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Abstract: The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial
in helping plants adapt to environmental changes and promoting their growth and development.
Despite research on the HD-Zip family in various plants, studies in Lagerstroemia (crape myrtle) have
not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip
gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of Lagerstroemia
indica, designated as LinHDZ1-LinHDZ52. These genes were distributed across 22 chromosomes
and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene
structures and motifs within each cluster were conserved. Analysis of protein properties, gene
structure, conserved motifs, and cis-acting regulatory elements revealed diverse roles of LinHDZs in
various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot
apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that
2 LinHDZs (LinHDZ24 and LinHDZ14) and 2 LinHDZs (LinHDZ9 and LinHDZ35) were respectively
upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf
crape myrtles, which suggested the important roles of these genes in regulate the shoot development
of Lagerstroemia. In addition, the expression levels of 2 LinHDZs (LinHDZ23 and LinHDZ34) were
significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes
were identified as key candidates for regulating Lagerstroemia plant height. This study enhanced the
understanding of the functions of HD-Zip family members in the growth and development processes
of woody plants and provided a theoretical basis for further studies on the molecular mechanisms
underlying Lagerstroemia plant height.

Keywords: gene expression; HD-Zip gene family; Lagerstroemia indica; plant height

1. Introduction

Transcription factors (TFs) play crucial roles in various aspects of plant growth [1],
development [2], cell cycle and cell metabolism [3], and stress response [4]. One important
TF family is the HD-Zip transcription factor family, which contains two highly conserved
domains: the homeobox domain (HD) and the leucine zipper (LZ). This TF family is plant-
specific [5]. The HD domain is a conserved motif comprising approximately 60 amino acid
sequences, which fold to form a triple-helix DNA structure responsible for DNA binding [6].
The LZ domain mediates protein dimerization [3]. Based on the presence of conserved
domains, functional characteristics, and motifs, the HD-Zip family can be classified into
four subfamilies: HD-Zip I, II, III, and IV [7].
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The protein structure of the HD-Zip I subfamily is relatively simple, comprising only
the HD and LZ domains. Besides these domains, the HD-Zip II subfamily also possesses
a conserved Cys, Pro, Ser, Cys, and Glu (CPSCE) motif, located adjacent to the LZ in the
C-terminal direction [8]. Both the HD-Zip III and IV subfamilies contain START and SAD
domains [9]. However, compared with the HD-Zip IV subfamily, proteins in the HD-Zip III
subfamily have an additional methionine-glutamic acid-lysine-histidine-leucine-alanine
(MEKHLA) domain at the C-terminus [10].

The HD-Zip gene family plays a crucial role in plant growth and development, with
members of the same subfamily generally exhibiting similar gene functions and involve-
ment in biological processes. HD-Zip I members are mainly associated with responses
to abiotic stresses [11]. For instance, it has been reported that the expression of LlHOX6
and LlHB16, members of the HD-Zip I subfamily, influences plant heat tolerance [12,13].
Additionally, Tang et al. revealed that the ectopic expression of JcHDZ21, a member of
HD-Zip I, reduced the tolerance to salt stress in Arabidopsis [14]. Conversely, the expression
of MdHB7 enhanced the salt tolerance in apple plants [15]. HD-Zip II proteins mainly
played essential roles in the auxin signal transduction pathway [16], organogenesis, and
photosynthetic processes [17,18]. The overexpression of HD-Zip II gene ATHB2 reduced
auxin response and affected leaf development in Arabidopsis [19]. Sasake et al. reported
that EcHB1 belonging to the HD-Zip II subfamily increased photosynthesis and drought
tolerance [20]. HD-Zip III was involved in various development processes, including shoot
apical meristem development, vascular development, and regulation of plant stems and
leaf polarity [21,22]. PtrHB4, a member of the HD-Zip III subfamily, affected the develop-
ment of vascular cambium by regulating auxin signaling in poplar [23]. The HD-Zip III
activator ZIC2 promoted Arabidopsis shoot regeneration by limiting auxin transport [24].
HD-Zip IV genes were reported to play essential roles in regulating multiple physiological
processes in plants, such as stomata, trichome, epidermis, and root hair development [19],
as well as anthocyanin metabolism, trichome modeling, synthesis and transport of lipids,
and protection of plants against biotic and abiotic stresses [25]. For instance, the HD-Zip IV
gene Roc8 was reported to regulate rice bulliform cell size and lignin content [26]. OCL4 ex-
pression inhibited the development of maize epidermal hair and also affected cell division
and differentiation to varying degrees [27].

