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Abstract: Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as
their related molecular functions and biological machineries in individuals with alcohol dependence.
Alcohol dependence may be one of the most prevailing psychological disorders globally, and its
pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating
significant links between multiple genetic factors and the development of alcohol dependence. In
particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses,
probably including alcohol dependence. In the comprehension of the action of ncRNAs and their
machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of
psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated
expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-
depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development
of a novel treatment against alcohol dependence. In general, a more profound understanding of
the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or
actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date
knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals
with alcohol dependence. Then, we present prospects for future research and therapeutic applications
with a novel concept of the engram system.

Keywords: ncRNA; lncRNA; miRNA; autophagy; gut microbiota; gut-brain axis; alcohol dependence;
alcohol use disorder

1. Introduction

Alcohol dependence, which may include alcohol use disorder and/or alcohol abuse,
is a kind of neuropsychiatric disease which can be described in terms of being unable to
stop drinking without suffering withdrawal symptoms and/or continuing alcohol use in
spite of destructive consequences. The representative symptoms may include habitual
alcohol use, loss of control over drinking, and alcohol withdrawal symptoms [1,2]. Genes
may be responsible for around half of the risk of alcohol dependence [1]. The consequences
are connected with extensive disability as well as substantial medical and/or economic
burdens [3]; for these reasons, alcohol dependence is one of the most widespread mental
illnesses globally [4]. Hereafter, the term alcohol dependence is practically equated with
alcohol addiction, alcohol abuse, alcoholism, and/or alcohol use disorder.

Chronic alcohol exposure produces general neuroadaptations or alterations in gene
expression in individuals [5]. It has been hypothesized that non-coding RNAs (ncRNAs)
may participate in the regulatory network that affects potential molecular targets of certain
signaling pathways that control biological and cellular outcomes, eventually leading to
the incidence and/or progress of alcohol dependence. ncRNAs are bioactive molecules in
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organisms that mediate multiple biological processes including mRNA splicing, the regula-
tion of translation, and/or post-transcriptional modification for altered intracellular signal
transduction [6]. Biotechnological investigations have shown that ncRNAs are typically
abundant in the central nervous system (CNS) and play a key role in emotional homeostasis
as well as the pathological processes of psychiatric diseases via epigenetic mechanisms [7].
ncRNAs have been shown to regulate a variety of ion channels and/or intercellular con-
necting proteins/molecules. Many distinctive sequences of ncRNA may occur within a cell,
which can form a segment of the background of transcriptional machineries [8]. ncRNAs
are the well-designed regulatory gears of gene expression with mixed some groups, which
could be additionally divided into microRNAs (miRNAs), circular RNAs (circRNAs), long
non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs), piwi interacting RNAs
(piRNAs), and so forth [9]. Investigations into the possible roles of these ncRNAs in the
progress of several brain disorders have made, positioning ncRNAs as potential tools
for innovative therapeutic approaches. The dysregulation of circRNAs, miRNAs, and/or
lncRNAs has been detected in human patients with certain psychological disorders, which
might be associated with the inception and/or progress of various psychiatric illnesses,
including alcohol dependence [10] (Figure 1).
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Figure 1. Representation of the association of non-coding RNAs (ncRNAs) and m6A modification
(m6A+) of ncRNAs with psychiatric disorders and/or alcohol dependence. In the beginning, the
m6A modification may be controlled by methyltransferases “writers” and demethylases “erasers”
by the stimulation of inflammation and/or oxidative stress with reactive oxygen species (ROS). The
ncRNAs and m6A-ncRNAs with binding “readers” molecules may contribute to several activities
of RNAs, including sponging, stability, processing, and/or translation of mRNAs, which could be
consequently an important process in several psychiatric disorders, including alcohol dependence.
Note that several important activities of m6A, such as heterochromatin formation via the regulation
of histone methyltransferase, have been partially omitted for clarity.

