HM [7]. Moreover,
SHM can be recognised when de novo mutations exist in the known FHM genes [3,4,8,9].

Genome-wide association studies (GWAS), linkage analysis, positional cloning, and
candidate gene studies have been the central focus of migraine research. However, GWAS
have mainly investigated common variants. Moreover, research in HM has been on single
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nucleotide variants without considering the role of larger structural variations. Innova-
tive strategies, such as using gene-based association testing rather than single-variant
association testing, employing machine learning to reveal genomic patterns that might be
implicated in HM, and investigating the impact of large variations in HM, hold the promise
of revealing the actual genetic makeup of this condition.

In this review, we aim to summarise the current knowledge surrounding the genetics
of HM. Furthermore, we will propose strategies currently absent in the literature on the
genetic architecture of HM, address existing gaps in the literature, and outline future
directions.

1.1. Epidemiology
1.1.1. Prevalence of Migraine, Including HM

There is a substantial economic and health burden associated with migraines. The
prevalence of migraine ranges between 15% and 20% in the general population [10], im-
pacting one billion people globally [11]. According to the World Health Organization,
migraine is considered the sixth most disability-causing disorder worldwide [12] and the
third most debilitating and disability-causing condition among individuals under 50 years
of age [13]. HM, a rare form of migraine, has a prevalence of 0.01% [7]. Adolescents between
12 and 17 experience HM most often [10], with females being affected more frequently than
males [7,14]. The severity and frequency of the HM attacks decrease progressively with
age [3]. FHM is a rare disorder with an estimated low prevalence rate of 0.003% [5,7,15–17];
it follows an autosomal mode of inheritance and is a very rare subtype of MA [3,18]. SHM
is not different regarding rarity as it has a 0.002% prevalence rate [10]. In addition to the
reduced quality of life among members of societies impacted most by migraine, there is
a significant economic burden. In the United States and Europe, the economic burden
of managing migraine cases is more than 19 billion dollars, which is expressed as lost
productivity and indirect medical costs in the United States [11].

1.1.2. Clinical Features

What distinguishes HM from other forms of migraine is the presence of hemiplegia,
which is expressed as weakness or paralysis in one side of the body, involving the loss of
voluntary movement and muscle control [1,2]. However, the underlying mechanism that
initiates the formation of hemiplegia and aura is not fully understood. Common factors,
such as viral infection, physical and emotional stress, and head trauma, have been found
to trigger HM [19,20]. The headache symptom, which often manifests as a result of HM,
occupies different positions, including unilateral, bilateral, ipsilateral, or contralateral to
the side of the weakness [3]. The unilateral weakness is the most common symptom that
accompanies HM attacks and is a fundamental sign in the diagnosis of HM. The unilateral
weakness can switch sides but rarely occurs bilaterally.

Clinicians diagnose MA by confirming the presence of sensory and visual defects
during migraine attacks. The sensory features include numbness, tingling and paraesthesia,
while the visual symptoms involve scintillating scotoma and hemianopia. Other accom-
panying features during the attacks may include seizure, fever, bilateral visual defects,
brainstem aura with vertigo, ataxia, hyperacusia, dysarthria, disturbed consciousness, tin-
nitus, and, in severe cases, coma [3,5,14,21]. In most cases, HM lasts between 20 and 60 min,
but sometimes the aura and weakness occur in an abrupt state resembling an ischaemic-like
event [22]. However, in severe cases, the consciousness defect and hemiplegia may last for
weeks before full recovery occurs [23–26].

The presence of aura and hemiparesis distinguishes FHM, a heritable form of mi-
graine [6]. However, excluding hemiparesis, the clinical features that accompany the aura
in FHM are similar to those of common types of migraine [6]. Most FHM patients experience
the clinical features of both MA and MO [27]. Chronic features, such as progressive ataxia
and gaze-evoked nystagmus, have been reported to be dependent on the gene involved
as they occur in only 60% of FHM type 1 caused by pathogenic variants in CACNA1A
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(FHM1) but rarely in FHM type 2 caused by ATP1A2 variants (FHM2) [3,22,28,29]. Some
patients with HM because of CACNA1A and ATP1A2 mutations have reported developing
mental retardation and cognitive disorder following migraine attacks [30,31]. Moreover,
specific CACNA1A mutations in some children with FHM1 have been linked to cognitive
dysfunction associated with vermian cerebellar atrophy [32].

2. The Genetic Basis of HM
2.1. FHM and the Three Known Genes

The traditional approach to deciphering the complexity of migraine causation involves
studying the genetic makeup of families with heritable migraine phenotypes. The under-
lying assumption in following this approach is that both common and rare monogenic
forms of migraine share the same fundamental genetic mechanism that eventually triggers
migraine attacks in pedigree members. Therefore, studying genetic mutations in heritable
migraine could lead to the discovery of a unifying genetic theory that explains all forms
of migraine.

Linkage analysis identified a higher load of mutations linked to genes involved in
synaptic signalling in the central nervous system (CNS) that differentiate patients with
FHM from those with common forms of migraine [15]. To date, three genes, CACNA1A,
ATP1A2, and SCN1A, have been established to have a causal relationship with FHM. These
three genes are responsible for encoding ion transporters. FHM is, therefore, classified into
FHM1 if mutations occur in the CACNA1A gene, FHM2 if mutations occur in the ATP1A2
gene, and FHM3 if mutations occur in the SCN1A gene [3,33,34]. Although mutations in
the CACNA1A, ATP1A2, and SCN1A genes cause FHM, their occurrence is rare [15,35–37].

Adding to the complexity of understanding the interplay between the human genome
and migraine development is the fact that the involvement of mutations in the three known
FHM genes is not always established in patients with FHM; this supports the speculation
that there might be unknown genes involved in FHM [38]. For example, a recent study
found that genetic variants in the CACNA1I gene might contribute to the aetiology of
HM [39]. A Danish study on FHM revealed that only 14% of the affected individuals had
mutations in the three known genes. In comparison, a large study conducted in Finland
reported mutations in only 9% of 45 families with FHM [5,40]. Studies concluded that the
three known FHM genes account for only 7–14% of FHM cases, supporting the notion that
other loci might be responsible for developing this debilitating condition [5,39,41,42].

From a clinical perspective, distinguishing FHM caused by each of the three implicated
genes is challenging due to overlapping symptoms. Patients with mutations in the three
different FHM genes also differ in presenting phenotypes, even when they have mutations
in the same gene or from one family unit with the same mutations [34,43–45]. These
findings further support the possibility that other genes might be involved in FHM or other
environmental or genetic factors that confound the relationship between the three known
genes and FHM [42]. To understand this complex disorder, mouse models have been used
as an experimental system as they provide a unique gateway into the mechanisms that
underly brain dysfunctions that lead to migraine development.

2.1.1. FHM Due to Mutations in the CACNA1A Gene

The first gene that underlies FHM development is CACNA1A. This gene is located on
chromosome 19p13 and regulates the function of the α subunit of Cav2.1 voltage-gated
calcium channels in the central nervous system [6,33–35]. Cav1.2 channels are primarily
distributed in the nervous system and abundant in most of the brain’s active area [46,47].
These channels serve mainly as triggers for neurotransmitter release in the central synapses
and neuromuscular junction [48,49].