Crape myrtle is a valuable ornamental plant with diverse plant types, abundant
flowers, and a long blooming period [28]. The various plant types of crape myrtles cater to
different landscaping needs. However, the molecular regulatory mechanisms governing
plant types in L. indica remain unclear. Previous studies have identified internode length as
a key factor affecting the Lagerstroemia plant height. Internode length is determined by cell
division in the shoot apical meristem (SAM) and cell elongation in shoot segments. Studies
have revealed that auxin and gibberellin are the primary hormones regulating internode
length in crape myrtle [29–31]. Although the crucial roles of the HD-Zip family in auxin
signal transduction and SAM development are increasingly recognized [12,32–34], their
specific roles in Lagerstroemia have not yet been investigated.

This study involved an analysis of the HD-Zip gene family in Lagerstroemia, resulting in
the identification of 52 HD-Zip genes within the genome of L. indica. Various aspects of these
genes were investigated, including their chromosome location, protein physicochemical
properties, gene structure, conserved domains, phylogenetic relationships, and the steady-
state element of the HD-Zip gene family of Lagerstroemia. Additionally, the expression
patterns of the 52 LinHDZs were examined across six tissues of non-dwarf and dwarf
crape myrtles using transcriptome analysis (data not yet published). Further, a subset of
12 genes was selected for validation based on transcriptome data. These findings provide a
theoretical basis for further exploration of the regulatory mechanisms of the HD-Zip family
in controlling the plant height of crape myrtles.
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2. Materials and Methods
2.1. Identification of HD-Zip Gene in L. indica

The genome database of L. indica was downloaded from CNCB (https://ngdc.cncb.
ac.cn/gwh/Assembly/65978/show, access date: 5 December 2023) [35]. Representative
domains of the HD-Zip gene family (PF00046 and PF02183) were acquired from the PFAM
database (https://pfam.xfam.org/, access date: 5 December 2023) and used as queries. A
preliminary search of the crape myrtle genome was conducted using the HMMER 3.0 tool,
followed by manual removal of redundancy. Additionally, HD-Zip protein sequences of
Populus trichocarpa were obtained from PlantTFDB (http://planttfdb.gao-lab.org/, access
date: 5 December 2023). Those of Oryza sativa were obtained from NCBI (https://www.
ncbi.nlm.nih.gov/, access date: 5 December 2023). Those of Arabidopsis thaliana were
obtained from TAIR (https://www.arabidopsis.org/, access date: 5 December 2023). These
protein sequences were further analyzed and validated using SMART (http://smart.embl-
heidelberg.de/, access date: 7 December 2023) and CD-search (https://www.ncbi.nlm.nih.
gov/cdd, access date: 7 December 2023) software to remove candidate sequences with
mismatches or incomplete domains, resulting in the identification of putative LinHDZs in
L. indica.

2.2. Analysis of Physicochemical Properties of HD-Zip Proteins in L. indica

The physical and chemical properties, such as relative molecular mass, theoretical
isoelectric point, and number of amino acids of HD-Zip proteins, were predicted using
TBtools software (version 2.052) [36]. The subcellular localization of the L. indica HD-Zip
proteins was determined using the online tool Cello (http://cello.life.nctu.edu.tw/, access
date: 7 December 2023).

2.3. Chromosome Localization Analysis of LinHDZ Genes

The chromosome distribution of the selected LinHDZ genes was predicted with Gene
Location Visualize from GTF/GFF function of TBtools software.

2.4. Phylogenetic Tree Analysis of HD-Zip Genes in L. indica

A. thaliana, O. sativa, and P. trichocarpa were chosen as outgroup species, and the
selected LinHDZ genes were used as the predicted population. Multiple sequence align-
ment analysis was performed using the ClustalW function of MEGA 6.0 software. The
phylogenetic tree was constructed using the maximum likelihood method with the Jones–
Taylor–Thornton (JTT) amino acid substitution model, and the bootstrap value was set to
1000 iterations [37]. The resulting phylogenetic tree was visually enhanced using iTOL
(https://itol.embl.de, access date: 16 December 2023). The HD-Zip proteins used are
presented in Table 1.