Epigenetics is a field that studies genetic changes in gene expression that do not in-
clude changing the DNA sequence. The foremost epigenetic mechanisms contain the well-
known regulation by above-mentioned ncRNAs, histone modifications, and DNA/RNA
methylation; the understanding of these epigenetic mechanisms is an area of continuing
investigation. In particular, a diverse range of studies have suggested that ncRNAs may
play an important role in epigenetic control [11]. In addition to genetic variation, various
stressors including psychological stressors and environmental social factors can lead to al-
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cohol dependence via epigenetic modifications at the transcriptional level of RNAs [12–15].
Herein, we summarize recent research developments with the purpose of coming to a better
understanding of ncRNAs/epigenetics and their mechanisms during the pathogenesis of
alcohol dependence, which may contribute to gaining a comprehension of the underlying
mechanisms of alcohol dependence. In turn, this will support the development of improved
tactics against alcohol dependence.

2. Alcohol Dependence and ncRNA

The expression analysis/profile of miRNAs has shown that some miRNAs are ab-
normally expressed in patients with psychological disorders, which may also be involved
in the progression of alcohol dependence through several biological mechanisms. For
example, more than 35 miRNAs including hsa-miR-553 and let-7f are considerably upregu-
lated in individuals with alcohol dependence compared with healthy controls [16]. Plasma
miRNA profiling/analysis has also shown that the plasma concentrations of miR-193b-3p,
miR-122-5p, miR-3937, and miR-4507 are associated with alcohol intake, which might play a
key role in the pathogenesis of alcohol dependence [17]. The miRNA-dependent regulation
of target genes might be also critical for the pathogenesis of alcohol dependence.

Likewise, dysregulated lncRNAs may be found in the brain of individuals with alcohol
dependence; this dysregulation may contribute to the abnormal production of brain-derived
neurotrophic growth factor (BDNF) in individuals with alcohol dependence [18]. The
expression of several lncRNAs including SNORD3C, HSPA7, and RP11-543H23.2 has been
aberrantly detected in different brain regions of patients with alcohol dependence. Some
lncRNAs including NCRNA-00051 or 00176 and 00107 are also more highly expressed
in the prefrontal cortex of individuals with alcohol dependence compared with healthy
controls. These lncRNAs may be related to the dysfunction of splicing factors by regulating
some post-transcriptional processes [19]. There are more than a few lncRNAs which are
significantly decreased in individuals with alcohol dependence [20].

Furthermore, an accumulating quantity of research has also emphasized the view
that circRNAs may be diagnostic markers for alcohol dependence. The expression levels
of serum hsa-circ-0004771 in patients with alcohol dependence are considerably higher
than those in normal controls. Therefore, hsa-circ-0004771 could be a diagnostic biomarker.
Differently expressed circRNAs may interact with various alcohol dependence-related miR-
NAs, which could influence several inflammatory pathways [21]. For example, miR-1200
and/or circRNA-406742 can meaningfully interact with various mRNAs associated with
neuronal functioning, psychiatric disorders, and/or alcohol addiction [21,22]. Interestingly,
the decreased expression of circRNA-406742 can be found in patients with alcohol depen-
dence, which is negatively correlated with the expression of miR-1200 [21]. CircRNAs may
function as a sponge of miRNAs to affect the function of neurons through the regulation of
several target genes.

In these ways, a large body of research, which was conducted using biotechnological
approaches, has emphasized the critical roles of several ncRNAs in the pathophysiology
of mental illnesses and alcohol dependence [7,23]. About 10% of miRNAs are downregu-
lated in alcoholism, including miR-126, miR-153, miR-432, and miR-567, suggesting that
GABA and/or dopamine-related miRNAs are upregulated in alcoholism [23]. Unlike the
relatively stable genetic code, this combinatorial ncRNAs’ epigenetic code may be vigor-
ously reprogrammed as a cause or consequence of psychiatric disorders and/or alcohol
dependence [24]. From normal development and physiology to the regulation of diseases
including alcoholism and/or several psychiatric disorders, some ncRNA molecules have
been discovered to mediate diverse processes in the CNS [5,25]. For example, ncRNAs may
be developed as therapeutic agents to protect the blood–brain barrier of patients with CNS
damage [25].
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3. Alcohol Dependence and m6A Modification of RNAs

