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Abstract: Integrated networks have become a new interest in genome-scale network research due to
their ability to comprehensively reflect and analyze the molecular processes in cells. Currently, none of
the integrated networks have been reported for higher organisms. Eriocheir sinensis is a typical aquatic
animal that grows through ecdysis. Ecdysone has been identified to be a crucial regulator of ecdysis,
but the influence factors and regulatory mechanisms of ecdysone synthesis in E. sinensis are still
unclear. In this work, the genome-scale metabolic network and protein–protein interaction network of
E. sinensis were integrated to reconstruct a metabolic–protein interaction integrated network (MPIN).
The MPIN was used to analyze the influence factors of ecdysone synthesis through flux variation
analysis. In total, 236 integrated reactions (IRs) were found to influence the ecdysone synthesis of
which 16 IRs had a significant impact. These IRs constitute three ecdysone synthesis routes. It is
found that there might be alternative pathways to obtain cholesterol for ecdysone synthesis in E.
sinensis instead of absorbing it directly from the feeds. The MPIN reconstructed in this work is the
first integrated network for higher organisms. The analysis based on the MPIN supplies important
information for the mechanism analysis of ecdysone synthesis in E. sinensis.

Keywords: integrated network; metabolic network; protein–protein interaction network; Eriocheir
sinensis; ecdysis

1. Introduction

Cellular networks reveal and reproduce the network topology of interactions between
biological elements to explore the complex biological mechanisms and functions based
on the systematic view. With the in-depth study of various networks, researchers have
recognized the limitations of a single type of network. Therefore, the integration of mul-
tiple types of networks has caused more interest [1]. The functions of various molecules
in organisms (genes, proteins, metabolites, etc.) are expressed through the interactions
between each other. It is necessary to make a holistic analysis of all relevant components
through the integrated networks to comprehensively understand the complex physiological
functions. Among these pieces of research, the study on the integrated networks involving
genome-scale metabolic networks (GSMNs) is the most in-depth. In recent decades, the
integration of metabolic and regulatory networks has become an important direction. In
2004, Plasson’s group [2] reconstructed the first integrated genome-scale computational
model of a transcriptional regulatory and metabolic network iMC1010 through regulatory
flux balance analysis (RFBA). This network contains 1010 Escherichia coli genes, including
104 regulatory genes, which regulate the expression of 479 genes out of 906 genes in the
E. coli metabolic network. This network is not only able to predict the high-throughput
growth phenotypes but also indicate the transcription factors that play an important role
in regulating metabolic pathways and identify the previously unknown components and
interactions in the metabolic and regulatory networks. Sriram and Nathan [3] proposed the
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probabilistic regulation of metabolism (PROM) method and reconstructed the metabolic-
regulation integrated network of E. coli and Mycobacterium tuberculosis. Jiang et al. [4]
reconstructed the metabolic-transcriptional integrated network of Corynebacterium glutam-
icum using the relationship graph method combined with the public database and literature
database resources. This network contains 1384 reactions, 1276 metabolites, 88 regulators,
and 999 transcriptional regulatory interactions. The relationship graph method integrates
the metabolic network and transcriptional regulatory network taking the relationship be-
tween gene and enzyme as a bridge and forming the integrated network containing the
relationships among regulators, target genes, enzymes, and reactions. The advantage of
this integrated network is that it has discovered some two-level complex regulatory rela-
tionships between transcription and metabolism within cells, which cannot be obtained in a
single metabolic network or transcriptional regulatory network. Jason et al. [5] proposed a
TIGER toolbox, which can be used to integrate the genome-scale metabolic network, expres-
sion data, and transcriptional regulatory network. Sriram Chandrasekaran [6] proposed an
integration method for the metabolic and regulatory networks based on the PROM (proba-
bilistic regulation of metabolism) and GEMINI (gene expression and metabolism integrated
for network inference) methods. PROM was first applied to automatically reconstruct
the integrated metabolic transcriptional regulatory network, and the GEMINI approach
was subsequently used to curate the integrated network using the transcriptomics and
phenomics data. In recent years, studies on the integration of transcriptional regulatory
networks and signal transduction networks have increased. Wang et al. [7] reconstructed an
integrated network of Saccharomyces cerevisiae by integrating the transcriptional regulatory
and signal transduction pathways, taking the transcriptional factor as the bridge. In this
network, the signal transduction pathways are represented by protein–protein interactions
(PPI). This network was used to explore the stress response mechanism of S. cerevisiae.

Compared to the two-network integration, the integration of multi-networks is much
more difficult. On the small-scale network integration, Markus et al. [8] proposed integrated
flux balance analysis (iFBA) to construct a three-network integration model of metabolism,
transcriptional regulation, and signal transduction in E. coli. Jason et al. [9] proposed an
integrated dynamic flux balance analysis (idFBA) method to construct a S. cerevisiae model.
However, these two methods cannot be used for large-scale network reconstruction due
to parameter settings limitations. On large-scale network integration, Jonathan et al. [10]
collected information from over 900 data sources such as reviews, books, and databases
to reconstruct a Mycoplasma genius whole-cell model, which includes metabolic, signal
transduction, and transcriptional regulation data. They found that the whole-cell model
made more quantitative predictions than a single metabolic network [11]. Carrera et al. [12]
reconstructed an integrated network of metabolism, transcriptional regulation, and sig-
nal transduction in E. coli by combining high-throughput transcriptomics and phenomics
data. This model has demonstrated a stronger ability in phenotype prediction than simple
metabolic networks. However, the perturbed genes obtained from the gene perturbation
analysis of the network only cover 23% of the GO entries of E. coli. Macklin et al. [13]
reconstructed the first E. coli whole-cell model described based on large amounts of publi-
cations and experiments, which included the central dogma, metabolism, and regulation
processes of E. coli. The E. coli whole-cell modeling project [14] expanded the scope of this
model by including missing gene and small molecule functionality as well as increasing
the number of possible nutrient conditions for simulated growth. The model covered 43%
of characterized genes. Ahn-Horst et al. [15] further expanded the E. coli whole-cell model
by adding the dynamics of the global regulator guanosine tetraphosphate, along with the
dynamics of amino acid biosynthesis and translation.

