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Abstract: The precise identification of splice sites is essential for unraveling the structure and
function of genes, constituting a pivotal step in the gene annotation process. In this study, we
developed a novel deep learning model, DRANetSplicer, that integrates residual learning and
attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We
constructed multiple datasets using the most recent versions of genomic data from three different
organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us
to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark
methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%,
95.82%) across the three organisms. Comparative analyses with benchmark methods, including
SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s
superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average
error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice
sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These
results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with
its performance in cross-organism predictions even surpassing that of benchmark methods in non-
cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in
predicting splice sites across similar organisms, supporting its applicability in gene annotation for
understudied organisms. We employed multiple methods to visualize the decision-making process of
the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known
biological features, further validating its overall performance. Our study systematically examined and
confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating
that its practical application in gene annotation is justified.

Keywords: splice site prediction; deep convolutional neural network; residual learning; attention
mechanism

1. Introduction

In recent years, the development of gene sequencing technologies has provided us
with essential raw genomic data for studying and understanding biological organisms
and their mechanisms. The raw genomic sequences generated by gene sequencing are
often challenging to be directly utilized in research and require genomic annotation to
be made accessible to relevant researchers. The progress of research endeavors, such as
whole-genome analysis and differential gene expression analysis, heavily relies on accurate
genomic annotation. In the gene structure of eukaryotic organisms, gene sequences exhibit
a discontinuous nature, with coding regions (exons) and non-coding regions (introns)
interspersed [1]. An important step in genomic annotation is the precise identification of
the boundaries between exons and introns within the gene structure [2]. The boundaries
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between exons and introns are termed splice sites, with the donor splice site situated
at the 5′ start of the intron (i.e., the exon-intron boundary) and the acceptor splice site
located at the 3′ end of the intron (i.e., the intron-exon boundary) [3]. Within eukaryotic
genomes, splice sites are highly conserved, with nearly 99% of splice sites conforming to
the GT-AG nucleotide pattern, denoted as canonical sites [4]. However, some splice sites
within the genome do not adhere to the GT-AG pattern, and these are referred to as non-
canonical sites [5]. Accurately identifying splice sites is an essential pathway for precisely
demarcating the boundaries between coding and non-coding regions, representing an
important step in understanding gene structure and ensuring the accurate annotation of
genomic sequencing data [6]. The prediction of splice sites is typically treated as a binary
classification problem, where the results are categorized into true splice sites and false
splice sites. Since splice sites are divided into donor splice sites and acceptor splice sites,
and these two types of splice sites exhibit substantial differences, the prediction of both
types is usually regarded as two different binary classification problems.

Existing splice site prediction methods can usually be categorized into three classes:
probabilistic models, traditional machine learning approaches, and deep learning methods.
Probabilistic models played an important role in the early stages of splice site prediction by
effectively capturing sequence patterns and statistical features of splice sites. They provided
a framework for understanding the probability distribution of splice events, laying the
foundation for subsequent research [7]. Traditional machine learning methods contributed
significantly, especially on moderate-sized datasets by incorporating additional feature
engineering. Through the manual extraction of sequence features, these methods better
explained the structure and patterns of gene sequences, offering an intuitive understand-
ing of splice site prediction problems [8]. Deep learning methods achieved remarkable
breakthroughs in the field of splice site prediction. Leveraging end-to-end learning with
neural networks these methods autonomously learned complex features of gene sequences
without extensive manual intervention. Deep learning methods demonstrated outstand-
ing performance on large-scale datasets, particularly excelling in handling nonlinear and
highly abstract biological information [9]. With the ongoing development of deep learning
technologies, these methods have become mainstream in the field of splice site prediction.