Alterations in the epitranscriptome could authenticate its investigation as an impera-
tive modulator. The epitranscriptome encompasses all post-transcriptional modifications
that occur on RNAs. The most prevalent modification is the methylation of N6 adeno-
sine (m6A) that occurs on specific sequence contexts of RNAs [26], which can change
the function and/or regulation of their RNA targets. Environmental factors including
anxiety, stress, and/or social pressure could lead to alcohol dependence through chromatin
remodeling and/or epigenetic regulation. Some of these environmental factors could also
lead to epigenetic modifications within post-transcriptional levels. The m6A modification
is the most well-known modification of RNAs, which could control transcript stability,
splicing, translation, and the association with ncRNAs. [27]. Continuing ethanol exposure
may alter the methylation levels of RNAs, mRNA methylation, and/or expression levels of
mRNAs, suggesting a potential epitranscriptomic mechanism by which continuing alcohol
consumption may remodel the expression of interrelated alcohol-responsive genes, thus
enhancing the risk of developing alcohol dependence [28]. Strikingly, in the postmortem
amygdala of patients with early onset alcohol dependence, brain-derived neurotrophic
factor (BDNF)-antisense lncRNA is hypomethylated, leading to decreased expression levels
of BNDF [29]. In the context of alcohol intoxication, the upregulation of the lncRNA could
ameliorate BDNF expression, in which BDNF-AS seems to be regulated by diminished
levels of m6A [29]. BDNF is a member of the neurotrophin family, with well-known roles
in neural development and synaptic plasticity. Therefore, lncRNAs play significant roles in
the regulation of BDNF expression [30].

The m6A modification is a ubiquitous mRNA modification in eukaryotes, which
occurs through the action of methyltransferases, demethylases, and methylation-binding
proteins. The m6A methylation of RNAs is associated with various neurological disorders
including depression, epilepsy, Parkinson’s disease, Alzheimer’s disease, brain injury, and
brain gliomas. In addition, it has been shown that RNA m6A modification may play key
roles for regulating chromatin states and gene expression, which might be involved in many
important biological processes in health and disease [31]. Therefore, m6A-related drugs
have received increasing attention in the therapeutic treatment of neurological disorders.
A number of signaling pathways in brain have been found to be mediated through m6A,
but only a few studies have directly investigated the effects of m6A on depression and/or
depressive-like behaviors. Depression is a common psychiatric disorder described by
continued low mood, which may be associated with m6A methylation. Therefore, the
m6A-related molecules including METTL3, METTL14, ALKBH5, and WTAP are associated
with major depression [32]. In addition, the gene expression level of m6A controllers has
been associated with depressive-like behaviors [33]. Interestingly, it has been reported that
the regulation of m6A is compromised in major depressive disorder patients following
glucocorticoid receptor stimulation [27,34].

Related proteins of m6A modification could play key roles in the development of vari-
ous neuropsychiatric disorders including depression, Parkinson’s disease, and Alzheimer’s
disease. The m6A modification regulation mechanism in the CNS during the development
of neuropsychiatric disorders may provide some insight into new research targets and
treatment directions [35]. Similarly, the disruption of m6A modification may be one of the
most important causes for the abnormal function of the CNS, leading to the occurrence of
CNS disorders such as depression [36]. Drinking too much alcohol may lead to neuronal
atrophy, which is associated with an increased risk for anxiety, depression, cognitive deficits,
and the altered regulation of drinking behaviors [37]. In addition, chronic stress, anxiety,
and depression may be key risk factors for developing alcohol dependence [38]. In fact,
depression is often comorbid with alcohol dependence with severe stress components [39]
(Figure 1).
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4. Individual Epigenetic Mechanisms for Alcohol Dependency