Table 1. Characteristics of HD-Zip gene family members in Lagerstroemia indica.

Sequence ID Protein
(aa)

MW
(kDa) pI Instability

Index
Aliphatic

Index GRAVY Subcellular
Localization

LinHDZ1 294 32.149 8.95 59.52 60.14 −0.94 Nuclear
LinHDZ2 304 34.653 5.31 59.16 64.14 −0.916 Nuclear
LinHDZ3 252 28.699 4.88 75.1 66.98 −0.812 Nuclear
LinHDZ4 256 28.853 8.41 57.74 71.33 −0.832 Nuclear
LinHDZ5 892 98.752 5.45 47.87 87.53 −0.188 PlasmaMembrane
LinHDZ6 223 25.027 8.77 43.7 80.04 −0.651 Nuclear
LinHDZ7 323 35.327 7.56 57.85 68.36 −0.637 Nuclear
LinHDZ8 257 29.454 5.13 62.97 69.46 −0.896 Nuclear

https://ngdc.cncb.ac.cn/gwh/Assembly/65978/show
https://ngdc.cncb.ac.cn/gwh/Assembly/65978/show
https://pfam.xfam.org/
http://planttfdb.gao-lab.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.arabidopsis.org/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
https://www.ncbi.nlm.nih.gov/cdd
https://www.ncbi.nlm.nih.gov/cdd
http://cello.life.nctu.edu.tw/
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Table 1. Cont.

Sequence ID Protein
(aa)

MW
(kDa) pI Instability

Index
Aliphatic

Index GRAVY Subcellular
Localization

LinHDZ9 843 92.934 5.9 44.07 87.72 −0.114 PlasmaMembrane
LinHDZ10 752 82.448 5.4 36.15 80.52 −0.332 Nuclear
LinHDZ11 287 32.115 7.02 63.94 68.01 −0.731 Nuclear
LinHDZ12 325 36.207 8.21 66.93 74.18 −0.578 Nuclear
LinHDZ13 239 27.307 5.51 43.44 60.84 −0.956 Nuclear
LinHDZ14 841 92.753 6.06 44.43 86.41 −0.131 PlasmaMembrane
LinHDZ15 494 55.975 5.93 57.88 84.9 −0.397 Nuclear
LinHDZ16 222 24.711 6.61 52.84 64.68 −1.006 Nuclear
LinHDZ17 330 35.919 7.02 51.86 64.88 −0.748 Nuclear
LinHDZ18 762 84.141 5.6 51.79 81.13 −0.267 PlasmaMembrane
LinHDZ19 287 31.526 8.95 60.51 76.24 −0.543 Nuclear
LinHDZ20 401 45.821 9.41 56.35 67.66 −0.637 Nuclear
LinHDZ21 373 41.423 8.72 69.75 67.51 −0.708 Nuclear
LinHDZ22 413 46.682 6.29 50.16 79.64 −0.434 Nuclear
LinHDZ23 752 82.845 5.96 56.26 84.15 −0.297 Nuclear
LinHDZ24 845 92.835 5.87 52.08 84.84 −0.134 PlasmaMembrane
LinHDZ25 287 32.826 5.05 51.51 72.37 −0.723 Nuclear
LinHDZ26 309 33.907 5.64 57.92 62.27 −0.869 Nuclear
LinHDZ27 845 92.856 6.13 44.4 88.22 −0.096 PlasmaMembrane
LinHDZ28 313 34.628 5.02 57.55 69.23 −0.788 Nuclear
LinHDZ29 228 25.519 7.7 56.89 75.39 −0.684 Nuclear
LinHDZ30 290 32.999 6.17 61.97 59.59 −1.019 Nuclear
LinHDZ31 337 37.331 4.92 50.43 64.9 −0.753 Nuclear
LinHDZ32 855 93.606 5.92 50.04 88.9 −0.093 PlasmaMembrane
LinHDZ33 320 36.288 4.63 61.03 67.12 −0.785 Nuclear
LinHDZ34 727 80.399 5.78 50.14 80.62 −0.326 Nuclear
LinHDZ35 916 100.398 6.52 52.26 88.92 −0.127 PlasmaMembrane
LinHDZ36 844 91.863 5.61 47.3 87.51 −0.103 PlasmaMembrane
LinHDZ37 849 94.377 8.19 53.63 77.08 −0.449 Nuclear
LinHDZ38 293 32.639 4.92 58.05 72.29 −0.736 Nuclear
LinHDZ39 237 27.025 7.82 53.17 66.24 −0.748 Nuclear
LinHDZ40 262 29.574 9.66 61.81 78.17 −0.723 Nuclear
LinHDZ41 284 31.713 5.23 52.48 75.63 −0.676 Nuclear
LinHDZ42 717 80.437 7.16 55.17 75.61 −0.514 Nuclear
LinHDZ43 324 36.058 5.13 66.17 71.08 −0.716 Nuclear
LinHDZ44 238 26.377 8.88 85.03 63.99 −0.657 Nuclear
LinHDZ45 345 38.680 6.47 61.16 65.07 −0.632 Nuclear
LinHDZ46 347 38.920 6.57 59.42 66.11 −0.629 Nuclear
LinHDZ47 544 61.639 9.63 60.64 76.6 −0.606 Nuclear
LinHDZ48 226 25.663 9.12 61.26 75.58 −0.743 Nuclear
LinHDZ49 717 79.502 6.38 46.39 87.85 −0.245 PlasmaMembrane
LinHDZ50 262 30.172 4.96 67.21 57.67 −0.919 Nuclear
LinHDZ51 315 35.165 5.86 74.39 57.08 −0.845 Nuclear
LinHDZ52 222 24.617 8.73 88.6 65.09 −0.757 Nuclear