Currently, most integrated networks are built on microorganisms, especially model
microorganisms. For higher organisms such as animals and plants, due to the complexity of
their biological systems and the lack of transcriptional regulation and signal transduction
data, integrated network reconstruction has not yet been completed. The protein–protein in-
teraction network (PIN) contains a large amount of information such as signal transduction
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proteins, transcription factors, transcription factor binding proteins, methylation proteins,
etc. [16]. Therefore, multiple network integration functions such as metabolism, transcrip-
tional regulation, signal transduction, and even protein modification can be achieved if the
metabolic network is integrated with the PIN. This integration method can provide a con-
venient way for the reconstruction of the integrated cellular networks for higher organisms.

E. sinensis, commonly known as river crab or Chinese mitten crab, belongs to the
phylum Arthropoda. E. sinensis is an important economic source of fishery [17]. Molting
is an important characteristic of the growth of E. sinensis. The life of E. sinensis undergoes
10–20 times of molting. However, about 15–30% of the cultured E. sinensis experience preco-
cious puberty, which is related to rapid gonadal development and premature termination of
molting in juvenile mitten crabs [18]. Studies on the molting mechanism have an important
impact on improving precocious puberty and increasing the economic value of E. sinensis.
Researchers have explored the molting mechanism of E. sinensis from various aspects such
as gene analysis, endocrine analysis, and omics analysis. Currently, some substances and
pathways related to molting have been identified, such as ecdysone, ecdysone synthesis
pathway, mTOR pathway, etc. [19–21]. However, the complete mechanism of molting is
still not clear. An important reason is the lack of tools for systematic analysis of metabolic
and regulatory processes in E. sinensis.

Currently, the GSMN [22] and PIN [23] have been reconstructed for E. sinensis, reflect-
ing its metabolic and regulation system, respectively. However, neither the flux balance
analysis of GSMN nor the shortest path analysis of PIN can simulate the connection of the
metabolic and regulation process of molting. Therefore, in this work, we tried to combine
the two networks to reconstruct a genome-scale metabolic–protein interaction integrated
network (MPIN) of E. sinensis. This network contains both metabolic and regulatory infor-
mation of E. sinensis. It is the first MPIN for higher animals. The MPIN was used to simulate
the synthesis of ecdysone, which is a key substance in the regulation of E. sinensis molting,
and identify the reactions and proteins that play a crucial role in ecdysone synthesis to
reveal its metabolic and regulatory mechanisms. The results of this work are of great
significance for in-depth research on multi-network integration and further analysis of the
molting mechanism in E. sinensis.

2. Methods
2.1. Transformation of the Metabolic Network to a Reaction Graph

The GSMN is usually a metabolite graph with metabolites as points and reactions as
edges. The reconstruction of an integrated network first requires a transformation of the
metabolic network into a reaction graph with reactions as points and common metabolites
between reactions as edges. The conversion method of the reaction graph is referred to
in our previously published paper [24]. The currency metabolites in the GSMN icrab4665
of E. sinensis reconstructed in our previous work [22] were first removed, and then the
network was converted to a reaction graph using the common metabolites as a bridge to
connect the reactions. For example, if the product of reaction 1 is the substrate for reaction 2,
reaction 1 and reaction 2 can be connected with the direction from reaction 1 to reaction 2.
The coefficient of the reaction is determined by the amount of metabolites present in the
reaction. All the reactions in icrab4665 except biomass reaction were converted to a reaction
graph. The transport and exchange reactions for the new nutrients detected in this work
compared to icrab4665 were also added.

2.2. Addition of the Biomass Equation

The biomass of icrab4665 was constructed merely based on the substance components
of hepatopancreas. To obtain a more comprehensive biomass composition, we recon-
structed the biomass equation based on five tissues of E. sinensis: hepatopancreas, gill,
muscle, thoracic ganglion, and eyestalk. The healthy juvenile crabs were obtained from
Tianjin Xieyuan Aquaculture Co., Ltd. (Tianjin, China). The crabs were reared in a plastic
incubator (70 cm × 40 cm × 50 cm) at 20 ± 1 ◦C under natural lighting conditions. Prior
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to tissue collection, the crabs were subjected to low-temperature anesthesia by placing
them on an ice plate. Samples from five tissues of the crabs were swiftly collected and
immediately submerged in liquid nitrogen for flash freezing. Subsequently, they were
stored in a −80 ◦C refrigerator for preservation. The samples of these tissues were mixed,
and three biological replicates were sent to the Beijing Institute of Nutritional Resources
for cellular component detection with each sample weighing approximately 300 g. The
contents of 2 sugars, 20 amino acids, 30 fatty acids, 10 trace elements, and 5 nucleotides
were detected using the standard method specified in “GB28050-2011 national food safety
standard general principles for nutrition labeling of prepackaged food” [25]. The biomass
equation was constructed based on the detection results of the biomass composition. The
equation contains carbohydrates, amino acids, fatty acids, nucleotides, and trace elements.
Most of these substances can be found and numbered according to the KEGG database,
except five fatty acids, including tridecanoic acid, margaric acid, cis-10-heptadecenoic acid,
heneicosanoic acid, and tricosanoic acid. These five fatty acids were numbered M00001–
M00005 for the purpose of subsequent simulations. The content of each substance was
converted into the coefficient in the biomass equation according to the method described in
the literature [22], thus constructing the biomass equation for the mixed tissues with the
ID “B00001”.

The biomass equation was subsequently added to the integrated network. The entire
GSMN was searched for the reactions containing the substances in the biomass equation,
which exist as products in the reaction. Then the reaction was connected to the biomass
equation and formed a reaction–biomass integrated reaction (R-B IR) in the network.
The coefficients of the substance in the biomass equation were assigned to the metabolic
reactions, and the coefficients of the substance in the metabolic reaction were assigned to
the biomass equation. For example, the equation of metabolic reaction R00010 is C01083[c]
+ C00001[c] --> 2 C00267[c], and the coefficient of glucose (C00267) in the biomass equation
is 0.0942, so the R-B IR composed of R00010 and biomass equation is 0.0942 R00010[c] -->
2 B00001[c]. The R-B IRs are all irreversible. As some of the substances in the biomass
equation cannot be synthesized through the network, the transport and exchange reactions
of these substances were added and linked with the biomass reaction. These substances
might be absorbed from the feeds.