There is a huge body of evidence showing that alcohol can alter gene expression
through epigenetic processes [40]. Epigenetic mechanisms, such as the acetylation of the
N-terminal tails of histones that pack up DNAs to nucleosomal remodeling, could cause
transcriptional change in addiction, which may direct related genes in specific brain regions
to contribute to the production of helpful phenotypes associated with alcohol tolerance.
Studies that use alcohol withdrawal to induce depressive-like behaviors have adopted
different routes and intervals of alcohol exposure and withdrawal. However, a relationship
might exist between the individual sensitivity to the aversive properties of ethanol and
the risk for alcohol dependency. An important confusing factor to deliberate about is
that the molecular changes induced by alcohol consumption itself and withdrawal from
habitual alcohol use may not be related to depressive-like behaviors. Therefore, it might be
important to establish a causal role for specific epigenetic mechanisms and alterations of
gene expression explicitly induced by alcohol in depressive-like conditions [41]. Epigenetic
mechanisms may also play an imperative role in depression [42]. Analytical methods
of genome-wide DNA methylation and histone modification profiles have delivered re-
spected information to establish the functional role of histone modification on specific
genes [43]. Alcohol dependency may actively lead to relaxed chromatin due to the down-
regulation of DNA/histone methylation. Otherwise, chronic exposure might in part lead
to a close-fitting chromatin bundle. Consequently, alcohol drinking may affect epigenetic
mechanisms responsible for adaptation alterations of several brain paths probably linked
to stress management [44]. After withdrawal, chromatin may tend to the condensed state
via the upregulation of DNA and/or histones [45]. For example, mRNA expression levels
are significantly lower compared to controls, which correspond to alterations in DNA
methylation in a rodent model [46]. Therefore, DNA methylation might be a target for
pharmacological interventions for alcohol dependency [46]. In addition, DNA methyla-
tion could be a good biomarker of alcohol consumption [47]. Exposure to ethanol during
adolescence might upregulate DNA methyltransferase activity, which can induce the hyper-
methylation of various genes such as those responsible for coding neuropeptide Y (NPY)
and BDNF [48]. Furthermore, prenatal exposure to alcohol may generally trigger epige-
netic modifications depending on the development stage, which may contain increased
histone acetylation and/or reduced DNA/histone methylation [49]. In this regard, alcohol
withdrawal may lead to dysregulated histone acetylation via the increased expression
of histone deacetylase (HDAC) in some brain areas [50]. Hence, treatment with HDAC
inhibitors can amend negative emotional conditions induced by alcohol withdrawal [50].
However, histone acetylation in the brain of patients exhibiting depression-like behavior
during withdrawal after alcohol exposure may require further intensive examination.

5. Connection between Gut Microbiota and Alcohol Dependency

The gut microbiota has various effects on host physiology, including host metabolism,
the development of the immune system, and even behaviors [51]. The complex interplay
between the gut, stress, and eating/drinking behavior may facilitate new therapeutic
targets for stress-related psychiatric disorders [51]. Remarkably, short-chain fatty acids
(SCFAs), namely acetate, propionate, and butyrate, might be mediators of microbiota–gut–
brain interactions on the stress response and/or eating/drinking behavior. In fact, various
metabolites from the gut microbiome including SCFAs have been proved to regulate the
histone acetylation process [52]. The microbiota–gut–brain axis is a bidirectional route
of homeostatic communication via epigenetic mechanisms of diverse metabolites such as
SCFAs. Thus, a modulation of the gut microbiota via diet or lifestyle can regulate neu-
ron/brain inflammation via certain epigenetic mechanisms [53], which might be effective
for enhancing emotional well-being and/or treating depressive disorders [54]. As impor-
tant constituents of epigenetics by gut microbial metabolites and/or fermentation products,
several miRNAs with epigenetic mechanisms have vital roles in various physiological
homeostasis mechanisms [55,56]. For example, microbial acetate and/or butyrate might
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alleviate obesity with the regulation of host miRNAs [57]. In addition, there were close
intricate interactions between gut microbiota, inflammation, and differential miRNAs,
suggesting that ncRNAs may possess a potential role in the protection of the host against
life-related diseases such as atherosclerosis [58]. Interestingly, it has been shown that
circRNAs and the gut microbiome can interact to influence the growth of cancer cells [59].
Similarly, the expression of lncRNAs could be repressed by gut microbiota [60]. Increasing
data may indicate that regulatory ncRNAs including miRNAs, circRNAs, and lncRNAs can
influence the host–microta connection; these data show that regulatory ncRNAs may be po-
tential biomarkers in microbiome-associated disorders including diabetes and cancers [61]
(Figure 2).
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Figure 2. Schematic diagram of the possible strategies against the pathology of alcohol dependence.
Several kinds of probiotics and/or fecal microbiota transplantation (FMT) may assist with the
alteration of gut microbiota for the modification of autophagy, which may be advantageous for
the inhibition of several engram formations, which may consequently improve the pathology of
psychiatric disorders including alcohol dependence. Note that some of the significant activities such
as autophagy initiation, inflammatory response, and ROS production have been omitted for clarity.