2.5. Prediction of Gene Structure, Conserved Motif, and Cis-Acting Regulatory Elements

The structures of the LinHDZ genes were predicted using GSDS (http://gsds.gao-lab.
org, access date: 9 December 2023). Conserved motifs were analyzed using the MEME

http://gsds.gao-lab.org
http://gsds.gao-lab.org
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online tool with default parameters (https://meme-suite.org/meme/tools/fimo, access
date: 9 December 2023) [38]. The 2000 bp upstream of the 5′ untranslated region of
the LinHDZ genes was identified using the PlantCARE tool (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html, access date: 10 December 2023) to predict the cis-
acting regulatory elements. The results were visualized using the visualization function of
TBtools software.

2.6. Expression Profile Analysis of L. indica Using RNA-Seq Datasets

Transcriptome sequencing was conducted on six tissues—shoot apical meristem
(SAM), tender shoot (TS), and mature shoot (MS) of both non-dwarf crape myrtle (S)
and dwarf crape myrtle (D)—to investigate the regulation of HD-Zip genes on plant height
in Lagerstroemia. A total of 3 µg of RNA for each sample was prepared for sequencing.
Libraries were generated using an Illumina Novaseq platform. The gene expression levels
were estimated using FPKM values. Differential expression analyses of S_TS vs. S_SAM,
S_MS vs. S_SAM, D_TS vs. D_SAM, D_MS vs. D_SAM, and D_SAM vs. S_SAM were
conducted using the DESeq2 R package (version 1.20.0), with genes having a p-value ≤ 0.05
and |log2 (fold change)| ≥ 1 considered as differentially expressed genes (Tables S2–S6).
Three biological replicates were set for each tissue site. Tissue-specific expression patterns
of LinHDZ genes were then analyzed.

2.7. Quantitative Real-Time–Polymerase Chain Reaction

The total RNA were extracted from different tissues of dwarf and non-dwarf crape
myrtle using a total RNA extraction kit (Tiangen, Beijing, China) for qRT-PCR analysis,
which was also used for the RNA-seq analysis. A total of 500 ng of RNA was reverse-
transcribed into cDNA using the Prime Script RT reagent kit (TaKaRa, Dalian, China).
The quantitative real-time polymerase chain reaction (qRT-PCR) was performed using
the ACEX96 real-time PCR detection instrument (Bio-Rad, Hercules, CA, USA). EF-1α
(Gen Bank ID: MG704141) was selected as the internal reference gene. The PCR system
and procedures were conducted as previously described [39]. The expression levels were
calculated using the 2−∆∆Ct method, and the expression of each tissue was repeated three
times biologically. All primer sequences are provided in Table S1.