On the other hand, existing deep learning methods have predominantly used rela-
tively shallow network architectures for splice site prediction [10,11]. Numerous studies
have demonstrated that the depth of a neural network is important for improving model
performance [12,13]. However, deep neural networks can suffer from the issue of degra-
dation as the network depth increases. To address this problem and optimize the training
of deep networks, Kaiming He et al. introduced the concept of residual network (ResNet)
structures [14]. More recently, Qilong Wang et al. proposed an efficient channel attention
module called the Efficient Channel Attention (ECA) module, specifically designed for deep
convolutional neural networks (CNN) [15]. This module effectively captures inter-channel
interactions, allowing the network to focus more on critical features and suppress less
important ones. This enhancement contributes to improved feature representation and
generalization capabilities of the model. In this study, we incorporated the ECA module
into the original residual learning framework, resulting in Residual Attention Modules
(RAM). This module addresses the problem of model degradation caused by increased
network depth and enhances the predictive performance of the network. We made im-
provements to the ResNet18 model [14] by replacing the original residual modules with
our RAM and enhancing the downsampling mechanism to preserve genetic sequence
information. Additionally, we employed larger convolutional kernels and reduced the
convolutional stride to increase the model’s receptive field for capturing global features of
genetic sequences. The model developed in this way is referred to as DRANetSplicer.

For our experiments, we selected three extensively studied model organisms: O. sativa
japonica, A. thaliana and H. sapiens. We constructed corresponding whole-genome datasets
using their respective latest gene annotation versions. This approach enables us to employ
a more extensive set of high-quality data for training our models, thus enhancing their



Genes 2024, 15, 404 3 of 19

predictive performance. We validated the robustness of DRANetSplicer on splice site
datasets from the selected organisms, obtaining consistent experimental results. Compared
to benchmark methods, we demonstrate that DRANetSplicer achieves superior predictive
performance. Through cross-organism validation, we establish the model’s high generaliza-
tion capability, indicating its potential for splice site prediction across different organisms.
We introduce a variety of visualization methods to more intuitively display the learned
features of DRANetSplicer, which can also further validate the performance of the model.

2. Related Work

Drawing insights from previous studies on constructing splice site datasets, we observe
the following key points. Donor and acceptor splice sites represent two distinct types of
splice sites, each characterized by significant differences in contextual sequence features [16].
The model achieved optimal predictive performance when extracting 200 nucleotides from
the upstream and downstream flanking regions of the splice site as input sequences [17].
Non-canonical splice sites are important in certain biological events, and neglecting their
presence may lead to false negatives in identification results [18]. The strong conservation
of splice sites does not effectively identify them as the GT-AG di-nucleotide, characteristic
of splice sites, can also occur in non-splice site regions, resulting in higher false positives
in predictions [17]. Training models on imbalanced datasets, where one class is overly
represented, may lead to overfitting, making the model more prone to biased outcomes [19].
Furthermore, numerous studies on genome function prediction underscore the importance
of establishing balanced datasets [20,21].

Early splice site prediction methods were primarily based on probabilistic models,
such as the use of generalized hidden Markov models [7] and Markov models [22]. Since
probabilistic models typically need to account for long-range dependencies in sequences,
this may result in higher model complexity, leading to relatively larger computational costs
in both training and inference processes. With the advancement of machine learning, it
became possible to construct high-complexity models, and the use of machine learning
methods to build classifiers for splice site prediction gradually became the mainstream
approach. Machine learning-based splice site prediction methods typically involve manual
feature extraction and machine learning model selection. Feature extraction is commonly
based on biological characteristics such as base positions, correlations between adjacent
or non-adjacent nucleotides, RNA secondary structures, and other relevant factors for
representing gene sequences. Machine learning models use these artificially constructed
features as model inputs, which are then employed to predict splice sites. Commonly used
machine learning models include Support Vector Machines (SVM) [23,24], Artificial Neural
Networks (NN) [25], Random Forests (RF) [26,27], Decision Trees (DT) [28], and Naïve
Bayes (NB) [29]. While these machine learning methods have achieved significant success
in splice site prediction tasks, the limitation lies in the inability of manual feature extraction
to capture more significant distinctions between sequences, resulting in the predictive
performance of machine learning models not reaching higher levels.