In addition, the gut microbiota has an effect on host m6A mRNA modifications, which
is another demonstration of the interaction between gut commensal bacteria and their
hosts [62]. As well, the host m6A modification can also influence the gut microbiome
by provoking gut inflammatory responses [63]. Possibly, Lactobacillus plantarum and/or
Akkermansia muciniphila can influence the specific m6A modifications, which might empha-
size epitranscriptomic modifications as a form of communication between gut commensal
bacteria and the host [62,64]. The presence of a certain gut microbiome may also account
for the significantly elevated m6A levels in the intestine [65]. Thus, m6A methylation is
indeed involved in the host–gut microbiota crosstalk. On the one hand, substantial studies
have suggested that the enteric microbiome is a key mediator of m6A modification. In
general, a number of ncRNAs and/or m6A modification have been implicated in the onset
and progression of drug addiction [66,67]. Therefore, the gut–brain axis may be the key
to the homeostasis of the CNS, which may regulate several neuro-behaviors [68]. The gut
microbiome could also affect drug bioavailability, blood–brain barrier (BBB) permeability,
and social behaviors [69]. Developing microbiota-based interventions such as prebiotics,
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probiotics, FMT, or metabolite supplementation might be an exciting tactic for treating
psychiatric disorders, probably including alcohol dependency.

6. A Possible Tactic with Alteration of Gut Microbiota against Alcohol Dependency

Too much alcohol consumption may induce gut dysbiosis, an imbalance in gut micro-
biota, through several mechanisms. Consequently, chronic alcohol exposure can reduce the
production of mucus and several peptides, which may intrude the intestinal barrier [70].
In addition, alcohol consumption frequency could be a robust factor for the change of gut
microbiota [71]. Although pharmacological treatments exist, their effectiveness depends
on the appropriate faithfulness to the prescribed regimen. Therefore, most patients with
alcohol dependency are left untreated, and there is a need for additional, more effective
therapies. Identifying some biological markers that predict the susceptibility to developing
extreme alcohol-consumption behaviors may lead to an enhancement of good clinical care.
Interestingly, relationships between gut microbiota and the behavioral characteristics of
alcohol dependency have been described [72]. A specific microbiota composition is linked
to addiction behaviors in a realistic model of alcohol dependency [72]. Based on these
findings, newfangled therapeutic regimens should embrace gut microbiome manipulation,
which may lessen alcohol intake and/or drinking activities. Indeed, alcohol consumption
produces both direct and indirect consequences for the gut microbiota via metabolism, neu-
ronal response, and immune inflammatory cascades. In particular, chronic inflammatory
conditions may lead to alterations in several inflammatory mediators that can activate the
nuclear factor kappa B (NF-kB) signaling pathway, leading to neuronal damage/apoptosis
in glial and/or neuronal cells [73]. It is important to note that not all patients with alcohol
dependency have dysbiosis and/or increased gut epithelial disruption [74]. However,
several effects of alcohol on the gut microbiome might contribute to increased alcohol
consumption. Therefore, the use of probiotics, prebiotics, or FMT may deserve further
investigation as therapeutic tactics for alcohol dependency [74]. At present, however,
the application of FMT as a therapeutic approach is still in the investigatory stages [74].
Stool donor-to-recipient disease transfer is a great concern of FMT. Furthermore, the long-
term effect of FMT on the gut microbiota and the brain still needs to be determined. [75]
(Figure 2).