2.3. Reconstruction of Integrated Network

The GSMN icrab4665 and PIN for E. sinensis reconstructed in our previous study were
integrated to reconstruct the MPIN of E. sinensis. Both icrab4665 and the PIN of E. sinensis
contain information on unigene related to metabolic reactions or proteins. Therefore,
unigene was used as a bridge to link proteins and reactions. The reactions in the GSMN
and proteins in the PIN with the same unigene were linked to integrate the two networks,
and each link was considered an IR of the MPIN. Considering the different components
in an IR, there are 8 different types of IRs in the integrated network: the IR consisting of
reaction–reaction linkage (R-R IR), the IR consisting of protein–protein linkage (P-P IR),
the IR consisting of protein–reaction linkage (P-R IR), the IR consisting of metabolic and
biomass reaction (R-B IR), the IR consisting of metabolic and transport reaction (T-R IR),
the IR consisting of transport and biomass reaction (T-B IR), the IR consisting of transport
and transport reaction (T-T IR), and the IR consisting of transport and exchange reaction
(T-E IR). Among them, P-P IRs, P-R IRs, T-R IR, and T-T IR are reversible. R-B IR and T-B IR
are irreversible. The reversibility of R-R IR was determined according to the relationship of
reactions in the GSMN. The reversibility of T-E IR was determined according to the source
of nutrients.

The flux constraints of reactions in the MPIN are crucial for simulations. The fluxes
of the P-R IRs, T-R IRs, and T-T IRs were limited to (−1000, 1000) mmolgDW

−1h−1. The
flux constraints of the P-P IRs were set to be (−1, 1) mmolgDW

−1h−1. This is because the
interactions in the PIN are un-directional and the size of the PIN is much larger than that
of the GSMN. There might be many pathways in the network consisting of proteins and
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reactions, for example, from reaction 1 to protein A, protein A to protein B, protein B to
reaction 2, and reaction 2 to other reactions in the integrated network. If the fluxes of the P-P
IRs were set too large, there would be a large amount of substances synthesized through
proteins rather than metabolic reactions, which is obviously unreasonable. Therefore,
reducing the weight of PIN by constraining the flux of the P-P IR to be a smaller value will
decrease the influence of P-P IRs on the flux distribution and help to increase the accuracy
of the simulation result. The fluxes of R-R IR, R-B IR, and T-B IR were directly determined
according to their reversibility, with reversible IRs as (−1000, 1000) and irreversible IRs
as (0, 1000) mmolgDW

−1h−1. The flux of T-E IRs for nutrients that were absorbed from
the environment was set to be (−5, 1000) mmolgDW

−1h−1, and that for the nutrients
synthesized by the network was set to be (0, 1000) mmolgDW

−1h−1.

2.4. Analysis of the Ecdysone Synthesis Pathway
2.4.1. Addition of the Ecdysone Synthesis Pathway

Ecdysone is an important substance involved in the regulation of molting in E. sinen-
sis [26], but the ecdysone synthesis pathway in the MPIN is incomplete. Therefore, the
missing reactions in the ecdysone synthesis pathway obtained from map00981 in the KEGG
database [27] were added to the MPIN, enabling the network to synthesize ecdysone.
Cholesterol is the precursor for the synthesis of ecdysone, which is commonly considered
to be absorbed from feed. Therefore, the cholesterol T-T and T-E IRs were added for
cholesterol transport with the flux constraints set as (−5, 1000) mmolgDW

−1h−1.

2.4.2. Determination of Biomass Synthesis Rates

The rate of biomass synthesis was determined according to the literature [28]. The
specific growth rate of three different families of E. sinensis in indoor culture has a maximum
value of 1.454%/day, which is 0.056 converting to the unit gDWd−1. Assuming that the
supply of feeds is measured in days, the rate of biomass synthesis is fixed at 0.056, i.e., the
upper and lower flux bounds of the biomass exchange reaction were both set to 0.056. The
detailed process of unit conversion has been explained in icrab4665 [22].

2.4.3. Identification of Metabolic Reactions and Proteins That Affect the Ecdysone Synthesis

Flux variation analysis was used to identify the IRs that affect the ecdysone synthesis.
The ecdysone synthesis process was analyzed as follows: the flux distributions of the net-
work and the maximum synthesis rate of ecdysone were calculated with the FBA algorithm
taking the exchange reaction of ecdysone as the target function. Subsequently, the upper
bound of the ecdysone exchange reaction was set to a smaller value of 1 mmolgDW

−1h−1,
and the calculations were performed again. The reactions with flux variations in the
two times of simulations were identified as reactions affecting ecdysone synthesis. The
metabolic reactions and proteins involved in these IRs were then collected. All simulations
were performed with Matlab’s COBRA 3.0 toolkit [29]. For reactions affecting ecdysone
synthesis, pathway and subsystem analyses were performed using the information ob-
tained from the KEGG database. For proteins affecting ecdysone synthesis, the DAVID
database (https://david.ncifcrf.gov/, accessed on 22 May 2023) [30] was used for GO func-
tion annotation. Since the E. sinensis PIN was reconstructed based on six model organisms,
namely, Homes sapiens, Drosophila melanogaster, Caenorhabditis elegans, Rattus norvegicus,
Mus musculus, and S. cerevisiae, when using the DAVID database for GO annotation, the
species source was selected as the above six model organisms in turn until all the proteins
were annotated. Three types of GO annotations were searched and analyzed: biological
processes, molecular functions, and cellular components.

2.5. Analysis of Key Metabolic Reactions and Proteins Affecting Ecdysone Synthesis

In order to determine the key metabolic reactions and proteins that affect ecdysone
synthesis in the IRs with flux variations in Section 2.4.3, two times of simulations were
further performed for each IR. Firstly, the flux of an IR was fixed at its maximum value,

https://david.ncifcrf.gov/
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which is its flux value at the maximum ecdysone synthesis rate, and the synthesis rate of
ecdysone was calculated with the FBA algorithm. Subsequently, the flux of this reaction
was fixed at its minimum flux value, which is its flux value at the ecdysone synthesis rate of
1 mmolgDW

−1h−1, and the synthesis rate of ecdysone was calculated again. The synthesis
rates of ecdysone in the two times of simulations were compared. If the change of rate
is larger than 0.1 mmolgDW

−1h−1, the IR was identified as a key reaction. The metabolic
reactions and the proteins contained in this IR were considered the key metabolic reactions
and proteins affecting ecdysone synthesis.