In recent years, deep learning methods have gained widespread adoption in splice site
prediction. Models using deep learning techniques such as SpliceRover [9], Splice2Deep [30],
Deep Splicer [10], EnsembleSplice [11], SpliceFinder [17], Spliceator [16], DeepSS [31], iSS-
CN [32], DNABERT [33], and others have been developed for splice site prediction. The
predictive performance of these deep learning models consistently outperforms traditional
machine learning models. These models employing deep learning methods are all based
on CNN architectures. CNN architectures can autonomously perform feature extraction,
which addresses the limitations associated with manual feature extraction. However,
these models have typically utilized relatively shallow network structures for splice site
prediction. Numerous studies have emphasized the critical role of network depth in
enhancing model performance. Using deeper network architectures can effectively elevate
performance [12,13].
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Deep neural networks are notoriously challenging to train, often leading to the problem
of model degradation. In an effort to optimize the training process for deep networks,
Kaiming He et al. introduced the ResNet framework [14]. They demonstrated that ResNet
is easier to optimize and can achieve improved accuracy with significant depth. ResNet was
initially designed for image processing tasks, which involve non-sequential data. Therefore,
the original ResNet architecture was not explicitly designed to capture dependencies
between elements. However, gene sequences are inherently sequential data, and the
relationships between sequence elements play an important role in model predictions. The
original ResNet applies downsampling in the initial stages and globally employs small
convolutional kernels and large strides to reduce computational complexity. This approach
can result in a significant loss of genetic information within gene sequences and an inability
to capture dependencies between functional regions in the gene.

In the past several years, residual networks have been widely applied in the field of
bioinformatics, and experts and scholars in this field have increasingly valued the role of
residual networks, achieving good performance in bioinformatics tasks. Lijuan Shi et al.
proposed the ResnetAge method, which utilizes deep learning techniques, particularly
leveraging the advantages of ResNet to extract features from DNA methylation data and
build models for predicting the biological age of individuals, providing a new solution
for age prediction research based on DNA methylation data [34]. Mobeen Ur Rehman
et al. introduced the DCNN-4mC method, where the residual connections incorporated
in DCNN-4mC allow the sharing of shallow features with deeper layers, significantly
improving the accuracy and robustness of the model in predicting N4-methylcytosine
sites [35]. Muhao Chen et al. proposed a model called PIPR, which integrates a deep
residual recurrent convolutional neural network into a Siamese architecture. This model
models protein sequences to predict protein-protein interactions, and experimental results
demonstrate that PIPR outperforms various state-of-the-art systems [36]. Panagiotis Kor-
fiatis et al. proposed a method for predicting the methylation status of the MGMT gene
using a residual deep convolutional neural network. By introducing residual connections
into the deep convolutional neural network, the model’s performance and training speed
are improved, enabling prediction of the methylation status of the MGMT gene, which
contributes to cancer diagnosis and treatment research [37].

Qilong Wang et al. introduced an efficient channel attention module (ECA) designed
specifically for deep CNN [15]. This module is highly effective in enhancing the perfor-
mance of deep CNN by capturing cross-channel interactions. The core idea behind ECA is
to introduce a channel attention mechanism within the convolution operation to capture
relationships between different channels, thus improving the capability of feature repre-
sentation. The goal of the channel attention mechanism is to adaptively adjust the weights
of channel features, allowing the network to focus more on important features while sup-
pressing less relevant ones. This significantly enhances the model’s ability to generalize.
Through this mechanism, ECA can effectively augment the network’s representational
power without introducing excessive parameters or computational costs.

Kishore Jaganathan et al. [38] and Johannes Linder et al. [39] have provided substantial
evidence in their research, demonstrating that deep learning models can effectively learn
known biological features. They suggest that future deep learning models hold the potential
to offer insights into biology that human experts have not yet described, serving not only as
black-box classifiers. Similarly, we validate DRANetSplicer’s performance by confirming
its capacity to learn well-known biological features.

The most commonly used visualization methods for gene sequence prediction mod-
els include DeepLIFT [40] and Grad-CAM [41]. DeepLIFT calculates contribution scores
by comparing the activation of each neuron with a reference activation. Grad-CAM uti-
lizes pre-trained weights to backpropagate to the parameter layer to generate important
heatmaps for visualization. Both methods are excellent visualization techniques proposed
in recent years. Unfortunately, DeepLIFT cannot visualize residual networks. To address
this limitation, we introduce an extension of DeepLIFT called DeepSHAP [42]. DeepSHAP
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has the same architecture as DeepLIFT and supports operations where DeepLIFT does
not propose backpropagation rules. In summary, to visualize the features learned by the
DeepNetSplicer model and explore its interpretability, we employed both DeepSHAP and
Grad-CAM methods. To validate the model’s ability to learn biological features, we com-
pare visualizations generated by the model with well-known biological gene motif patterns
displayed using WebLogo [43]. WebLogo effectively calculates sequence conservation
and nucleotide relative frequencies at each nucleotide position from a multiple sequence
alignment of genomic datasets and further generates sequence logos that represent known
gene motif patterns.