More than 30 mutations in the CACNA1A gene have been identified in patients with
FHM and SHM [3]. Commonly reported mutations in this gene are in the Clinvar database
Table 1. Most of these mutations are missense variants and deletions [50]. Mutations in the
CACNA1A gene account for 50–75% of FHM cases and are suggested to initiate a mecha-



Genes 2024, 15, 443 4 of 32

nism disrupting the function of Cav2.1 channels [35,51,52]. Extensive evidence indicates
that FHM1 mutations result in a gain of function of Cav2.1 channels, leading to abnormal
glutamate neurotransmission and enhanced neuronal hyperexcitability [34,35,53,54]. To
investigate this finding further, researchers suggest that the disruption impacts these chan-
nels’ opening and activation processes, leading the gates of these channels to open easily
under low voltages [46,54]. As a result, the unbalanced excitatory–inhibitory mechanism at
the synaptic level increases susceptibility to cortical spreading depression (CSD) [55,56].
In addition to the theory of CSD, the complexity of the effects of FHM1 mutations on
susceptibility to HM is shaped by other factors. Studies investigating whether sex modifies
the relationship between mutations in the CACNA1A gene and migraine have shown that
female sex hormones enhance susceptibility to CSD [53]. These studies have found that
female hormones contribute to the list of factors that modify the effect of mutations on
different forms of migraine disorders, including HM [34,57].

Table 1. The ClinVar [58] most reported mutations in the CACNA1A gene associated with HM.

Gene Mutation ID Functional Consequences Caused Disorders

CACNA1A R192Q rs121908211
Gain of function, increased calcium influx
and susceptibility to CSD and metabolic
alterations.

Migraine, FHM

S218L rs121908225

Gain of function, increased calcium influx in
the neuro system and led to hyper excitatory
neurotransmitter release in the cortex, and
subsequently elevated susceptibility to CSD

FHM is implicated in epilepsy. HM, SHM,
different types of seizures and cerebellar ataxia

E1015K rs16024
Altered Cav2.1 channels function and have
inactivation properties, leading to a gain of
function

HM, MA

I1512T n/a FHM

R2157G rs554393704 n/a FHM

T501M rs121908240
Gain of function, altered channel
activation/inactivation process and
promoted CSD.

FHM, progressive ataxia and EA2

R583Q rs121908217 Disrupted channel activation/inactivation
process. FHM, SHM, progressive ataxia and EA2

T666M, T665M rs121908212
Gain of function via leading to a reduction
in recovery after inactivation and increased
calcium influx

FHM, SHM, Progressive Cerebellar Ataxia and
cerebellar dysfunction

I1811L n/a Altered P/Q-type calcium currents and
accelerated recovery from inactivation FHM, cerebellar ataxia

V714A rs121908213 Accelerated channel recovery from
inactivation FHM and cerebellar symptoms, including ataxia

D715E rs121908218 Disrupted channel inactivation process and
glutametric release FHM

E2080K rs752513542 n/a SHM

P2479L rs764648125 n/a SHM

H2481Q rs539546830 n/a SHM

Y1384C rs121908219 Loss of function in Cav2.1 FHM, SHM, coma, cerebellar ataxia, and cerebellar
atrophy

I710T n/a n/a FHM has been found to cause epilepsy, cerebral
oedema, fatal coma, and seizure

V713M, V714M n/a n/a FHM, Developmental and epileptic
encephalopathy, EA2

Q1673fs, Q1674fs,
Q1676fs, Q1679fs n/a n/a FHM, Developmental and epileptic

encephalopathy, EA2, Spinocerebellar ataxia type 6

A1507T, A1508T,
A1511T n/a n/a

FHM, Developmental and epileptic
encephalopathy, EA2, Migraine, familial
hemiplegic, Spinocerebellar ataxia type 6
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Table 1. Cont.

Gene Mutation ID Functional Consequences Caused Disorders

K771, K772, K775 n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

V1811I, V1808I,
V1809I, V1814I n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

C281fs n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

R1779, R1780,
R1782, R1785 n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

T1355N, T1356N,
T1359N n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

c.3990-2A>C n/a n/a Migraine, familial hemiplegic

R1667P, R1672P,
R1666P, R1669P n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

F550fs, F551fs n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

E1212, E1211,
E1215 n/a n/a Migraine, familial hemiplegic

T1355N, T1356N,
T1359N n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

V1811I, V1808I,
V1809I, V1814I n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

c.978+1G>C n/a n/a Migraine, familial hemiplegic

L1344P, L1345P,
L1348P n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

V1806A, V1807A,
V1809A, V1812A n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

D1316E, D1317E,
D1320E n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

G700E, G701E n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

c.2017-2034del n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

L617S, L618S n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

S218P n/a n/a
Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

I1707T, I1708T,
I1710T, I1713T n/a n/a

Developmental and epileptic encephalopathy, 52,
EA2, Migraine, familial hemiplegic,
Spinocerebellar ataxia type 6

n/a—not available.
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Mouse models of FHM1 with Ki knock-in (KI) mutations, specifically R192Q and
S218L, revealed increased susceptibility to CSD and change in the balance of excita-
tion/inhibition [56,59–62], alteration in the plasticity of synapsis [63], and change in pain
signalling [64,65]. These two CACNA1A mutations, R192Q and S218L, have been generated
in mouse models [55,66]. The R192Q mutation is often associated with a less severe form
of the disease [67]. In contrast, animals with the S218L mutation often exhibit combined
phenotypes, including seizures and cerebellar ataxia [68], similar to those developed by
patients with FHM1 mutations. These mouse models of FHM1 mutations R192Q and S218L
have shown increased calcium influx in the neuro system, hyperexcitatory neurotransmitter
release in the cortex [18,59,68,69], and increased susceptibility to CSD [55,66,70–72]. Al-
though sex and stress hormones modify the increased susceptibility to CSD in KI mice with
R192Q and S218L mutations [73,74], concerning CSD frequency and severity [68], mice with
R192Q mutations have, additionally, displayed metabolic alterations as a consequence of
CSD initiation [75]. The change in metabolites such as lysine and pipecolic acid signifies an
increase in the GABAergic neurotransmission following excitation as a compensation pro-
cedure [61,75]. Moreover, the consequences of CSD in mice with R192Q mutation extended
to changes in the repertoire of peptides and metabolites in the brain [76]. Studies have
concluded that the R192Q and S218L mutations are associated with gain of function [55,66].
Furthermore, the development of change in the excitation/inhibition balance [56,59,60],
modification to the signalling of pain in the trigeminal nuclei, and alteration in the plasticity
of the synapsis are mainly the consequences of these mutations [63].

2.1.2. FHM Due to Mutations in the ATP1A2 Gene

Another important gene implicated in FHM is ATP1A2. Common mutations associated
with this gene are in Table 2. The ATP1A2 gene is located on chromosome 1q23.2. In
contrast to CACNA1A, which regulates ion channels, ATP1A2 encodes the α2 subunits of
the sodium–potassium ATPases pump [6,36]. The genetic influence of the ATP1A2 gene
involves regulating the work of the α2 subunits of the Na+/K+ ATPase ion transport pump
that underlies the process of electrochemical activity in the central nervous system, heart
and skeletal cell membranes [34,77]. In early ages, the work of the ATP1A2 gene is mainly
related to neurons, but its expression involves glial cells in adulthood.

Table 2. The ClinVar [58] most reported mutations in the ATP1A2 gene associated with HM.

Gene Mutation ID Functional Consequences Caused Disorders

ATP1A2 D178N n/a Loss of function FHM, increased risk of epilepsy and mental
retardation

P979L rs121918615 Loss of function FHM, increased risk of epilepsy and mental
retardation

R1007W rs746795369 Disruption of K+ levels in the CNS FHM and increased susceptibility to epilepsy

R593W rs886039530 Reduced rate of the pump activity FHM

V628M rs1553245659 Reduced rate of the pump activity FHM

W887R rs28933399

Generation of non-functional proteins, disruption
of the level of glutamate taken by glial cells,
decreased clearance of K+ in the synapses and
initiation of CSD

FHM and altered pain responses

T345M n/a Reduced potassium intake FHM

T345A rs121918613 lower affinity for potassium FHM

R689Q rs28933401 Increased potassium intake led to a reduction in the
exchange rate at the cellular level. FHM, benign familial infantile convulsion

M731T rs28933400 Increased potassium intake led to a reduction in the
exchange rate at the cellular level. FHM

G301R rs121918612 Disrupted the level of glutamate taken by glial cells FHM

E700K n/a n/a FHM and coma
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Table 2. Cont.