3. Results and Discussions
3.1. The Reconstruction of MPIN
3.1.1. Transformation of Metabolic Networks and Addition of Biomass Equations

The icrab4665 is comprised of 4665 unigenes, 2060 reactions, and 1891 metabolites [22].
There are 1897 metabolic reactions in icrab4665. These metabolic reactions were converted
into a reaction graph. The graph contains a total of 1793 reactions, of which 405 are re-
versible reactions and 1388 are irreversible reactions. These 1793 reactions are connected
by 971 common metabolites, with a total of 4318 edges connecting the reactions, in which
756 undirected edges represent reversible R-R relationships and 3562 directed edges repre-
sent irreversible R-R relationships.

icrab4665 includes transport and exchange reactions for 81 types of nutrients required
by E. sinensis. In this work, the biomass composition was detected based on five mixed
organs, and the contents of water, 2 sugars, 20 amino acids, 30 fatty acids, 10 trace elements,
and 5 nucleotides were obtained. Compared with icrab4665, this detection result obtained 8
more fatty acids that needed to be absorbed from the feeds. Therefore, their corresponding
transport and exchange reactions were added to the network, increasing the number of
nutrient transport and exchange reactions from 81 to 89. The transport and exchange
reactions for the nutrients were all linked to the metabolic reactions and added to the
reaction graph. The scale of GSMN as a reaction graph is shown in Table 1.

Table 1. The scale of GSMN as a reaction graph.

Item Count

Reaction 1793
Reversible-metabolic-reaction 405
Irreversible-metabolic-reaction 1388
Exchange reaction 89
Transport reaction 89

R-R interactions 4636
Reversible R-R interaction 756
Irreversible R-R interaction 3562
Reversible T-R interaction 73
Irreversible T-R interaction 245

Metabolites 1658

3.1.2. Preliminary Reconstruction of Integrated Network

The PIN of E. sinensis includes 8225 proteins and 148,524 interactions, corresponding
to 31,507 unigenes [23]. The GSMN icrab4665 contains 4665 unigenes [22]. There are a
total of 1723 common unigenes in the GSMN and PIN. Using the common unigenes as a
bridge, reactions and proteins with the common unigene in the two networks are connected
to integrate the two networks. The integrated network has a total of 10,301 nodes and
153,228 edges. Among them, 835 edges connect proteins and metabolic reactions, with
207 common proteins in the two networks. The scale of the preliminary reconstructed
MPIN is shown in Table 2.
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Table 2. Scale of preliminary reconstructed MPIN of E. sinensis.

Item Count

Nodes 10,301
Protein 8225
Metabolic reaction 1793
Transport reaction 89
Exchange reaction 89

IRs 153,305
P-P IR 147,656
R-R IR 4318
T-T IR 89
T-E IR 89
T-R IR 318
P-R IR 835

3.1.3. Addition of Biomass Equation

The construction of the biomass equation is based on the content of each component in
the biomass composition detection results of E. sinensis (Supplementary File S1). A total of
128 metabolic reactions were found connecting to biomass equations in the integrated net-
work to form reaction–biomass IR (R-B IR), referring to 51 common metabolites connecting
biomass equations and metabolic reactions. In addition to metabolic reactions, transport
reactions can also be connected to biomass equations. However, due to the fact that some
metabolites in the biomass equation can be generated through metabolic reactions, recon-
necting the transport reaction of these metabolites with the biomass equation will result
in the direct absorption of these metabolites from the feeds rather than synthesizing them
through metabolic pathways. Therefore, the transport reactions of these metabolites cannot
be connected with the biomass equation. Only the transport reaction of the metabolites that
cannot be synthesized from metabolic reactions can be connected to the biomass equation.
Finally, a total of 20 transport reactions were connected to the biomass equation to form T-B
IR, with common metabolites including C02679, M0001, C08322, C16537, C08362, M00002,
M00003, C01712, M00004, M00005, C06262, C00076, C00070, C00238, C00305, C00034,
C01330, C00038, C01529, and C00020. The T-B IRs are irreversible. The T-T and T-E IRs of
the biomass equation were also added for simulation purposes. The newly added nodes
and interactions between the biomass equation and other reactions are shown in Table 3.

Table 3. The added nodes and interactions after the addition of biomass equation.

Item Count

New-Nodes 2
B00001[c] 1
B00001[e] 1

New-IRs 148
R-B IR 128
T-B IR 20
T-T IR 1
T-E IR 1

3.1.4. Correction of the Model

Compared to icrab4665, some new fatty acids have been added to the metabolic network
part of the MPIN, but the metabolic pathways for these fatty acids are incomplete. Actually, the
metabolic pathway of fatty acids in icrab4665 is also defective. The synthesis rate of biomass
was 0 when the MPIN was used to simulate the biomass synthesis capability, which indicates
the defects in the fatty acid metabolite pathways in the network. Therefore, the synthetic
ability of all the fatty acids was verified. It was found that 11 fatty acids cannot be synthesized,
including arachidic acid, cis-11-Eicosenoic acid, docosanoic acid, dihomo-γ-linolenic acid,
erucic acid, cis-11,14,17-eicosatrienoic acid, 13c,16c-docosadienoic acid, lignoceric acid, EPA,
nervonic acid, and DHA. After carefully checking the fatty acids metabolic pathways, the
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unsaturated fatty acid pathways were found to be highly incomplete. In order to complete
these pathways, 23 reactions in the unsaturated fat acid pathway were added, including
R12170, R12171, R12205, L00001, L00002, L00003, L00004, L00005, L00006, L00007, L00008,
L00009, L00010, L00011, L00012, R08184, R08185, R08186, R08187, R08188, R08190, R08192,
and R08273. Furthermore, T-R IRs, T-T IRs, and T-E IRs of these reactions were added for simu-
lation needs. The synthesis capability of these unsaturated fatty acids was checked again after
supplementing the fatty acid pathways. The reaction flux of linoleoyl-CoA, errocytochrome
b5, reduced acceptor, and hydrogen sulfide remained at 0 mmolgDW

−1h−1, indicating that
the integrated network cannot synthesize these substances through the currently known
knowledge. Therefore, the flux constraints of the T-E IRs for these four substances were
set to be (−5, 1000) mmolgDW

−1h−1, indicating that these substances are available from the
environment. The flux constraints of the other 20 newly added T-E IRs were set to be (0, 1000)
mmolgDW

−1h−1, indicating that these substances are synthesized by the network and not
available externally. In addition, since oxygen is essential for an organism’s metabolism, the
exchange and transport reactions of oxygen were also added, and their flux constraints were
set to be (−1000, 1000) mmolgDW

−1h−1, which means that the integrated network can obtain
oxygen from the outside environment. The final scale of the MPIN of E. sinensis is shown in
Table 4 and Figure 1.

Table 4. The scale of the MPIN of E. sinensis.