3. Materials and Methods
3.1. Datasets Construction

We used the genome sequences of O. sativa japonica, A. thaliana and H. sapiens in this
experiment to construct donor and acceptor splice site datasets, respectively, totaling six
datasets, as shown in Table 1. During the dataset construction process, due to the double-
helix structure of DNA molecules that exhibit reverse complementarity, we only extracted
splice sites from the forward strand for analysis. We developed Python scripts to extract
splice sites and their surrounding nucleotide sequences from the FASTA files based on the
annotation information in the GFF files to construct the dataset. Moreover, all datasets were
constructed using the whole genome sequences corresponding to the respective organisms,
thus containing not only splice sites from canonical transcripts but also all splice sites
annotated in the GFF files. In this study, genomic sequence data (FASTA files) and their
respective genome annotation files (GFF files) were downloaded from NCBI. These FASTA
and GFF files, maintained by the NCBI, can be readily accessed on the NCBI official website
using the NCBI RefSeq version numbers.

Table 1. Description of gene annotation versions and the number of positive and negative samples
used for each organism.

Species Reference Annotation Dataset Num. of Positive Num. of Negative

O. sativa japonica IRGSP-1.0 NCBI-RefSeq: GCF_001433935.1 Donor 72,013 72,013
Acceptor 73,214 73,214

A. thaliana TAIR10.1 NCBI-RefSeq: GCF_000001735.4 Donor 65,161 65,161
Acceptor 65,505 65,505

H. sapiens GRCh38.p14 NCBI-RefSeq: GCF_000001405.40 Donor 141,499 141,499
Acceptor 137,455 137,455

We primarily considered the following aspects when constructing the dataset, whether
to construct datasets separately for donor and acceptor splice sites, input sequence length,
inclusion of non-canonical splice sites, types of negative datasets, and the ratio of positive
to negative samples. We constructed separate datasets for donor and acceptor splice sites.
From the upstream and downstream flanking segments of the splice sites, we extracted
200 nucleotides each, resulting in input sequences of length 402 nucleotides. The dataset
construction included consideration of non-canonical splice sites. For the negative class
dataset, we selected non-splice site sequences that adhere to the GT-AG rule. Redundant
sequences were removed from the dataset, and we ensured an equal number of positive
and negative samples (i.e., an equal number of splice and non-splice site instances).

In this study, we conducted experiments on the six datasets we created, splitting
each dataset into training, validation, and test sets in proportions of 60%, 15%, and 25%,
respectively, for model training, validation, and testing.

3.2. The DRANetSplicer Model

The DRANetSplicer model uses the RAM we designed as building blocks. ResNet,
initially designed for non-sequential image data, lacks optimization for gene sequence
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analysis due to its early downsampling and small convolutional kernels. To address this,
we propose RAM, an improved building block for gene sequence prediction. (1) De-
layed Downsampling: We postpone data downsampling until the third convolutional
stage to preserve genetic information integrity; (2) Improved Downsampling: Instead
of using stride-2 convolutions for downsampling, we first extract features with stride-1
convolutions, followed by downsampling using average pooling to avoid information loss;
(3) Larger Receptive Field: We use larger convolutional kernels to capture broader features,
essential for distinguishing splice sites and non-splice sites with critical information in
upstream and downstream sequences; (4) Residual Attention Module (RAM): Enhances
Residual Blocks with ECA for improved feature extraction and cross-channel interaction,
boosting the model’s representational power. These modifications aim to optimize ResNet
for gene sequence analysis, particularly in predicting splice sites with higher accuracy
and robustness.