Gene Mutation ID Functional Consequences Caused Disorders

L764P rs28933398 Generation of non-functional proteins FHM

R383H rs765909830 n/a FHM

E825K n/a Loss of function of the sodium-potassium pump FHM and types of seizures

A606T rs1414742926 Loss of function of the sodium-potassium pump FHM and epileptic seizures

M745I n/a n/a SHM

R879Q rs761597771 n/a SHM

R879W n/a n/a SHM

Y9N rs55858252 n/a SHM

R383H rs765909830 n/a SHM

G615R rs770053423 Complete loss of function of the pump FHM and neurological features

I240fs n/a n/a FHM

P786L n/a n/a FHM

I286fs n/a n/a FHM

S779N n/a n/a Alternating hemiplegia of childhood 1

Y1009 n/a n/a Epilepsy, Familial hemiplegic migraine

R834Q n/a n/a FHM

G366V n/a n/a FHM

C581 n/a n/a FHM

T263M n/a n/a FHM

R1002Q n/a n/a FHM, Migraine, familial hemiplegic

V628M n/a n/a FHM

A606T n/a n/a FHM

G855R n/a n/a FHM

G715R n/a n/a FHM

R421 n/a n/a FHM

R834 n/a n/a FHM

V191M n/a n/a FHM

T376R n/a n/a FHM

T376M n/a n/a FHM

I286T n/a n/a FHM

R548H n/a n/a FHM

P979L n/a n/a FHM

T345A n/a n/a Migraine, familial hemiplegic

G301R n/a n/a Familial hemiplegic migraine

T378N n/a n/a FHM, Alternating hemiplegia of childhood 1

W887R n/a n/a Migraine, familial hemiplegic

L764P n/a n/a Migraine, familial hemiplegic

M731T n/a n/a Migraine, familial hemiplegic

T378N n/a n/a FHM, Alternating hemiplegia of childhood 1

D718N n/a n/a FHM

G855E n/a n/a FHM

R421 n/a n/a FHM

R937H n/a n/a Inborn genetic diseases, FHM

D812H n/a n/a FHM

R1002Q n/a n/a FHM, Migraine, familial hemiplegic
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Table 2. Cont.

Gene Mutation ID Functional Consequences Caused Disorders

T263M n/a n/a FHM

Y1009 n/a n/a Epilepsy, FHM

R937fs n/a n/a Alternating hemiplegia of childhood, Migraine,
familial hemiplegic

I630L n/a n/a Migraine, familial hemiplegic

M829V n/a n/a FHM

T368M n/a n/a FHM

R202W n/a n/a FHM

n/a—not available.

Mutations in the ATP1A2 gene are associated with 20% of FHM cases [36,78–80].
More than 80 genetic mutations exist in the ATP1A2 gene, the most mutated gene causing
FHM [81]. Most of these mutations are missense [34], while the others, classified as dele-
tions, are found in patients with SHM [82]. Mutations in the ATP1A2 gene lead to alteration
in the pump’s sensitivity to potassium intake [83,84], disruption of the potassium/sodium
replacement rate [85], and the production of dysfunctional proteins [77,86,87]. Alteration
in the sensitivity of the pump plays a crucial role in the development of HM. Disruptions
in the pump function lead to clearing the cell membrane of K+ ions by admitting them
into the cell and releasing the Na+ ions outside the cell, creating a Na+ gradient across the
cell membrane necessary to reuptake glutamate [88]. Moreover, in addition to the impact
on the pump’s sensitivity, mutations in this gene disrupt the clearance of glutamate and
potassium and, consequently, increase susceptibility to CSD [89,90].

Mouse models have been generated to study the effects of FHM2 mutations, al-
though few ATP1A2 mutations have been studied for their functional effects [6,91]. Further
supporting the overarching understanding that mutations in FHM genes influence CSD,
mutations in the FHM2 gene are likewise associated with increased susceptibility to CSD
in KI mice [89]. Various mutations in ATP1A2 affect CSD via different mechanisms. The
T345M mutation in ATP1A2 reduced potassium intake, while R689Q and M731T mutations
were associated with increased potassium intake and reduced exchange rate [83,92]. At
the cellular level, the L764P and W887R mutations in ATP1A2 led to the generation of
nonfunctional proteins [18,93]. In addition to generating nonfunctional proteins, the W887R
and G301R mutations disrupted the level of glutamate taken by glial cells [69,89,94] and
induced CSD [55,66,89,95]. W887R mutant mice have shown a decreased K+ and glutamate
clearance level in synapses, leading to an increased chance of CSD [89,90].

Moreover, because of the W887R mutation, behavioural changes concerning pain
responses have also been observed in mice [89]. In heterozygous KI mice with the FHM
ATP1A2 G301R mutation, changes in behaviour involved an increased level of anxiety, fear,
and depression, combined with a decreased level of mobility [94]. Similar to FHM1, sex
plays a crucial role in KI mouse models of FHM2. Abnormal behaviours, which include
features of obsessive-compulsive disorder, have been noticed primarily among female KI
mice with FHM2 mutations [94]. Interestingly, progestin treatment reversed these abnormal
behaviours to the normal state [94]. Heterozygous female mice with FHM2 mutations
showed increased susceptibility to CSD [61,89] due to cortical astrocytes’ low clearance
of K+ and glutamate [90]. It has been suggested that the level of glutamate released in
females is also influenced by the female cycle hormone, possibly explaining the abnormal
behavioural and emotional state in FHM2. It seems that the functional consequences of
FHM2 mutations are numerous. Still, the overarching effect is the loss of normal function
of the potassium–sodium turnover, possibly predicting glial cells’ decreased glutamate and
potassium intake.
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2.1.3. FHM Due to Mutations in the SCN1A Gene

The SCN1A gene is located on chromosome 2q24.3. This gene encodes the α1 subunit
of the neuronal voltage-gated sodium channels. These channels control the production
and propagation of excitation actions in the neuronal cells [49,96]. These channels also
control the permeability of sodium ions of the GABA interneurons of the central nervous
system [97]. Mutations in this gene are mainly missense and account for approximately less
than 5% of FHM families [37,52]. Common mutations in this gene are in Table 3. An autoso-
mal dominant mode of inheritance is how mutations of this gene are expressed [62,98,99].
The complexity of SCN1A mutations is manifested in the mechanism by which they lead to
both gain and loss of function of Nav1.1 channels [100]. Studies have shown that the gain of
function of Nav1.1 channels can lead to elevated excitability of cortical interneurons [47,101],
while the loss of function can lead to the initiation of epilepsy syndrome [102,103]. The
consequence of the gain of function in the neuronal channels is the elevation in the release
of glutamate and susceptibility to CSD [104,105]. SCN1A mutations have been discovered
in both pure FHM families and FHM patients with other disorders, such as epilepsy and
intermittent daily blindness [106,107]. One SCN1A mutation is Q1489K. This mutation was
found in three German families with FHM [37]. Another SCN1A mutation, L1649Q, was
identified in a North American family with FHM [107].

Table 3. The ClinVar [58] most reported mutations in the SCNIA, SLC1A3, and SLC4A4 genes are
associated with HM.

Gene Mutation ID Functional Consequences Caused Disorders

SCN1A L1649Q n/a Associated with a gain of function and increased action
firing in the interneurons FHM

L263V n/a Increased susceptibility to CSD FHM, epilepsy and other seizures

Q1489K n/a
Overall, it causes a gain of function, leading to increased
neuronal excitability and release of neurotransmitters.
Some results showed a loss of function.