3. Results
3.1. Genome-Wide Identification of HD-Zip Genes in L. indica

The genome of L. indica was analyzed using the BLAST tool in the PFAM database
to identify potential HD-Zip genes. Then, the SMART and CD-search tools were used to
confirm the existence of conserved HD and LZ domains, resulting in the identification
of 52 HD-Zip genes designated as LinHDZ1-52 (Table 1). The analysis revealed that the
encoded proteins ranged in length from 222 (LinHDZ16 and LinHDZ52) to 916 (LinHDZ35)
amino acids, with an average length of 450 amino acids. The molecular weights of these
LinHDZs ranged from 24.617 kDa (LinHDZ52) to 100.398 kDa (LinHDZ35), with an average
value of 50.072 (Table 1). The isoelectric points of these proteins ranged from 4.63 (Lin-
HDZ33) to 9.66 (LinHDZ40), with an average of 6.67. Subcellular localization analysis
indicated that most LinHDZs were localized at the nucleus, whereas 10 were found in the
cell membrane. Further details about LinHDZs are provided in Table 1.

3.2. Chromosome Localization Analysis of LinHDZ Genes

The 52 LinHDZs were irregularly arranged across 22 chromosomes of the L. indica
genome. Chromosome (Chr.) 14 harbored the highest number of HD-Zip genes, with six
(11.54%), followed by four LinHDZs (7.69%) on Chr. 20. The results showed that Chr. 2,
Chr. 9, Chr. 11, Chr. 15, Chr. 16, and Chr. 18 each contained three genes (5.77%); Chr. 1,
Chr. 3, Chr. 4, Chr. 5, Chr. 6, Chr. 8, Chr. 12, Chr. 13, Chr. 21, and Chr. 23 each contained
two genes (3.85%); and Chr. 10, Chr. 17, Chr. 19, and Chr. 22 each contained one gene
(1.92%). No HD-Zip gene was localized on Chr. 7 and Chr. 24. (Figure 1). The uneven

https://meme-suite.org/meme/tools/fimo
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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distribution of LinHDZs across chromosomes suggested the complexity and diversity of
the HD-Zip family.
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Figure 1. Localization of HD-Zip genes on the chromosomes of Lagerstroemia indica. Each chromosome
is represented by a green strip, with the approximate distribution of each LinHDZ gene marked on
the strip in black font.

3.3. Phylogenetic Analysis of HD-Zip in L. indica

To elucidate the evolutionary relationship of HD-Zip genes between L. indica and
other species, a phylogenetic tree was constructed using 48 A. thaliana HD-Zip, 40 O. sativa
HD-Zip, and 63 P. trichocarpa HD-Zip proteins (Figure 2). The results revealed that the
crape myrtle HD-Zip family could be categorized into four subfamilies (HD-Zip I–IV). The
phylogenetic tree of HD-Zip genes from these four species demonstrated that the HD-Zip
I subfamily had the largest number of representatives, followed by the HD-Zip II and IV
subfamilies. Conversely, the HD-Zip III subfamily had the least number of representatives,
with five in A. thaliana, five in O. sativa, eight in P. trichocarpa, and seven in L. indica (Figure 2).
The phylogenetic tree with bootstrap values is shown in Figure S1. Generally, genes with
close evolutionary relationships might have similar structures or biological functions.
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3.4. Analysis of Conserved Motifs and Gene Structure of LinHDZs