The structure of the RAM is shown in Figure 1. Figure 1a illustrates the ECABlock,
which is the structure of the ECA. Figure 1b shows the ConvBlock, while Figure 1c displays
the IdentityBlock, both representing the structure of our designed RAM. We constructed
two RAMs to address whether changes occur in the size and dimensions of input and
output feature maps. The difference between ConvBlock and IdentityBlock lies in the
fact that the input and output feature maps in the IdentityBlock have the same size and
dimensions, enabling them to be directly added together. However, in the ConvBlock
structure, the output feature map undergoes changes in size and dimensions. In this case, a
1 × 1 the convolutional layer is applied, along with average pooling, for downsampling to
match the dimensions and size of the input and output feature maps.

Figure 1. The structure of the RAM. (a) ECABlock represents the structure of the ECA. (b) ConvBlock
illustrates the one of RAM. (c) IdentityBlock illustrates the other of RAM.

The ECABlock aggregates convolutional features using global average pooling, adap-
tively determines the convolution kernel size, performs one-dimensional convolution,
and employs the Sigmoid function to learn channel attention. The ConvBlock consists of
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ECABlock, a convolutional layer, a batch normalization layer, an activation layer (utiliz-
ing Rectified Linear Unit, ReLU), an average pooling layer, and an additive layer. The
IdentityBlock includes ECABlock, a convolutional layer, a batch normalization layer, an
activation layer (using ReLU), and an additive layer. In both ConvBlock and IdentityBlock,
the convolutional layer has a stride of 1. The hyperparameters N, K, and P on the convolu-
tional layer and the average pooling layer represent the number of kernels, kernel size, and
pooling window size, respectively. Before each convolutional layer in the ConvBlock and
IdentityBlock, Batch Normalization is applied to accelerate training and reduce overfitting.
It normalizes the input data for each batch, making the model more robust to variations in
input data, which helps the model generalize better to new data.

The overall structure of DRANetSplicer is illustrated in Figure 2. The overall archi-
tecture of DRANetSplicer is an improvement upon the standard ResNet18 framework. In
Section 4.2, we provide the rationale for selecting ResNet18 as the main backbone struc-
ture. We replace the original residual blocks in ResNet18 with RAM and use a grid search
algorithm to determine the optimal combination of hyperparameters N, K, and P within
the RAM. In the experiments, for the input to the DRANetSplicer model, the input layer
receives a specific-sized one-hot encoded sequence. The input data first pass through a con-
volutional layer with 64 convolutional kernels, each with a size of 7 × 4, followed by batch
normalization and an activation layer using Rectified Linear Unit (ReLU) as the activation
function. Subsequently, it goes through four sets of ConvBlock and IdentityBlock with 64,
128, 128, and 256 convolutional kernels, all having a size of 7 × 1. The average pooling
layer is applied with pooling window sizes of 1 × 1, 3 × 1, 4 × 1, and 4 × 1, respectively.
The network concludes with a global average pooling layer and a two-way fully connected
layer with Softmax. The final fully connected layer with two units corresponds to the two
output classes activated by the Softmax function (splice sites and non-splice sites).

Figure 2. Depicts the architecture of DRANetSplicer.

Table 2 illustrates the search space for hyperparameter optimization of DRANetSplicer.
The best-performing hyperparameter combination, highlighted in bold is ultimately em-
ployed as the parameter for the DRANetSplicer model. In this study, we used an optimized
grid search algorithm that tailors specific search spaces for each block instead of exhaus-
tively searching all predefined parameter combinations. We formulated different hyperpa-
rameter search spaces for each block based on the five convolutional stages of ResNet. Here
is a summary of the algorithm’s steps: (1) Define parameter ranges: Define possible ranges
for each RAM hyperparameter (N, K, P) based on prior knowledge and computational
resources; (2) Create parameter grids: Create parameter grids for each RAM based on the
defined ranges; (3) Model training and evaluation: Train and evaluate the model using
cross-validation on the training set, with accuracy as the evaluation metric; (4) Select the
best combination: Choose the parameter combination with the best performance on the
validation set as the final hyperparameters. This approach optimizes the search process by
considering specific block features, leading to improved model performance.
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Table 2. Search space for DRANetSplicer hyperparameter optimization.