FHM

Q1489H n/a n/a FHM and elicited repetitive daily blindness

F1499L n/a n/a FHM and elicited repetitive daily blindness

F1774S n/a The overall gain of function SHM

T1174S n/a
Switch between loss and gain of function, but there is an
overall loss of function impact, deceleration of recovery
from fast inactivation.

FHM and epileptic seizures

L263Q n/a n/a FHM and epileptic seizures

L1624P n/a Gain of function via decreasing fast inactivation predicts
hyperexcitability. FHM

I1498M n/a n/a FHM

F1661L n/a n/a FHM

L1670W n/a Gain of function via modifying the channel gate
properties FHM

R1613G, R1614G,
R1630G, R1631G,
R1642G, R828G

n/a n/a Migraine, familial hemiplegic

L1328P, L1312P,
L1329P, L1340P,
L1311P, L526P

n/a n/a Migraine, familial hemiplegic

L1634S, L1635S,
L1652S, L1663S,
L1651S, L849S

n/a n/a Migraine, familial hemiplegic

N1350I, N564I,
N1349I, N1378I,
N1366I, N1367I

n/a n/a
Migraine, familial hemiplegic 3, Generalized
epilepsy with febrile seizures plus, type 2,
Severe myoclonic epilepsy in infancy

SLC1A3 P290R n/a n/a Episodic ataxia, seizures, and hemiplegia
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Table 3. Cont.

Gene Mutation ID Functional Consequences Caused Disorders

T387P n/a Disruption of the binding of potassium to EAAT1 HM

SLC4A4 S982NfsX4 n/a Loss of function HM

L522P n/a Loss of function due to disruption of synaptic pH SHM and episodic ataxia

n/a—not available.

A recent KI mouse model using the FHM3 human mutation L1649Q has been gener-
ated [108]. This model showed an increased action of neuronal firing in the interneurons
because of the gain of function caused by the L1649Q mutation [61,108]. The Q1489K muta-
tion in this gene has also been suggested to cause a gain of function, leading to increased
neuronal excitability and neurotransmitter release [95]. Additionally, the FHM3 mutation
L263V is associated with spontaneous episodes of CSD [109]. These CSD events involved
the motor and visual systems resembling clinical features reported in humans.

Regarding the responses of mice with mutations in this gene, which are not sig-
nificantly different from other forms of FHM, FHM3 mutant mice displayed increased
susceptibility to more frequent CSD events [108]. In general, heterozygous mice with FHM3
mutations experienced seizures and deaths, with a higher likelihood of epilepsy due to
the low level of sodium intake in the GABAergic inhibitory interneurons. Further data on
FHM3 concerning behavioural changes is of great importance and may be different due
to the effect of FHM3 mutations on the interneurons as opposed to the consequences of
FHM1 and FHM2 mutations [108].

Overall, CACNA1A and ATP1A2 mutations have functional consequences, including
impairments in the cognitive ability of patients and, in some cases, intellectual disability
following multiple attacks [30,31,77,110]. Cognitive dysfunction has been reported in 50%
of children aged 3–18 years [32]. FHM1 gene mutations in Cav2.1 disrupt and consequently
increase glutamate release from the cortical neurons, resulting in CSD propagation. Muta-
tions in the FHM2 gene disrupt the potassium–sodium pump function, reducing potassium
and glutamate uptake. FHM mutations associated with the Nav1.1 sodium channel can
predict in vivo hyperexcitability and neurotransmitter release. It appears that mutations
in the three known FHM genes increase the release of potassium and glutamate in the
synaptic cleft, enhancing the probability of CDS [111].

2.1.4. Other Potential Genes Associated with FHM

Other genes, PRRT2, SLC1A3, and SLC4A4, have been previously implicated in some
HM cases, although their involvement in HM remains controversial. The PRRT2 gene,
discovered in 2012, was proposed as a possible fourth gene for FHM [112,113]. It has been
suggested that the PRRT2 gene could be a potential fourth gene that might be linked to the
development of HM [62,114–116]. Despite frequent findings of mutations in PRRT2 among
HM patients [115,117], accounting for less than 5% [118,119], its role is considered complex.
PRRT2 regulates the neurons’ voltage-gated calcium channels and extracellular glutamate
release [34,120]. Mutations in this gene might lead to an elevated presynaptic vesicle release
and, consequently, hyperexcitability [117]. Another suggestion was made that this gene
has a role in sodium channels, as patients with PRRT2 mutations responded effectively to
carbamazepine, the antiepileptic drug that blocks sodium channels [112,121]. Although the
consideration of PRRT2 as a fourth gene for HM is common knowledge among researchers,
many suggested that the complexity of the mechanism via which PRRT2 influences HM
and the phenotypic heterogeneity seen with PRRT2 mutations forces the hypothesis that it
might be working as a modifying factor [118]. These observations suggest that the PRRT2
gene does not specifically cause HM, and the most likely conclusion is that there might be
other genetic variants involved in the few cases of HM that carry PRRT2 mutations [119].
Therefore, mutations in the PRRT2 gene are unlike mutations in the main three FHM genes
as they may not be enough to cause HM in a Mendelian fashion.
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SLC1A3 is another gene implicated in HM, even though the evidence for its causal
relationship is not definitive. This gene encodes the amino acid transporter EAAT1, which
transmits glutamatergic release in the neurons. Mutations in SLC1A3 were found in HM
patients and can cause episodic ataxia type 6 [122,123]. The missense mutation P290R in
SLC1A3 was discovered in one patient who suffered from episodic ataxia, seizures, and
hemiplegia [122]. Another missense SLC1A3 mutation T387P that disrupted the potassium
binding to EAAT1 has been reported in a patient with HM, leading to the notion that EAAT1
might be implicated in HM. However, this patient’s father had the same mutation without
showing HM symptoms [123]. Currently, evidence for causality predicated on isolated case
reports in which clinical evaluation is not without suspicion appears insignificant [122,123].
Therefore, these findings are insufficient for this gene to be considered an HM gene [122].

SLC4A4 is another gene that may contribute to HM. The SLC4A4 gene is crucial in
encoding the sodium bicarbonate cotransporter NBCe1. Two HM patients were found
to have a SLC4A4 mutation (S982NfsX4), suggesting a potential causal relationship [124].
Common mutations associated with SLC1A3 and SLC4A4 are presented in Table 3.

Furthermore, CACNA1I and CACNA1H may be implicated in HM [39,125]. Patients
with HM have been found to have an increased burden of missense variants in these
two genes, further supporting the hypothesis that the genetic architecture of HM extends
beyond the currently known genetic area for HM.

2.2. SHM

The sporadic form of HM shares the same clinical features as the FHM form, except
for the absence of a family history of HM [2,33]. Approximately 35% of FHM cases are
recognised clinically as manifesting SHM mainly because of the lack of a family history
of HM [7,62]. In addition to the lack of family history with HM, SHM can be recognised
when de novo mutations are present in the known FHM genes [3,4,8,9]. For example, de
novo mutations of the FHM2 gene ATP1A2 are commonly reported in SHM cases [34,77].
A complex inheritance mechanism shaped by a combination of genetic and environmental
factors might explain the initiation of SHM [3,62,126]. Many findings support the under-
standing that other unknown genes might form the genetic foundation of both FHM and
SHM, given that both disorders share similar clinical features [3]. Such a suggestion is
not without a strong basis. A Danish study on SHM found that 92 out of 100 patients
had no mutations in the known FHM genes [127]. A Finnish study did not find FHM
genetic mutations in 201 patients diagnosed with SHM [41]. It appears that a sophisticated
polygenic mechanism involving many genetic variants might be implicated in SHM [4],
and a similar mechanism might likewise explain the development of FHM cases, especially
when there are no mutations in the three FHM known genes [4].