Item Number

Nodes 10,267
Protein 8225
Metabolic reaction 1816
Transport 112
Exchange 112
Biomass 2

IR 153,611
P-P IR 147,656
R-R IR 4364
T-T IR 113
T-E IR 113
T-R IR 391
P-R IR 835
R-B IR 128
T-B IR 20
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3.2. Analysis of the Ecdysteroid Pathway
3.2.1. Addition of the Ecdysone Synthesis Pathway

The ecdysone synthesis pathway starts from cholesterol and can be mainly divided into
two stages. The first stage is the formation of 7-dehydrocholesterol (7DC) from cholesterol
catalyzed by the Neverland protein (NVD), and the 7DC subsequently generates 5β-
diketol in the mitochondria. The second stage is the synthesis of ecdysone from 5β-diketol
catalyzed by CYP306A1, CYP302A1, and CYP315A1. Finally, 20-hydroxyecdysterone is
produced through the catalysis of CYP314A1.

In order to assign MPIN the capability of ecdysis synthesis, 11 reactions in the ecdysone
synthesis pathway have been added to the network, including R08132, R08136, R08139,
R08140, R08137, R08133, R08135, R02373, R08141, R02374, and R08142. The added reactions
were linked to other reactions and proteins in the MPIN to enable the network to synthesize
ecdysone. Finally, 23 R-R IRs, 5 T-R IRs, and 6 P-R IRs were added, with their flux
constraints set to (−1000, 1000) mmolgDW

−1h−1. Furthermore, 1 T-T IR and 1 T-E IR
for cholesterol transport were added. The scale of the MPIN after adding the ecdysone
synthesis pathway is shown in Table 5 (Supplementary File S2).

Table 5. The scale of MPIN after adding the ecdysone synthesis pathway.

Item Number

Nodes 10,282
Protein 8225
Metabolic reaction 1827
Transport reaction 114
Exchange reaction 114
Biomass reaction 2

IR 153,647
P-P IR 147,656
R-R IR 4376
T-T IR 115
T-E IR 115
T-R IR 396
P-R IR 841
R-B IR 128
T-B IR 20

3.2.2. IRs Affecting the Synthesis of Ecdysone

The IRs that affect the ecdysone synthesis were analyzed with flux variation analysis.
The flux of the biomass equation was first fixed to the experimental value, and the T-E
IR of ecdysone was set to be the objective function. In the first simulation, the maximum
rate of ecdysone synthesis was calculated with FBA, and the flux of each IR under this
condition was recorded. The obtained maximum rate was 5.0 mmolgDW

−1h−1. In the
second simulation, the upper and lower bounds of the T-E IR for ecdysone were set to be a
smaller value of (0, 1) mmolgDW−1h−1, which constrained the maximum synthesis rate
of ecdysone as 1 mmolgDW

−1h−1. The fluxes of the IRs in the MPIN under this condition
were calculated and recorded.

Comparing the fluxes of the IRs in the two times of simulations, there were 489 IRs with
flux variations. To avoid false positive results due to calculation errors, only the reactions
with flux changes larger than 0.01 mmolgDW

−1h−1 or smaller than −0.01 mmolgDW
−1h−1

remained. Finally, 236 IRs were obtained after screening, including 27 P-R IRs, 116 P-P IRs,
81 R-R IRs, 6 T-T IRs, 3 T-R IRs, and 3 T-E IRs (Supplementary File S3). Figure 2 shows the
network comprised of the IRs that affect ecdysone synthesis.
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The IRs were further identified as IRs that compete with ecdysone synthesis, i.e., IRs
with larger flux in the second simulation, and IRs that promote ecdysone synthesis, i.e., IRs
with larger flux in the first simulation. The results showed that 105 IRs were competitive
with the synthesis of ecdysone, including 58 P-P IRs, 8 P-R IRs, 32 R-R IRs, 2 T-T IRs,
2 T-R IRs, and 3 T-E IRs, in which three metabolic reactions in the ecdysone synthesis
pathway were included. Figure 3 shows the network comprised of the IRs that compete
with ecdysone synthesis. On the other hand, 131 IRs were found to promote the synthesis
of ecdysone, including 58 P-P IRs, 15 P-R IRs, and 58 R-R IRs, in which 12 reactions in the
ecdysone synthesis pathway were included. Figure 4 shows the network comprised of the
IRs that promote ecdysone synthesis.
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3.3. Analysis of Reactions and Proteins Affecting Ecdysone Synthesis
3.3.1. Analysis of Reactions Affecting the Synthesis of Ecdysone

The IRs in the MPIN are actually linked pairs of reactions or proteins. The metabolic
and transfer reactions (including transport and exchange reactions) contained in the IRs
affecting ecdysone synthesis were extracted. A total of 97 reactions affecting the synthesis
of ecdysone were extracted, of which 93 were metabolic reactions and the remaining
4 were reactions transporting nutrients, including glutamate, proline, cholesterol, and
ecdysone. The reactions and proteins included in the IRs that compete with ecdysone
synthesis were identified as competitive reactions and inhibitor proteins, respectively. The
reactions and proteins contained in the IRs promoting ecdysone synthesis were identified
as promotive reactions and promotive proteins, respectively. Finally, 62 competitive and
83 promotive reactions were extracted (Supplementary File S4). Since one metabolic reaction
may participate in multiple IRs, some metabolic reactions may have different effects on
ecdysone synthesis in different IRs. The exact effect of these reactions on ecdysone needs to
be determined by further calculations. The reactions affecting ecdysone synthesis include
a complete pathway for ecdysone synthesis, which produces ecdysone from cholesterol,
T00112 (transport for cholesterol) --> R11007 --> R08132 --> R08133 --> R08134 --> R08135 -->
T00113 (transport for ecdysone). The presence of this pathway demonstrates the accuracy
of using MPIN to calculate the elements that influence ecdysone synthesis.

The pathway and subsystem of the 97 reactions influencing ecdysone synthesis were
further analyzed. Table 6 shows the distribution of these reactions in the KEGG pathways.
The pathways enriched of competitive and promotive reactions are generally consistent,
suggesting that the ecdysone metabolism is closely related to the pathways listed in Table 6
and some reactions in these pathways promote ecdysone synthesis, while some others
have competitive effects. The pathway with the greatest impact on ecdysone synthesis is
arginine and proline metabolism, followed by steroid biosynthesis and insect hormone
biosynthesis pathways.

Table 6. Pathway distribution of the competitive and promotive metabolic reactions.