Convolution Stage Model Hyperparameters Search Space

Stage 1 N [16,32,64]
K [1 × 4,3 × 4,4 × 4,5 × 4,7 × 4]

Stage 2
N [32,64,128]
K [5 × 1,7 × 1,9 × 1]
P [1 × 1,2 × 1,3 × 1]

Stage 3
N [64,128,256]
K [5 × 1,7 × 1,9 × 1]
P [3 × 1,4 × 1,5 × 1]

Stage 4
N [64,128,256]
K [7 × 1,9 × 1,11 × 1]
P [3 × 1,4 × 1,5 × 1]

Stage 5
N [128,256,512]
K [7 × 1,9 × 1,11 × 1]
P [3 × 1,4 × 1,5 × 1]

Other hyperparameter

Pooling [MaxPooling,AveragePooling]
Optimizers [Adam,Adamax,Nadam,SGD]
Batch size [16,32,64,128,256]

Epochs [10,20,30,40,50]

3.3. Model Inputs and Outputs

We converted nucleotide sequences into numerical vectors using one-hot encoding,
where A, T, G, and C were, respectively, transformed into [1,0,0,0], [0,1,0,0], [0,0,1,0], and
[0,0,0,1], as illustrated in Figure 3. Output variables were also one-hot encoded: splice sites
and non-splice sites were mapped to [1,0] and [0,1], respectively.

Figure 3. Model inputs. Nucleotide sequences are represented using one-hot encoding. SS represents
splice sites, which include not only the canonical GT-AG sites but also non-canonical sites.
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3.4. Implementation Details

During the training process, we employed categorical cross-entropy as the loss func-
tion, Stochastic Gradient Descent (SGD) as the optimizer, and enabled Nesterov momentum
for SGD. The initial learning rate was set to 0.01, and in the subsequent epochs, we reduced
the learning rate by half every five epochs, continuing until 20 epochs of training. The batch
size was set to 64. The model with the best performance on the validation set was selected
as the final model. The training was repeated three times for each model individually
and the average of the three results was used as the final result. All experiments were
implemented using Tensorflow (version 2.6.0) and Keras (version 2.6.0) on the same system
with a single NVIDIA GA102 [GeForce RTX 3090 Ti] 24 GB GPU.

3.5. Evaluation Metrics

For this experiment, six metrics were used to evaluate the model’s performance, and
the calculation of these metrics is presented in Table 3. Accuracy represents the proportion
of correctly identified samples to the total number of samples. Precision is the proportion
of samples correctly identified as splice sites that are true splice sites. Sensitivity measures
the proportion of correctly recognized splice site samples to the total number of splice site
samples. Specificity represents the proportion of samples correctly identified as non-splice
sites among the total number of non-splice site samples. The F1 score is the harmonic mean
of precision and sensitivity, indicating the balance between these two metrics.

Table 3. Performance metrics used for model evaluation.

Evaluation Metrics Equation

Accuracy (Acc) TP + TN
TP + TN + FP + FN

Precision (Pre) TP
TP + FP

Sensitivity (Sn) TP
TP + FN

Specificity (Sp) TN
TN + FP

F1 Score (F1) 2×TP
2×TP + FP + FN

Error Rate(Err) 1 − Accuracy

TP (True Positive): The number of splice sites correctly predicted as splice sites. FN (False Negative):
The number of splice sites incorrectly predicted as non-splice sites. FP (False Positive): The number
of non-splice sites incorrectly predicted as splice sites. TN (True Negative): The number of non-splice
sites correctly predicted as non-splice sites.

3.6. Cross-Organism Validation

Most splice site prediction models are trained on high-quality, experimentally verified
data, which are predominantly available for well-studied organisms. However, for less-
researched species, collecting high-quality datasets can be challenging. Since splice sites and
other functional elements may exhibit conservation across similar species [44], some studies
have explored the transfer of models trained on one species to similar species [19,45], such
as within animals or plants. In line with the concept of cross-organism models, we estimate
the generalization capability of DRANetSplicer for predicting splice sites in different
species using cross-organism validation. Cross-organism validation involves testing a
model trained on data from one species on data from another species. For example, cross-
organism validation entails testing a model trained on Oryza data on data from two other
species (Arabidopsis and Homo).