3. Innovative Approaches That Offer the Potential to Explain the Remaining
Heritability of HM
3.1. Learning from the Legacy of GWAS

Fundamentally, two scientific perspectives on the mechanism underlie the relationship
between the frequency of variants and complex diseases. The first perspective suggests
that many variants are rare, with significant effects on the general population, collectively
leading to common diseases [128]. On the contrary, the other view asserts that a small
number of high-frequency variants with small individual effects act together to cause
common diseases [129]. Both are likely relevant to many disorders, including HM.

Genome-wide association studies (GWAS) have significantly contributed to under-
standing the genetic architecture of many traits by revealing many novel and vital associ-
ations [130]. Most associations discovered by GWAS are between common variants and
diseases [131]. These studies have mainly investigated the relationship between disease and
common variants with a minor allele frequency (MAF) greater than 5%, discovering more
than 2000 variants [132]. These variants explained various diseases, including the role of
autophagy in Crohn’s disease [133], predisposition to obesity and the role of the CNS, and
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macular degeneration and ageing [134]. The original hope from GWAS has been that as the
number of common variants significantly associated with complex traits increases, common
variants will cluster, and ultimately, such variants will implicate biological pathways.

However, GWAS, with their focus on variants with frequencies of <1–5%, have only
been able to explain 5–10% of the heritability of disease [135]. GWAS associations did not
explain most of the genetic variance that underlies many complex traits [136,137]. This
suggests that GWAS have failed to cover the genetic spectrum of common variants causing
complex diseases. A counterargument suggests that common variants might tend to spread
broadly if a sufficient number of individuals are genotyped [138]. Therefore, the hope of
GWAS to explain the genetic foundation of complex traits is becoming less realisable.

The remaining heritability may be partly explained by rare, highly penetrant vari-
ants [139]. Variants with MAF of less than 1% are considered rare variants. Suppose we
examine the basis of the evolutionary theory, then deleterious variants, although rare, can
seriously alter protein generation [140,141]. Strong evidence indicates that variants less
frequent in the general population contribute to complex diseases [142,143]. For example,
recent GWAS revealed that rare variants contributed to common migraine [144].

3.2. Exome Studies

Many genome sequencing designs have their strengths and weaknesses. This section
focuses on the importance of whole exome design and discusses the most common rare
variant association tests.

As the cost of whole exome sequencing (WES) technologies becomes more affordable,
the number of whole exome studies is growing. Knowing which variant is relevant to
disease causation in common variant studies has been particularly challenging. However,
identifying true associations could be simplified by focusing on rare variants in functional
genomic regions. The recent development in sequencing techniques combined with the
decrease in sequencing cost has enabled exome studies to focus on rare variants in exonic
regions. Studies including the National Heart, Lung, and Blood Institute (NHLBI) exome
project, the T2D-GENES project, and the UK10K project are all exome studies focused on
rare variants and were successful in enriching the dbSNP database with millions of rare
variants [141,145].

Exome sequencing is a very effective sequencing design that aims to investigate the
1–2% of the human genome that controls protein production [146]. Many disorders with a
Mendelian inheritance pattern have been linked to causal variants discovered by exome
studies. For example, causal variants for Miller syndrome [147], Kabuki syndrome [148],
late-onset Alzheimer’s [149], and low-density lipoprotein cholesterol [150], have been
identified through exome studies. Despite the limitation of missing the noncoding regions
of the human genome, exome studies remain an essential approach for exploring the rare
variant makeup of complex disorders.

3.3. Investigating Large Structural Variations

Although structural variations (SVs) and copy number variations (CNVs) account
for the most variance in the human genome, they remain under-investigated. Replication
studies in the human genome have shown that most genetic variants considered CNVs
reside in genomic regions of at least 1 kb in size [151,152]. Population studies have identified
thousands of SVs in the human genome that are >5 kb [153,154]. Rare gains or losses in
CNVs are responsible for approximately 15% of human neurodevelopmental diseases due
to disruption in the dosage of many genes [155]. Conditions like kidney dysfunction, autism
and congenital heart disease are linked to large CNVs and SVs, either de novo or inherited.
The functional impact of CNVs and SVs ranged from disruption of gene expression, as
is the case of the CHRNA7 gene and migraine, to complex disease development [156].
Unfortunately, these classes of sequence variation have been underrepresented in human
genetic studies at all levels. The potential of expanding our understanding of the human
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genome relies significantly on studying CNVs and SVs, as they play a crucial role in
disease initiation.

3.3.1. CNVs

Individuals typically inherit two copies of the DNA sequence from their parents,
but through poorly understood mechanisms, specific DNA sequences may exhibit CNVs,
becoming one, three, or even more copies. CNVs are an important type of sequence
variation that may or may not involve a gene. Generally, CNVs are defined as a 1 kb genetic
sequence that displays a change in copy number relative to the reference genome. CNVs
are sequence variations, including splicing, deletions, and duplications of segments of the
DNA [156]. The human genome project led to the understanding that genetic materials
have been lost and gained in the human genome. Technological advances, including the
design of sophisticated bioinformatic tools, have made detecting CNVs possible. Common
tools used to detect CNVs are in Table 4.

Table 4. The most used tools for CNV discovery.

Tool Platform Description License Credit Publication

CNVkit Python Detection and visualisation of CNVs.
Mainly for WES data Free The National Institutes of Health [157].

AbsCN-seq R Detection of CNVs in NGS data Free The National Institutes of Health [158].

ABSOLUTE R Detection of CNVs and multiplicity of
mutations in NGS data

Free for non-
commercial use

The National Cancer Institute, the National
Human Genome Research Institute, the National
Institute of Health, National Research Service
Award [159].

aCNViewer Docker, R,
Python

Visualisation of CNVs and loss of
heterozygosity in tumour samples Free Community of developers [160].

Affy6CNV R, Perl, C++ Pipeline for calling CNVs from
Affymetrix genotyping data. Free Community of developers [161].

AluScanCNV2 R Calling CNVs from NGS data Free Private developers, University grants Hong Kong
SAR [162].

CNVcaller Python, Perl Detection of CNVs in large
populations. Free

The National Natural Science Foundation of
China, the National Thousand Youth Talents
Plan [163].

CNVannotator Web-based Annotation of CNVs Free
The National Institutes of Health, the Robert J.
Kleberg, Jr. and Helen C. Kleberg Foundation,
Ingram Professorship Funds [164].

CNValidator Python Evaluation of the correctness of copy
number calls. Free The National Institutes of Health (NIH) [165].

CNV-seq R, Perl Estimation of CNVs, a statistical
approach for CNVs assessment Free National University of Singapore [166].

CNV-RF Perl, R Detection of CNVs in NGS data Free thya0003_at_umn.edu [167].

CNVeM C Detection of CNVs Free The National Toxicology Program and National
Institute of Environmental Health Sciences [168].

CNVer C, C++ Detection of CNVs Free cnver_at_cs.toronto.edu [169].

CNVnator C++ Discovery and characterisation of
CNVs Free The US National Institutes of Health [170]

CNVphaser Perl Detection of CNVs Free for non-
commercial use

Grants-in-Aid for Scientific Research
(jsps.go.jp) [171].

CNVtest R Testing CNVs association based on
log-ratio data of SNP arrays Free The US National Institutes of Health [172].

ExomeCNV R Detection of CNVs and loss of
heterozygosity Free The US National Institutes of Health [173].

exomeCopy R Detection of CNVs from exome data Free European Union’s Seventh Framework
Program [174].

PennCNV2 C++ Detection of CNVs from SNP arrays
and NGS data Free kai_at_openbioinformatics.org [175].
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It has been suggested that many mechanisms underlie the development of CNVs. The
repairment processes include the homology-directed and nonhomologous DNA strands
undergoing meiotic recombination and erroneous replications [176]. However, the relative
contribution of each of these mechanisms to the generation of CNVs is not known.