Subsystem Pathway Competitive
Reaction

Promotive
Reaction

Glucose metabolism

Glycolysis/Gluconeogenesis 1 3
Citrate cycle (TCA cycle) 1 2

Pentose phosphate pathway 4 3
Pentose and glucuronate interconversions 3 1

Galactose metabolism 1 1
Inositol phosphate metabolism 2 2

Pyruvate metabolism 2 1
Propanoate metabolism 1 1
GPI-anchor biosynthesis 0 1

Amino acid metabolism

Arginine biosynthesis 1 1
Alanine, aspartate and glutamate metabolism 1 1

Glycine, serine and threonine metabolism 1 1
Valine, leucine and isoleucine degradation 1 3

Arginine and proline metabolism 11 17
Tyrosine metabolism 2 1
β-Alanine metabolism 1 2

D-Amino acid metabolism 3 2

Lipid metabolism

Steroid biosynthesis 7 5
Glycerolipid metabolism 3 6

Glycerophospholipid metabolism 2 4
Sphingolipid metabolism 1 1

Cofactor, vitamin
metabolism

Ubiquinone and other terpenoid-quinone
biosynthesis 1 2

Folate biosynthesis 1 3

Nucleic acid metabolism Pyrimidine metabolism 1 4

Metabolism of
Terpenoids and Ketones Insect hormone biosynthesis 2 9
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3.3.2. Analysis of Proteins Affecting Ecdysone Synthesis

The IRs that affect ecdysone synthesis in the MPIN contain 113 proteins, including
96 promotive proteins and 94 inhibitor proteins. The GO enrichment analysis of these
proteins was performed with the DAVID database. Figure 5 shows the results of the
GO enrichment analysis. In addition to the metabolic processes such as the cholesterol
biosynthetic process, hydrogen peroxide catabolic process, and oxygen transport, the
promotive proteins are mainly concentrated in the transition of the mitotic cell cycle and
protein N-linked glycosylation. The former is a regulatory process, and the latter is a protein
modification process. The inhibitor proteins are also associated with the regulation of the
cholesterol biosynthetic process and the transition of the mitotic cell cycle. In addition, many
proteins are enriched in the sterol metabolic process to compete with cholesterol synthesis.
The simultaneous prediction of complex processes such as metabolism, regulation, and
protein modification can only be achieved by integrated networks, demonstrating the
superiority of MPIN over single networks.
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3.3.3. Analysis of Key Reactions and Proteins Affecting Ecdysone Synthesis

There are 236 IRs affecting ecdysone synthesis obtained in Section 3.2.2. In order
to determine the reactions having a significant impact on the ecdysone synthesis, the
flux of each IR was fixed at its maximum and minimum values, respectively, and the
maximum synthesis rates of ecdysone were simulated and compared to determine the
impact of each individual IR on ecdysone synthesis, as described in Method Section 2.5.
As a result, most IRs have a quite small influence on the ecdysone synthesis. There are
16 IRs that have a significant impact on the synthesis rate of ecdysone with changes of over
3% (Supplementary File S5). These IRs constitute three synthesis routes including three
metabolic reactions from the GSMN and sixteen proteins from the PIN (Figure 6).

The first route is the classic ecdysone synthesis pathway which is affected by the pro-
tein Shadow (Sad). Sad is a cytochrome P450. It is located in the mitochondria and catalyzes
the last step of ecdysone synthesis by transforming 2-deoxyecdysone to ecdysone. The
second route contains the Dmel\CG18301 protein, which acts as an ester bond hydrolase
to catalyze R01462, which releases cholesterol by breaking down cholesterol esters and
thereby influences the synthesis of ecdysone.

In the third route, Apl-1 interacts with EBP to influence metabolic reactions. Apl-1
is a necessary protein required for larval transformation and morphogenesis processes,
especially in the molting stage [31]. As a sterol isomerase, EBP mainly catalyzes the
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conversion of sterols. It catalyzes R03353 for the formation of lathosterol. SREBF2 interacts
with SC5D as a sterol regulatory element binding protein, and SC5D catalyzes R07215. The
existence of R03353 and R07215 form a route to generate cholesterol from cholestenol, i.e.,
R03353 (C03845 --> C01189) --> R07215 (C01189 --> C01164) --> R01451 (C01164 --> C00187),
which subsequently affects the synthesis of ecdysone. Cholestenol can be synthesized
through the steroid biosynthesis pathway.
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R03353/R07215 and R01462 changed the synthesis rate of ecdysone by 12.5% and 50%,
respectively. Therefore, it is possible that E. sinensis has the ability to synthesize cholesterol
from other substances instead of absorbing it from feeds directly. In addition, compared
with the number of IRs influencing the synthesis of ecdysone, the number of key IRs is
quite small, which indicates that the synthesis and regulation of ecdysone synthesis is a
complex process influenced by the combined effect of multiple reactions and proteins. The
low number of key reactions may be due to the presence of alternative synthesis routes.

4. Conclusions

Integration of large-scale biological networks is an important step towards whole-
cell network reconstruction. Multi-network integration has always been a challenge in
biological network research. In this work, the GSMN and PIN of E. sinensis were integrated
to reconstruct the first MPIN for higher animals, which included 1827 metabolic reactions,
228 transfer reactions, and 8225 proteins. The MPIN was used for the simulation of
ecdysone synthesis. Through the flux variation analysis, 236 IRs were found to have a
relationship with the synthesis of ecdysone, in which 16 IRs had a significant impact. These
IRs constitute three synthesis routes including three metabolic reactions from the GSMN
and sixteen proteins from the PIN. It is hypothesized that a route from lathosterol may
exist in E. sinensis. The key proteins in the synthesis routes provide important regulation
information of the ecdysone synthesis. The analysis based on the MPIN shows the complex
influence elements influencing the synthesis of ecdysone, including metabolism, regulation,
and protein modification. Furthermore, the results of this work provide a new progression
for the integration and simulation of complex large-scale biological networks.



Genes 2024, 15, 410 15 of 16

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/genes15040410/s1, Supplementary File S1: Construction of biomass equation;
Supplementary File S2: Nodes and IRs in MPIN; Supplementary File S3: IRs affecting the synthesis of
ecdysone; Supplementary File S4: Reactions and proteins affecting the synthesis of ecdysone; Supplemen-
tary File S5: IRs having a significant impact on the synthesis rate of ecdysone.

Author Contributions: T.H., Z.S. and L.Z. organized the data. M.Z., J.Y. and J.L. analyzed the data,
T.H. and Z.S. wrote the manuscript. T.H. and J.S. designed the experiment and revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (31770904,
32102764), the Tianjin Development Program for Innovation and Entrepreneurship team (ITTFRS2017007),
and the Program for Innovative Research Team at the University of Tianjin (TD13-5076).