This study examined conserved motifs and gene structures to gain further insight into
the evolutionary relationships and validate the classification accuracy of HD-Zip proteins
in L. indica. Using the MEME online tool, the present study predicted the composition
of conserved motifs in LinHDZ proteins, identifying 10 motifs. The motif composition
within the same subfamily was largely consistent, indicating functional similarity among
LinHDZs within the same subfamily due to the shared domain distribution. Conserved
motif analysis revealed that all 52 LinHDZs contained motifs 1–3 corresponding to the HD
and LZ domains, underscoring the importance of the two domains in LinHDZ expression.
The high conservation of motifs 1–3 in LinHDZs aligned with the characteristic structural
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properties of HD-Zip proteins. Furthermore, HD-Zip I and II exclusively contained HD
and LZ domains, whereas HD-Zip III and IV also included a START domain constituted
by motifs 4, 5, and 8. In addition, the HD-Zip III subfamily featured a special MEKHLA
domain, denoted by motif 6 (Figure 3a).
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tribution of conserved motifs in LinHDZ proteins; (b) Exon–intron structure of LinHDZ genes.

The analysis of gene structure revealed significant differences among the four subfami-
lies of HD-Zip genes, with members within the same subfamily exhibiting similar numbers
of exons and introns. The exon–intron structure of HD-Zip I and II subfamilies appeared
simpler compared with that of HD-Zip III and IV subfamilies. Specifically, HD-Zip I and
II subfamilies predominantly had 3 to 4 exons, whereas HD-Zip III and IV subfamilies
exceeded 10 exons (Figure 3b). These findings suggested that the HD-Zip gene family
might have undergone exon supplementation or deletion during evolution.

3.5. Analysis of cis-Regulatory Element in LinHDZs

As a regulatory factor controlling gene transcription and expression, cis-elements are
indispensable in uncovering gene function [40]. The cis-regulatory elements of the LinHDZs
(the 2 kb upstream of promoter region) were predicted to investigate the transcriptional
characteristics and gene function using PlantCARE (Figure 4). Twenty-two cis-acting
elements were detected in LinHDZs. Hormone-related elements, such as ABA, GA, IAA,
SA, and MeJA response elements, were mainly distributed in HD-Zip I and II subfamilies.
Among these, the cis-acting element involved in abscisic acid responsiveness was the most
abundant (187), distributed among 52 LinHDZ genes. Stress response-related elements were
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mainly distributed in the HD-Zip I subfamily, with the cis-acting element involved in low-
temperature responsiveness being the most prevalent (55), distributed among 29 LinHDZ
genes. Functional elements related to growth and development were mainly distributed in
HD-Zip II and III subfamilies, with the cis-acting regulatory element related to meristem
expression having the largest number (33), distributed among 24 LinHDZ genes. The
light-response element was present throughout the entire family. These results suggested
that LinHDZ genes played crucial roles in affecting Lagerstroemia plant height and resisting
external stress.
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3.6. Analysis of Tissue-Specific Expression Patterns of LinHDZs in Non-Dwarf and Dwarf
Crape Myrtles

The expression levels of 52 LinHDZs in SAM, TS, and MS of non-dwarf and dwarf crape
myrtles were analyzed using RNA-seq to investigate the mechanism of LinHDZ genes in
regulating the plant height of L. indica. The expression patterns of LinHDZs across six tissues
showed significant differences (Figure 5). The HD-Zip I subfamily exhibited expression in
different tissues. In contrast, the HD-Zip II subfamily was mainly expressed in the shoot
apical meristem of dwarf crape myrtle (D_SAM) and the TS and MS of non-dwarf crape
myrtle (S_TS and S_MS). HD-Zip III and IV subfamilies showed tissue-specific expression
patterns, with the HD-Zip III subfamily primarily expressed in TS and MS. The expression
levels of LinHDZ24, and LinHDZ14 in S_TS were significantly upregulated compared
with those in S_SAM. The expression of LinHDZ9 and LinHDZ35 in both TS and MS of
dwarf crape myrtles were about two times higher than those in D_SAM, while showed
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no significant differences in non-dwarf crape myrtles (Tables S2–S5). Additionally, the
expression levels of LinHDZ23 and LinHDZ34 in the D_SAM were nearly two times lower
than those in non-dwarf crape myrtle (Table S6). These results suggested that the effects of
HD-Zip genes on the growth and development of L. indica varied among subfamilies, with
HD-Zip III and IV subfamilies suggested to play essential roles in regulating Lagerstroemia
plant height.
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Figure 5. Cluster analysis of LinHDZ expression profiles in Lagerstroemia indica. The heat map was
generated based on the log2-transformed relative expression values of LinHDZs in the shoot apical
meristem (S_SAM), tender stem (S_TS), and mature stem (S_MS) of non-dwarf crape myrtle, and
the shoot apical meristem (D_SAM), tender stem (D_TS), and mature stem (D_MS) of dwarf crape
myrtle. Expression levels are depicted using a color gradient ranging from blue (downregulated) to
red (upregulated).
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3.7. Validation of LinHDZ Expression