When the frequency of CNVs is below 1%, they are considered rare; otherwise, they
are common. The relationship between CNVs and disease is not fully understood. How-
ever, many cancers have been linked to either an increase or decrease in the number of
genetic regions involving genes [156]. Large CNVs have been found to cause generalised
epilepsy [177], children’s developmental delays [178], and cardiac defects [179]. Other
disorders, such as brain malformations and different forms of seizures, were also associated
with CNVs [180]. Complex conditions, such as intellectual disability, schizophrenia, and
autism, have been directly linked to CNVs. Changes in the copy number of particular
genes might cause disease if these genes are involved in dose-sensitive functions [181]. For
example, a change in the copy number of the genetic region that involves the CHRNA7 gene
is highly effective in neuropsychiatric diseases with severe consequences [182]. Gains in
copy number have been associated with autism, anxiety and other mental conditions [183].

Interestingly, CNVs have been found to modify the effect of rare mutations on complex
trait development [184]. Moreover, gains and losses in copy numbers have been found
to cause migraines [156]. However, the mechanism was unclear as either the gain or loss
changed the gene dosage and, consequently, its function. The relationship between intronic
and exonic regions of the genome is still complex. CNVs may start outside the exonic
regions but can extend to the gene regions. When copy number gains involve a segment of
a gene sequence, the remaining coding sequence of the gene becomes disrupted. Variants
outside the exonic regions may still impact the process by which genes encode protein.

3.3.2. SVs

SVs involve many sequence alterations, including inversions, translocations, deletions,
insertions, and other rearrangements. Research in SVs and disease has identified many
inverted genomic sequences. The sequence inversion that involved the factor VIII gene has
been found in 40% of individuals with haemophilia [185]. Other inversions that impacted
the emerin gene have been linked to Emery-Dreifuss muscular dystrophy [186]. However,
the overall contribution of inversions, as a type of SVs, to disease in the general population
remains unknown. Another type of SVs is translocations or cryptic rearrangements.

Translocations play a role in developing different phenotypes that range from causing
the Wolf-Hirchhorn syndrome to dysmorphic features [187]. Four SVs are associated with
complex traits: a deletion of 20 kb in size upstream of the Immunity-Related GTPase Family
M (IRGM) gene explained Crohn’s disease [188], another deletion of 45 kb upstream of
the NEGRI gene with body mass index [189]; a 32 kb deletion with psoriasis [190]; and
a 117 kb deletion to with osteoporosis [191]. Although the evidence is not strong that
SVs correlate directly to phenotypic consequences, their influence on gene dosage and
expression and other environmental factors can cause or predispose individuals to genetic
diseases [192,193].

The fundamental approach for detecting SVs and CNVs involves leveraging signatures
that are the outcome of mapping discordance between a sample and the reference genome.
Four main approaches have been the focus of research to detect SVs and CNVs; the read-
pair method investigates the distance and orientation of paired ends, the depth method
for detecting gains and losses in copy number, the split-read method considers whether
alignments cover SV breakpoints, and de novo reassembly of contigs before comparison
with the reference genome [194–196].

Various SV and CNV callers have been developed, including PEMer [197], Break-
Dancer [198], and CNVnator [170], which all depend on at least one of these four ap-
proaches. This, however, limits the detection of SVs and CNVs. Other detection tools,
such as Manta, LUMPY, DELLY, and GenomeSTRiP [199], combine different signatures
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and approaches, thereby improving sensitivity and mitigating issues single-approach
algorithms face.

Another reason not to focus solely on single-variant association tests is that CNVs
have been found to cover large regions of the human genome, including coding sequences.
Single variants will never reveal the extent to which a genomic region is associated with
complex traits. CNVs have been found to alter 12.5% of gene transcripts and disrupt the
coding sequence of 5.5% of mRNAs [176]. For example, one study showed that 32% of all
trait-associated variants fell within regions that contained CNVs [176]. Those variants were
significantly correlated with both CNVs and 22 traits. It has been suggested that common
CNVs (MAF > 5%) could explain some of the remaining heritability that GWAS failed to
decipher in complex traits.

3.4. Rare Variant Association Testing

Association tests performed by GWAS have decreased utility in rare variant investiga-
tions since such tests are primarily designed for common variants with a higher frequency
in the general population. Moreover, single rare-variant association tests are inherently
underpowered due to the challenges of sample size in complex traits. Investigating the role
of rare variants requires a large sample size since such variants have a very low frequency
in the general population. To overcome the limitations of tests used by GWAS, many
attempts have been made to design alternative methods for testing rare variants over the
past few years [200–203].

These alternative methods include collapsing and/or burden tests and distribution-
based analyses. They are also gene- or region-based tests, considering that multiple variants
can be grouped. The premise of collapsing methods is hinged on the idea that a group of
rare variants from different genomic regions can act together to cause a common trait. The
higher the number of variants with criteria such as minor allele frequency below 1% and a
higher impact on protein function in a genomic region, the greater the likelihood that this
region is conducive to disease development.

Collapsing tests typically combine information about genetic variants from various
sites within a predefined genetic region or gene into a single variable. One association test
is the gene-based collapsing test. The idea is that cases and controls are compared for the
relative distribution of a qualifying variant, which is a variant that satisfies the selection
criteria in a certain gene. Each gene is investigated for the number of cases and controls that
carry at least one qualifying variant [204]. Due to the increasing technical ability to deal
with variants that are rare in the population, collapsing methods are gaining importance in
explaining complex traits. Such tests have gained power over the past few decades because
they also increase statistical power [202,205,206].

3.4.1. Single-Variant Association-Based Test

This analysis typically employs a linear regression model to investigate a potential
relationship between a single variant and a trait within a case-control design [207]. Thou-
sands of causative variants have been identified using this approach. Single variant tests
have the potential to uncover rare variants if sample or variant effect sizes are sufficiently
large. One large GWAS study with approximately 8000 individuals identified variants
impacting insulin processing through this testing approach [208]. However, this type of
test remains ineffective in exploring associations between rare variants and traits, as very
large sample sizes or many variants with large effects are required to overcome the lack
of power.

3.4.2. Region- or Gene-Based Tests

In this type of test, aggregated information from multiple variants at different sites is
given one score or weight. The combined information is then tested for association with the
disease of interest. Here, we will focus on the regression-based methods that allow users to
adjust for covariates. Common association tests are presented in Table 5.
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Table 5. Common gene- or genetic region-based association tests.

Gene- or Region-Based Tests

Test Design Strengths Limitations Tools

Burden tests:
ARIEL, CAST, CMC,
MZ, WSS

They all collapse
genetic variants into
single scores

Powerful and accurate when most
variants are causal and have the
same direction of effect

Less powerful when the number
of causal variants is small
and/or some variants increase
disease risk and others decrease
disease risk

EPACTS, GRANVIL,
PLINK/SEQ, RVTESTS,
SCORE-SEQ, SKAT, VAT

Adaptive burden
tests: aSum,
Step-up, EREC test,
VT, KBAC, RBT

Use weights from
the adaptive
burden test.

More robust compared to other
tests that aggregate information,
use predetermined thresholds

Require intense
computational power

EPACTS, KBAC,
PLINK/SEQ, RVTESTS,
SCORE-SEQ, VAT

SKAT, SSU,
C-alpha test

Test variance of
genetic effects

Contrary to burden tests, they are
powerful when the number of
causal variants is small, and most
variants do not have the same
direction of effect as the trait.

They lose power when most
variants are causal and their
effects have the same direction.

EPACTS, PLINK/SEQ,
SCORE-SEQ, SKAT, VAT

Joint tests: SKAT-O,
Fisher method,
MiST

Burden tests are
combined.