Institutional Review Board Statement: Ethical review and approval were waived for this study
due to that this is a purely bioinformatics study that does not involve any wet experiments on
humans or animals. The data used in this study comes from published papers which have been
ethically approved.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

Abbreviations

Genome-scale metabolic network (GSMN); protein–protein interaction network (PIN); metabolic–
protein interaction integrated network (MPIN); integrated reaction (IR); reaction–reaction integrated
reaction (R-R IR); protein–reaction integrated reaction (P-R IR); protein–protein integrated reaction
(P-P IR); transport–reaction integrated reaction (T-R IR); transport–transport integrated reaction (T-T
IR); transport–exchange integrated reaction (T-E IR); reaction–biomass integrated reaction (R-B IR);
transport–biomass integrated reaction (T-B IR).

References
1. Hao, T.; Wu, D.; Zhao, L.; Wang, Q.; Wang, E.; Sun, J. The Genome-Scale Integrated Networks in Microorganisms. Front. Microbiol.

2018, 9, 296. [CrossRef]
2. Covert, M.W.; Knight, E.M.; Reed, J.L.; Herrgard, M.J.; Palsson, B.O. Integrating high-throughput and computational data

elucidates bacterial networks. Nature 2004, 429, 92–96. [CrossRef]
3. Chandrasekaran, S.; Price, N.D. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in

Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 17845–17850. [CrossRef]
4. Jiang, J.; Song, L.; Zheng, P.; Jia, S.; Sun, J. Construction and structural analysis of integrated cellular network of Corynebacterium

glutamicum. Chin. J. Biotechnol. 2012, 28, 577–591.
5. Jensen, P.A.; Lutz, K.A.; Papin, J.A. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and

transcriptional regulatory networks. BMC Syst. Biol. 2011, 5, 147. [CrossRef] [PubMed]
6. Chandrasekaran, S. A Protocol for the Construction and Curation of Genome-Scale Integrated Metabolic and Regulatory Network

Models. Methods Mol. Biol. 2019, 1927, 203–214. [CrossRef] [PubMed]
7. Wang, Y.C.; Chen, B.S. Integrated cellular network of transcription regulations and protein-protein interactions. BMC Syst. Biol.

2010, 4, 20. [CrossRef] [PubMed]
8. Covert, M.W.; Xiao, N.; Chen, T.J.; Karr, J.R. Integrating metabolic, transcriptional regulatory and signal transduction models in

Escherichia coli. Bioinformatics 2008, 24, 2044–2050. [CrossRef] [PubMed]
9. Lee, J.M.; Gianchandani, E.P.; Eddy, J.A.; Papin, J.A. Dynamic analysis of integrated signaling, metabolic, and regulatory networks.

PLoS Comput. Biol. 2008, 4, e1000086. [CrossRef]
10. Karr, J.R.; Sanghvi, J.C.; Macklin, D.N.; Gutschow, M.V.; Jacobs, J.M.; Bolival, B., Jr.; Assad-Garcia, N.; Glass, J.I.; Covert, M.W. A

whole-cell computational model predicts phenotype from genotype. Cell 2012, 150, 389–401. [CrossRef] [PubMed]
11. Sanghvi, J.C.; Regot, S.; Carrasco, S.; Karr, J.R.; Gutschow, M.V.; Bolival, B., Jr.; Covert, M.W. Accelerated discovery via a whole-cell

model. Nat. Methods 2013, 10, 1192–1195. [CrossRef]
12. Carrera, J.; Estrela, R.; Luo, J.; Rai, N.; Tsoukalas, A.; Tagkopoulos, I. An integrative, multi-scale, genome-wide model reveals the

phenotypic landscape of Escherichia coli. Mol. Syst. Biol. 2014, 10, 735. [CrossRef]

https://www.mdpi.com/article/10.3390/genes15040410/s1
https://www.mdpi.com/article/10.3390/genes15040410/s1
https://doi.org/10.3389/fmicb.2018.00296
https://doi.org/10.1038/nature02456
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1186/1752-0509-5-147
https://www.ncbi.nlm.nih.gov/pubmed/21943338
https://doi.org/10.1007/978-1-4939-9142-6_14
https://www.ncbi.nlm.nih.gov/pubmed/30788794
https://doi.org/10.1186/1752-0509-4-20
https://www.ncbi.nlm.nih.gov/pubmed/20211003
https://doi.org/10.1093/bioinformatics/btn352
https://www.ncbi.nlm.nih.gov/pubmed/18621757
https://doi.org/10.1371/annotation/5594348b-de00-446a-bdd0-ec56e70b3553
https://doi.org/10.1016/j.cell.2012.05.044
https://www.ncbi.nlm.nih.gov/pubmed/22817898
https://doi.org/10.1038/nmeth.2724
https://doi.org/10.15252/msb.20145108


Genes 2024, 15, 410 16 of 16

13. Macklin, D.N.; Ahn-Horst, T.A.; Choi, H.; Ruggero, N.A.; Carrera, J.; Mason, J.C.; Sun, G.; Agmon, E.; DeFelice, M.M.; Maayan, I.; et al.
Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science 2020, 369, aav3751. [CrossRef]

14. Sun, G.; Ahn-Horst, T.A.; Covert, M.W. The E. coli Whole-Cell Modeling Project. EcoSal Plus 2021, 9, eESP00012020. [CrossRef]
15. Ahn-Horst, T.A.; Mille, L.S.; Sun, G.; Morrison, J.H.; Covert, M.W. An expanded whole-cell model of E. coli links cellular

physiology with mechanisms of growth rate control. npj Syst. Biol. Appl. 2022, 8, 30. [CrossRef]
16. Hao, T.; Peng, W.; Wang, Q.; Wang, B.; Sun, J. Reconstruction and Application of Protein-Protein Interaction Network. Int. J. Mol.