Twelve differentially expressed LinHDZ genes identified based on RNA-seq analysis
(Figure 6) were subjected to qRT-PCR verification in SAM, TS, and MS tissues of both
non-dwarf and dwarf crape myrtles. The results revealed significant upregulation of
LinHDZ24, LinHDZ14, whereas LinHDZ35 and LinHDZ9 were markedly downregulated in
S_TS. Additionally, LinHDZ23 and LinHDZ34 were significantly upregulated in S_SAM.
The qRT-PCR results corroborated those obtained from RNA-seq analysis, indicating that
these genes served as key candidates for regulating Lagerstroemia plant height. This study
contributed to a deeper understanding of the molecular mechanisms underlying plant
height regulation.
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Figure 6. Expression pattern analysis of HD-Zip genes in the shoot apical meristem (S_SAM), tender
stem (S_TS), and mature stem (S_MS) of non-dwarf crape myrtle, and the shoot apical meristem
(D_SAM), tender stem (D_TS), and mature stem (D_MS) of dwarf crape myrtle. The error bar shows
the standard error between three biological replicates (n=3). EF-1α (Gen Bank ID: MG704141) was
selected as the internal reference gene and the expression levels were calculated by the 2−∆∆Ct method
to normalize qRT-PCR.

4. Discussion

Crape myrtle, being one of the most significant flowering plants in summer, has been
widely used in gardens due to its diverse plant types. In recent years, dwarf crape myrtles
have been increasingly favored by the garden market. However, the molecular mechanism
behind the dwarf plant type of Lagerstroemia remains unclear. Identifying genes regulating
plant height and exploring the regulatory mechanism of plant height can offer a crucial
theoretical basis for enhancing plant types.

HD-Zip TFs play a crucial role in affecting plant growth, development, and resilience
to environmental stress [41]. To date, HD-Zip family genes have been systematically
identified in several species, such as Chinese cabbage, chrysanthemum, oil palm, and
watermelon [42–45]. Various studies have demonstrated that HD-Zip III and IV genes
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mainly contributed to shoot and root meristem development, as well as cell proliferation
regulation. However, the characteristics and functions of this gene family in crape myrtle
have not yet been investigated.

This study identified 52 LinHDZ genes in the genome of L. indica and involved the
genome-wide analyses of LinHDZs. Phylogenetic tree analysis revealed that HD-Zip
proteins were classified into four HD-Zip I–IV subfamilies, consistent with the findings in
other species such as A. thaliana [46], O. sativa [47], and P. trichocarpa [48]. Most of these
52 LinHDZ genes belonged to HD-Zip I and II subfamilies. The HD-Zip III subfamily had
the fewest LinHDZ genes (7/52), consistent with the proportions observed in other species
such as Prunus mume (4/32) [49], A. thaliana (5/48) [46], and tomato (6/49) [50]. Analyses of
gene-conserved motifs and gene structures revealed similar numbers of conserved motifs
and exons and introns among members of the same subfamily, further supporting the
reliability of the phylogenetic relationship of LinHDZ genes. Additionally, members of
the same subfamily exhibited similar expression patterns across six tissues of non-dwarf
and dwarf crape myrtles. HD-Zip I genes showed diverse expression across different
tissues, whereas most HD-Zip II genes were expressed in S_TS and S_MS. HD-Zip III and
IV subfamilies exhibited tissue-specific expression, with a preference for shoots and SAM,
respectively. This might be because the members of HD-Zip III and IV subfamilies are
known to be highly conserved lineages [45], with regulatory effects on SAM development,
vascular development, leaf and shoot polarity regulation, and auxin transport [21–24,33].
These findings suggest that the four subfamilies of LinHDZ genes had different effects on
the growth and development of L. indica. Previous studies have reported that HD-Zip
gene members affect plant organ morphology. By combining tissue-specific expression
patterns with previous findings, several members of HD-Zip III and IV subfamilies were
implicated in regulating Lagerstroemia plant height. For instance, two LinHDZs (LinHDZ24,
and LinHDZ14) from the HD-Zip III subfamily were significantly upregulated in S_TS, with
LinHDZ14 being homologous to ATHB8, reported to be regulated by AUX/IAA involved in
auxin signaling [51]. Studies on Lagerstroemia plant architecture highlighted the significance
of IAA and GA hormones in regulating plant height [31]. Additionally, in O. sativa, the
overexpression of OsHox32, a homologous gene of LinHDZ35, resulted in a semi-dwarf
phenotype [52]. In this study, LinHDZ35 was upregulated in D_TS and D_MS, suggesting its
positive regulatory role in Lagerstroemia dwarfism. Previous studies have shown a complex
regulatory relationship between the ATML1 of HD-Zip IV and GA signal transduction,
with negative feedback regulation between ATML1/PDF2 and DELLA [53]. In the present
study, LinHDZ23 and LinHDZ34 from the HD-Zip IV subfamily were homologous to
ATHDG11 and ATHDG 12, respectively. The latter were reported to play significant roles
in regulating root and shoot meristems [54], suggesting their involvement in the cell
proliferation of SAMs.