Reserve power regardless of the
number of causal variants and the
direction of effect

Power decreases when the
underlying assumption of either
test is true. The Fisher method
requires intense computation.

EPACTS, PLINK/SEQ,
MiST, SKAT

3.4.3. Burden Tests

Many statistical methods that deal with associations between rare variants and traits
have been developed, including the kernel-based approach (kernel-based adaptive cluster
(KBAC)) and the sequence kernel association test (SKAT). SKAT and burden tests are the
most used for their flexibility and ability to maintain high testing power. SKAT, a flexible
and computationally efficient statistical regression model, allows for the adjustment of
covariates. Within a regression model, burden tests assign a single score to combined
information from various variants at various genomic sites, considering factors like MAF,
with variants having a frequency threshold. In this type of analysis, every additional rare
variant increases disease risk [209]. Other tests assume the presence of a common genetic
structure that underlies both common and rare variants in disease causation. One such
method is the combined multivariate and collapsing method (CMC), which is an approach
designed specifically for case-control data. The CMC combines information about common
and rare variants in a single gene or genomic region. This approach, then, assigns a single
score to the aggregated information and tests for association with the trait of interest using
Hoteling’s t-test [205]. The fundamental assumption in burden tests is that all variants
have one direction of effect with the trait [210,211]. These methods are less powerful when
variants have a bidirectional relationship and when there are many non-causal variants.
These methods have been used extensively, proving the importance of considering each rare
variant association testing unique and that more emphasis should be placed on tailoring
study designs to these methods [212].

3.4.4. Variance-Component Tests

Analysing the distribution of the effects of multiple variants within a certain ge-
nomic region is another rare variant association approach. This approach is used by
SKAT [213], the C-alpha test [210], and the sum of the squared score (SSU) test [214]. These
methods have been designed specifically to address the issue of directionality and the
unstable number of causal variants as they use mixed models. However, these tests are
less powerful when genomic regions have more causal variants and/or variants with no
bidirectional effects.

To address potential issues arising from using either the variance-component test or
burden tests, the p values from both approaches can be combined. Derkach et al. [215],
Sun et al. [216], and Lee et al. [211] developed the omnibus test SKAT-O. They combined
both tests using a Fisher statistic model. SKAT-O takes advantage of SKAT and burden tests,
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but such tests lose power when the number of variants associated with the trait of interest is
small [217,218]. As an alternative, the aggregated Cauchy association test (ACAT) takes into
account the small number of causal variants and increases the testing power by combining
and transforming variant p-values to be Cauchy variables [219]. Although SKAT-O is more
powerful than either test, it can be less powerful if the underlying assumption of either
is true.

Overall, the single-variant association methods are less powerful than gene- or region-
based association tests. However, gene- or region-based tests can be weakened when only
a few variants within a genomic region are associated with the trait, when the number
of variants that have no effect is large and when causal variants are infrequent. Another
limitation of the gene-based collapsing approach is the differences in genetic sub-region
tolerance for the presence of missense variants. Studies show that disease-causing variants
often reside within intolerant sub-regions. However, there are two approaches to deal
with this issue. Either collapsing directly on the sub-regions of the genes or including the
missense intolerance as another filter when selecting qualifying variants [220,221].

3.5. Annotation of Sequence Variants

Due to the significant volume of sequencing data generated by high-throughput
platforms, the need to reduce the total number of variants to a functionally relevant subset
is growing. Annotating sequence variants is a crucial process that influences the association
of genetic variants with phenotypic changes. The annotation aims to predict the impact
of sequence variants on gene products and protein function [222–224]. Annotation of
sequence variants depends on the set of transcripts and software used. Three primary
sources of transcripts can be the basis of annotation, including Ensembl [195], RefSeq [196],
and UCSC [225]. The RefSeq dataset is regularly updated to encompass all possible
and observed transcripts and gene models. The Ensembl dataset provides transcript
information, including the CCDs [226,227], Havana [228], Vega [229], Gencode [230], and
the Gencode [231]. Software designed for this purpose is required to annotate variants.

3.6. Annotation Tools

The Annotate Variation Tool (ANNOVAR) and Variant Effect Predictor (VEP) are
among the most widely used annotation tools. Both annotate sequence variants for further
variant prioritisation and filtration. ANNOVAR is a newly developed tool for annotating
single nucleotide variants (SNVs) and short INDELs [232]. This software has been designed
to annotate SNVs and short INDELs so that identifying a subset of variants that impact gene
function the most is easily achievable. ANNOVAR offers gene-, region-, and filter-based
annotations. For gene-based annotations, ANNOVAR can identify the impact of SNVs
and CNVs on protein function. Users can use ANNOVAR to annotate sequence variants
using a gene list from RefSeq, UCSC, ENSEMBL, GENCODE, or AceView genes. For
region-based annotations, ANNOVAR can recognise genomic regions from which sequence
variants have emerged. For example, ANNOVAR can identify conserved regions, predicted
transcription factor binding regions, GWAS hits, DNAse hypersensitivity sites and seg-
mental duplication regions. For filter-based annotation, ANNOVAR can identify sequence
variants reported previously. For example, if sequence variants have been reported in the
dbSNP database, ANNOVAR can recognise such variants. It can also annotate sequence
variants with information from different datasets, including the 1000 Genome Project,
Exome Aggregation Consortium (ExAC), and gnomAD. Moreover, ANNOVAR can predict
functional consequences of sequence variants using SIFT, PolyPhen, LRT, MutationTaster,
MutationAssessor, Fathmm, MetaSVM, MetaLR, GERP++ < 2, or CADD > 10.

VEP is another annotation tool designed and developed by ENSEMBL [233]. It an-
notates sequence variants in coding and non-coding genomic regions. It has been used
by GWAS [234] and other projects such as the 1000 genomes [141], and ExAC [235]. VEP
annotates input variants with information about their impact on protein, transcription,
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and regulatory regions. VEP adds annotations regarding allele frequencies and associated
phenotypes for known sequence variants previously reported.

3.7. Machine Learning

As illustrated above, recent research has focused on rare variants. However, due to
the nature of such investigation, the issue of obtaining large sample sizes is one of the
challenges faced by this type of research. A large sample size is required to maximise the
impact of rare variants on disease or to ascertain whether there are associations between
rare variants and complex traits [236]. As this is often not possible, studies have adopted
modern innovative computational strategies, such as machine learning (ML), to predict
associations and the impact of rare variants on disease [237,238]. It has been suggested that
using machine learning models to explore genetic risk patterns in genomic data derived
from WES while focusing on rare variants would explain more missing heritability [239].

What makes machine learning models more suitable in genotype–phenotype asso-
ciation is their ability to handle small datasets where the number of genetic risk factors
exceeds the number of samples being tested. Traditional statistical testing imposes stringent
calculations, allowing only a few variants to pass. However, the nature of genetic variation
research requires more efficient computation to allow for more complex interactions, as
unpassed variants might confer disease risk [240].

Machine learning can be divided into two main classes, including supervised and
unsupervised models [241]. The supervised approach can be either a regression-based
or tree-based model. Their names drive the design of both classes. Supervised machine
learning models are appropriate when the outcome of interest is known and is the goal
of prediction. In contrast, the unsupervised approach does not require a predetermined
investigative association.

Supervised models are increasingly utilised in the field of genetics, where research aims
to explore genetic patterns that might infer a complex trait. Supervised models can be used
for classification purposes in a case-control setting when the outcome is a binary variable
or for regression formulation when the outcome is a continuous variable. These models
learn from a source of truth or training data where the outcome is known, and associated
predictors are predetermined [242,243]. In contrast to the goal of classical statistical methods
that search for potential associations to explain variation at the population level, supervised
models prioritise explaining variation at the individual level [244–246]. These models have
the power to deal with complex interactions among genetic variants [247,248] that are often
missed by single locus testing [249]. Classical models assume the existence of independent
variants, which often leads to poor prediction power where epistasis effects, gene–gene
interactions, linkage disequilibrium, and nonrandom relationships among variants at
different loci exist; these models lack such assumptions [250,251].