Sci. 2016, 17, 907. [CrossRef]
17. Wang, B.; Yang, J.; Gao, C.; Hao, T.; Li, J.; Sun, J. Reconstruction of Eriocheir sinensis Y-organ Genome-Scale Metabolic Network

and Differential Analysis After Eyestalk Ablation. Front. Genet. 2020, 11, 532492. [CrossRef]
18. Chen, X.; Wang, J.; Hou, X.; Yue, W.; Huang, S.; Wang, C. Tissue expression profiles unveil the gene interaction of hepatopancreas,

eyestalk, and ovary in the precocious female Chinese mitten crab, Eriocheir sinensis. BMC Genet. 2019, 20, 12. [CrossRef] [PubMed]
19. Chen, X.; Wang, J.; Yue, W.; Huang, S.; Chen, J.; Chen, Y.; Wang, C. Structure and function of the alternatively spliced isoforms of

the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci. Rep. 2017, 7, 12993. [CrossRef] [PubMed]
20. Hou, X.; Yang, H.; Chen, X.; Wang, J.; Wang, C. RNA interference of mTOR gene delays molting process in Eriocheir sinensis. Comp.

Biochem. Physiol. Part B Biochem. Mol. Biol. 2021, 256, 110651. [CrossRef] [PubMed]
21. Velazquez-Lizarraga, A.E.; Juarez-Morales, J.L.; Racotta, I.S.; Villarreal-Colmenares, H.; Valdes-Lopez, O.; Luna-Gonzalez, A.;

Rodriguez-Jaramillo, C.; Estrada, N.; Ascencio, F. Transcriptomic analysis of Pacific white shrimp (Litopenaeus vannamei, Boone
1931) in response to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. PLoS ONE 2019, 14, e0220993.
[CrossRef] [PubMed]

22. Li, J.; Gou, Y.; Yang, J.; Zhao, L.; Wang, B.; Hao, T.; Sun, J. Genome-scale metabolic network model of Eriocheir sinensis icrab4665
and nutritional requirement analysis. BMC Genom. 2022, 23, 475. [CrossRef] [PubMed]

23. Hao, T.; Gou, Y.; Li, J.; Wang, B.; Zhang, Y.; Sun, J. Construction of Eriocheir sinensis Protein-protein Interaction Network and
Extraction of Molting Sub-network. In Proceedings of the 12th International Conference on Bioscience, Biochemistry and
Bioinformatics, Tokyo, Japan, 7–10 January 2022; pp. 70–76.

24. Wang, B.; Ning, Q.; Hao, T.; Yu, A.; Sun, J. Reconstruction and analysis of a genome-scale metabolic model for Eriocheir sinensis
eyestalks. Mol. Biosyst. 2016, 12, 246–252. [CrossRef] [PubMed]

25. Liu, D.; Ge, Y. GB28050-2011 General principles for nutrition labeling of prepackaged food in national food safety standard. Sci.
Technol. Food Ind. 2013, 18, 24–27.

26. Huang, S.; Yi, Q.; Lian, X.; Xu, S.; Yang, C.; Sun, J.; Wang, L.; Song, L. The involvement of ecdysone and ecdysone receptor
in regulating the expression of antimicrobial peptides in Chinese mitten crab, Eriocheir sinensis. Dev. Comp. Immunol. 2020,
111, 103757. [CrossRef] [PubMed]

27. Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms.
Nucleic Acids Res. 2021, 49, D545–D551. [CrossRef] [PubMed]

28. Hu, Q.; Li, X.; Jiang, Y.; Si, Y.; Zheng, Y.; Sun, N. Comparative Growth Traits in Different Families of Juvenile Chinese Mitten
Handed Crab, Eriocheir sinensis, Cultured in Net Cages Disposed in Ricefields and in an Indoor Tank. Fish. Sci. 2016, 35, 547–551.

29. Heirendt, L.; Arreckx, S.; Pfau, T.; Mendoza, S.N.; Richelle, A.; Heinken, A.; Haraldsdottir, H.S.; Wachowiak, J.; Keating, S.M.;
Vlasov, V.; et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 2019,
14, 639–702. [CrossRef]

30. Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional
enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [CrossRef]

31. Ewald, C.Y.; Raps, D.A.; Li, C. APL-1, the Alzheimer’s Amyloid precursor protein in Caenorhabditis elegans, modulates multiple
metabolic pathways throughout development. Genetics 2012, 191, 493–507. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.aav3751
https://doi.org/10.1128/ecosalplus.ESP-0001-2020
https://doi.org/10.1038/s41540-022-00242-9
https://doi.org/10.3390/ijms17060907
https://doi.org/10.3389/fgene.2020.532492
https://doi.org/10.1186/s12863-019-0716-1
https://www.ncbi.nlm.nih.gov/pubmed/30683050
https://doi.org/10.1038/s41598-017-13474-1
https://www.ncbi.nlm.nih.gov/pubmed/29021633
https://doi.org/10.1016/j.cbpb.2021.110651
https://www.ncbi.nlm.nih.gov/pubmed/34320378
https://doi.org/10.1371/journal.pone.0220993
https://www.ncbi.nlm.nih.gov/pubmed/31408485
https://doi.org/10.1186/s12864-022-08698-z
https://www.ncbi.nlm.nih.gov/pubmed/35764922
https://doi.org/10.1039/C5MB00571J
https://www.ncbi.nlm.nih.gov/pubmed/26588667
https://doi.org/10.1016/j.dci.2020.103757
https://www.ncbi.nlm.nih.gov/pubmed/32485180
https://doi.org/10.1093/nar/gkaa970
https://www.ncbi.nlm.nih.gov/pubmed/33125081
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1534/genetics.112.138768

	Introduction 
	Methods 
	Transformation of the Metabolic Network to a Reaction Graph 
	Addition of the Biomass Equation 
	Reconstruction of Integrated Network 
	Analysis of the Ecdysone Synthesis Pathway 
	Addition of the Ecdysone Synthesis Pathway 
	Determination of Biomass Synthesis Rates 
	Identification of Metabolic Reactions and Proteins That Affect the Ecdysone Synthesis 

	Analysis of Key Metabolic Reactions and Proteins Affecting Ecdysone Synthesis 

	Results and Discussions 
	The Reconstruction of MPIN 
	Transformation of Metabolic Networks and Addition of Biomass Equations 
	Preliminary Reconstruction of Integrated Network 
	Addition of Biomass Equation 
	Correction of the Model 

	Analysis of the Ecdysteroid Pathway 
	Addition of the Ecdysone Synthesis Pathway 
	IRs Affecting the Synthesis of Ecdysone 

	Analysis of Reactions and Proteins Affecting Ecdysone Synthesis 
	Analysis of Reactions Affecting the Synthesis of Ecdysone 
	Analysis of Proteins Affecting Ecdysone Synthesis 
	Analysis of Key Reactions and Proteins Affecting Ecdysone Synthesis 


	Conclusions 
	References