In summary, HD-Zip genes play a crucial role in the growth and development of
crape myrtle. The findings of this study provide valuable insights into the role of HD-Zip
genes in woody plants and might have significant implications for the breeding of L. indica,
offering valuable references for future studies and applications in this area.

5. Conclusions

This study involved a comprehensive genome analysis of the HD-Zip family in L. indica.
Fifty-two HD-Zip genes were identified and classified into four subfamilies: I, II, III, and IV.
Gene structure and motif analysis revealed that the members within the same subfamily
shared similar motifs and likely performed similar functions. Cis-acting element analysis
indicated the presence of numerous hormone-related and stress-responsive cis-acting
elements, suggesting their crucial role in regulating Lagerstroemia plant height and stress
response. Tissue-specific expression profiling highlighted the significant impact of HD-Zip
III and IV subfamilies on Lagerstroemia plant development. Moreover, six LinHDZs were
identified as key candidates regulating the Lagerstroemia plant height, with LinHDZ24
and LinHDZ14 implicated in the positive regulation of branch elongation, LinHDZ9 and
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LinHDZ35 as negative regulators of shoot development, and LinHDZ23 and LinHDZ34
showing significant upregulation in S_SAM and playing roles in cell division. Overall, these
findings not only enhance the understanding of the molecular mechanisms underlying
HD-Zip family function in the growth and development of Lagerstroemia, but also provide
insights for the molecular breeding of crape myrtle and other woody ornamental plants, as
well as for further studies on these significant TFs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15040428/s1, Table S1. The primer sequences used in this
study. Table S2. The differential expression levels of LinHDZ III subfamily in S_TS vs. S_SAM. The
tender stem (S_TS) and shoot apical meristem (S_SAM) of non-dwarf crape myrtle. Table S3. The
differential expression levels of LinHDZ III subfamily in S_MS vs. S_SAM. The mature stem (S_MS)
of non-dwarf crape myrtle. Table S4. The differential expression levels of LinHDZ III subfamily
in D_TS vs. D_SAM. The tender stem (D_TS) and shoot apical meristem (D_SAM) of dwarf crape
myrtle. Table S5. The differential expression levels of the LinHDZ III subfamily in D_MS vs. D_SAM.
The mature stem (D_MS) of dwarf crape myrtle. Table S6. The differential expression levels of
LinHDZ III subfamily in D_SAM vs. S_SAM. The shoot apical meristem (S_SAM) of non-dwarf
crape myrtle and the shoot apical meristem (D_SAM) of dwarf crape myrtle. Figure S1. Phylogenetic
tree analysis of HD-Zip sequences of Lagerstroemia indica and other plants. All LinHDZ genes
in Lagerstroemia indica are marked in red font. Numbers on the branch of the phylogenetic tree
represent bootstrap values.
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