Furthermore, GWAS has employed the polygenic risk scoring (PRS) system to test
for association between a group of potentially causal variants and a trait. This system
does not assume interactions among variants. Unlike the classical approach of exploring
associations between individual variants and complex traits, machine learning considers
the possibility of existing interactions among variants of small effects that usually escape
the statistical significance of conventional statistical methods [252].

Machine learning models, such as random forest (RF) and gradient boosting, allow
for complex interactions [253]. RF has been applied in many studies. Recently, a study
identified interactions among environmental risk predictors for myocardial infarction as a
binary outcome and coronary artery calcification as a quantitative variable [253,254]. In
addition, several SNVs that have a causal relationship with rheumatoid arthritis have been
identified using random forest (RF), Bayesian network analysis (BNA), and artificial neural
networks (ANN) machine learning models. Many SNVs have been found to contribute to
the development of rheumatoid arthritis using these models [255].

Classical tools designed to predict pathogenicity include sorting intolerant from tol-
erant (SIFT) [256], polymorphism phenotyping v2 (PolyPhen2) ref. [223], combined an-
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notation dependent depletion (CADD) [257], and consensus deleteriousness score (CON-
DEL) [258]. Although these tools have advanced the field of differentiating between
disease-causing and benign variants, they are still not powerful enough in their predic-
tions [259].

A fundamental stage that is considered the foundation of most models that achieve
high predictive power in genetic variant association is feature selection and regularisation.
In this stage, the subset of variants that are most predictive of the trait of interest are identi-
fied. Feature selection aims to reduce data dimensionality and exclude variants without
an independent role in prediction [239]. Research has used three feature selection meth-
ods in genetic predictors, including the embedded, wrappers, and filters [243,253,260,261].
Regularisation restricts the number of predictors the predictive model uses by excluding
irrelevant patterns in the training data to avoid overfitting the model.

Studies have adopted penalised regression approaches such as the least absolute
shrinkage and selection operator (lasso) [262] and ridge regression [263] for feature se-
lection. Feature selection is integral to building an effective prediction machine learning
model. Although these approaches control the selection of genetic features that might be
efficiently used in predictive modelling, their usage has been limited. Traditionally, variants
correlated with the disease of interest are selected based on prior knowledge about their
impact [242,243,260,264]. However, recent research emphasises the importance of using
machine learning models to generate a subset of data on features or genetic variants that
might drive disease risk. These methods model the relationship between a group of variants
with different effects sized against the outcome while accounting for interactions. These
methods, however, have not been designed to capture nonlinear interactions between SNVs
and between SNVs and diseases [265]. A study used support vector machines (SVM) and
ridge logistic regression to ascertain variants that might implicate type 1 diabetes. They
used a fivefold cross-validation (CV) process as simple cross-validation may not eliminate
the overfitting and highly optimistic modelling issue and achieved high predictive power
with an area under the curve (AUC = 0.9) [252].

However, machine learning models are not immune to limitations. It is often the
case that these models are prone to overfitting and intensive computation. Predictive
models, by design, rely heavily on the size of the training dataset, the genetic basis of
the trait of interest, and the presence of additional information about individuals, such
as family history [264,266–269]. One challenge in constructing machine learning models
is generating a practical evaluating framework to determine their predictive ability [270].
It must be noted that considering the generalisability of the prediction model on new
datasets and successful passing through the cross-validation process is crucial. Despite the
advances achieved through machine learning in genome-wide data, this practice remains
underrepresented [261,264]. On the contrary, the utilisation of machine learning in other
types of genetic studies, such as genome-wide gene expression profiles, has been extensive.

3.8. Criteria to Be Considered When Selecting Variants within a Case-Control Design

The number of qualifying variants tends to be inflated in older people, necessitating
adjustment for age at sample collection. Moreover, the number of qualifying variants tends
to be inflated in underrepresented populations. Therefore, extra care should be given to
samples derived from under-represented populations for the lack of accurate frequencies
of variants from such samples within their populations. Another important criterion that
should be considered is the impact of variants on protein change. Such variants include
in-frame deletion or insertion (INDELs), missense variants, canonical splice sites and
protein-truncating variants. Many tools have been designed to capture variants, including
CADD, PolyPhen-2, SIFT, REVEL, and PrimateAI.

Matching cases with controls should be addressed. Coverage of sequence should
be harmonised between cases and controls. Moreover, ideally, controls should lack the
disease of interest. The possibility of a high contamination rate should be considered,
and regions with low capture rates or samples with low coverage should be removed.
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Qualifying variants cancel each other when performing ultra-rare association testing, so
one individual from each pair of relatives should be excluded. Ultra-rare variants are very
unique to the sample being tested [271]. MAF should be calculated as an internal measure of
frequency for all cohorts, including cases and controls, to avoid bias. The same filter should
be used to calculate internal MAF and external MAF (gnomAD). The ultimate goal is to
provide evidence of homogeneity between cases and controls [271]. Additionally, to reduce
background variation due to sequencing quality variance, contamination, confounding
factors between cases and controls, and unknown factors, background variation behind
every gene should be minimised to allow true risk variants that are clinically relevant to
manifest in the test.

4. Conclusions

To date, research in the genetics of HM has implicated three main genes in HM, includ-
ing CACNA1A, ATP1A2, and SCN1A. The CACNA1A gene encodes the subunit α1 of the
neuronal voltage-gated Cav2.1 Ca2+ channel, while the SCN1A and ATP1A2 genes encode
the subunits of Nav1.1 Na+ and glial Na+K+ ATPases channels, respectively. Mutations in
the three genes disrupt ion channels and transporters’ functions. The CACNA1A mutations
increase glutamate release due to enhancing calcium influx at the presynaptic level. ATP1A2
mutations disrupt Na+ transport and consequently change the level of synaptic glutamate
SCN1A mutations increase discharge frequency, which in turn elevates the synaptic glu-
tamate level. The mutual consequence of sequence variation in these three genes seems
to enhance the glutamate level at the synaptic cleft of cells. As a result, abnormal intense
and frequent firing by the neurons associated with glutamatergic synapses initiates the
increased susceptibility to CSD, which underlies the formation of migraines with aura. Of
note, the continuing discovery of new causative mutations in and outside the three known
genes could increase our understanding of what distinguishes HM from common forms
of MA.

While GWAS have been the conventional method for exploring the genetic basis of
migraine, there is a growing interest in studying CNVs and SVs due to recent discoveries.
However, few studies have attempted understanding CNVs and SVs [193,272,273]. As
far as we are aware, no studies have extensively examined the role of CNVs and SVs in
migraine forms, including HM and gene-based burden/collapsing in HM research. In
exploring the genetic variation underlying migraine, research has primarily focused on
the effects of SNVs [274]. Consequently, such research must employ a detailed filtration
process to eliminate all possible false-positive variants. This filtration process depends
on datasets containing repositories of SNVs, CNVs, and SVs. Research indicates that, on
average, each individual has over 1000 sequence variations, including CNVs [275].

HM is a debilitating and uncommon disease that CNVs and SVs may cause. Numerous
studies suggest that these sequence variations are rare, but their combined impact is quite
significant. Therefore, failing to consider the role of CNVs and SVs when studying the
genetic basis of a disease like HM will not wholly explain its heritability [136]. Although
next-generation sequencing (NGS) technology can identify these types of sequence varia-
tions at the sequence level, utilising innovative computational methods, such as machine
learning and gene- or genomic region-based association testing within a whole exome
design to investigate their association with the disease, is critical for understanding their
diversity and function in complex traits, including HM.
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