Interestingly, an antidepressant, arketamine (also termed R-ketamine), may restore
the altered composition of gut microbiota of rodents with depression-like behaviors, in-
dicating the beneficial effects of R-ketamine. Ketamine is a racemic mixture composed
of two enantiomers, R-ketamine and esketamine (S-ketamine). Both enantiomers have
exhibited antidepressant effects, whose effects are attributed to distinct pharmacologi-
cal activities including the NMDA-channel and/or opioid receptor. It has been shown
that antidepressant-like effects of both ketamines might be partly mediated by the al-
teration of gut microbiota [76]. Ketamine could potentially activate several biochemical
signaling pathways, which may eventually lead to the inhibitory phosphorylation of the
GSK3β molecule in microglia [77]. Remarkably, S-ketamine exerts neuroprotective ef-
fects via enhancing autophagy and lessening oxidative stress; the mechanism comprises
AMPK/mTOR-dependent autophagy and/or the antioxidant system [78]. Amazingly, S-
ketamine significantly altered the abundance of intestinal microbiota including Adlercreutzia
equolifaciens and Akkermansia muciniphila [79]. It has been revealed that the regulation of
NFAT signaling by miR-149 might play a role in the tenacious prophylactic effects of R-
ketamine in inflammation, and that gut microbiota can regulate the gene expression of
miRNAs via the gut–brain axis [80]. Increased miR-149 expression may be related to the
reduced glial cell numbers in patients diagnosed with familial bipolar disorder [81]. Be-
cause miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression
is also consistent with the pathology of depressive disorders [82]. However, there are rarely
reports showing the role of other miRNAs or m6A modification on the prophylactic effects
of ketamine and its enantiomers in brain neuroinflammation disorders.
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7. Future Perspectives

It might be a great risk to use ketamine for improving alcohol dependence. In general,
the use of both esketamine and racemic ketamine can lead to adverse events. In addition, it
would be difficult to state whether ketamine abuse or alcohol abuse is more harmful. Based
on the hypothesis that ketamine may improve alcohol dependency via the mechanism of
improving autophagy in neuronal cells, dietary interventions would be possible for the
treatment of alcohol dependency. This is because the modification of the gut microbiome
is safely imaginable via dietary changes, which could also contribute to the alteration of
ncRNA production and/or m6A modification in various cells [83,84]. In fact, some dietary
supplements are acting through different mechanisms to reduce alcohol relapse [85]. As for
prebiotics and/or probiotics, those interventions may be somewhat inadequate for treat-
ment in regard to the improvement by autophagy [86,87]. Some additional factors and/or
signaling activation might be required for improved dietary interventions, even against
alcohol dependency. In addition to modulating the gut microbiome, for example, met-
formin could exert its advantageous effect by influencing mitochondrial function and/or
renovating redox balance [88]. Moreover, several modules involved in the tryptophan and
kynurenine pathway may also be plausible for the dietary intervention, which has been
shown to be linked to various immune-related diseases including major depressive and/or
bipolar disorders [89]. In short, formed by recurring inflammatory conditions, an “engram”
might be devoted to a gentle development of these diseases [89]. In the brain, the engram
memory system could retain the information of a certain inflammation in the body, which
may be crucially involved in the pathogenesis of immune-related diseases, in which several
immunity-linked processes might be associated with certain neuronal responses to memory
engrams [90]. Therefore, forgetting or emptying the bad memory of “engrams” could be
promising for the prevention and/or treatment against immune-related diseases, as well
as cancer, cardiac arrhythmia, and/or neurodegenerative diseases [83,91,92] (Figure 3). If
that is the case with alcohol dependence, a certain adjustment of the “engram” through
the alteration of the gut microbiota might be helpful as a notable treatment tactic against
alcohol dependence. Future work should precisely explain how this engram pathway could
interfere with the progression of alcohol dependency at the molecular level (Figure 3).
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major depressive disorder, cardiovascular diseases, chronic kidney disease, acute kidney injury,
inflammatory bowel disease, and alcohol dependence. The gut–brain axis, with the utilization of ncR-
NAs, m6A modification, and/or short chain fatty acids (SCFAs), may contribute to the pathogenesis
of immune-related disorders via the construction of several “engrams” in the brain. Inflammation
with reactive oxygen species (ROS) might be also involved in the pathway for the alteration of
immune cells. Note that several significant activities such as anti-inflammatory reactions and/or
cytokine induction have been absent for clarity. “?” means for author speculation.

8. Conclusions

Several ncRNAs and/or m6A modification may be involved in the instigation of
alcohol dependency, and the relationship between the gut and brain can play an important
role. In addition, the connection between the brain and immunity might also influence
the development of alcohol dependency. An in-depth knowledge of the roles of ncRNAs
and m6A in the gut microbiome may be valuable for the development of a novel treatment
against alcohol dependence.
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