3.7. Interpretability

DeepSHAP allows the calculation of separate contribution scores for the four bases
at each nucleotide position. The algorithm interprets the difference between the output
results and the results under some “reference” input. It decomposes this output “refer-
ence difference” into the “reference difference” contributions of input features. Finally,
contribution scores are obtained based on the designed operational rules.
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WebLogo is utilized to efficiently compute the sequence conservation at each nu-
cleotide position and the relative frequency of nucleotides from a multiple sequence align-
ment of genomic datasets. Using these computed data, sequence logos are generated,
providing well-known gene motif patterns. We employed WebLogo to calculate the se-
quence conservation in the positive donor and acceptor datasets. These results were then
compared with the nucleotide-weighted contribution scores learned by our model, serving
as a validation of the model’s ability to learn known gene sequence motifs.

Grad-CAM operates by utilizing pre-trained weights during classification to perform
backpropagation to the desired parameter layer (such as the convolutional layer, visualizing
the final convolutional layer in this study). This process yields a gradient matrix for the
output feature maps of that parameter layer. The gradient matrix is subjected to spatial
dimension global average pooling, resulting in a weight vector for the output feature map
channels. This weight vector is then used to weigh the various channels of the feature map,
ultimately producing a heatmap.

To analyze the sequence features learned by the model, we conducted feature visual-
ization on six different datasets: Oryza donor, Oryza acceptor, Arabidopsis donor, Arabidopsis
acceptor, Homo donor, and Homo acceptor. As we need to compare the visualization results
obtained from the above datasets, we employed the same approach to select 1000 input
sequences from the test set for model visualization. However, there is a consideration: the
contribution scores computed by DeepSHAP represent the contributions of all nucleotides
in each input sequence within a given dataset. This leads to the issue that the contribution
scores are not calculated on the same scale. Therefore, we adopted the normalization
method used by Jasper Zuallaert et al. [9] to solve this problem and obtain the weighted
contribution scores for the given dataset.

4. Results and Discussion
4.1. Prediction Performance of DRANetSplicer

To evaluate the performance of DRANetSplicer, we computed the six performance met-
rics as presented in Table 3. In addition, we provided the Area Under the ROC Curve (AUC).
The predictive results of DRANetSplicer for three different organisms are shown in Table 4,
please see Supplementary Materials Table S1 for the results of each individual experiment.

Table 4. Performance metrics of DRANetSplicer in predicting donor and acceptor splice sites for
three organisms.

Species Site Acc (%) Pre (%) Sn (%) Sp (%) Err (%) F1 (%) AUC (%)

O. sativa japonica Donor 97.21 97.53 96.85 97.57 2.79 97.19 99.21
Acceptor 96.30 96.29 96.29 96.32 3.70 96.29 98.97

A. thaliana Donor 95.63 96.75 94.41 96.85 4.37 95.56 98.59
Acceptor 94.91 95.68 94.05 95.76 5.09 94.86 98.40

H. sapiens Donor 96.88 96.78 96.98 96.77 3.12 96.88 99.35
Acceptor 96.25 95.93 96.58 95.91 3.75 96.25 99.20

Average Donor 96.57 97.02 96.08 97.06 3.43 96.54 99.05
Acceptor 95.82 95.97 95.64 96.00 4.18 95.80 98.86

On the donor splice site dataset, DRANetSplicer achieved an average accuracy of
96.57%, an average error rate of 3.43%, and an average AUC of 99.05%. The average values
of precision, sensitivity, specificity, and F1 score metrics all exceeded 96%. On the acceptor
splice site dataset, DRANetSplicer obtained an average accuracy of 95.82%, an average
error rate of 4.18%, and an average AUC of 98.86%. The average values of precision,
sensitivity, specificity, and F1 score metrics all exceeded 95%. These performance metrics
indicate that DRANetSplicer exhibits excellent predictive performance across datasets from
different species.
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4.2. Ablation Study

The ablation experiment results are presented in Table 5, showing that as the model
depth increases from ResNet18 to ResNet34 and ResNet50, the predictive performance of
the models decreases. This is attributed to the deeper network structures having more
parameters, while the gene sequence input data are insufficient to support learning with
such a large number of parameters, leading to model overfitting. Therefore, we chose to
improve upon ResNet18 to build DRANetSplicer.

DRANetSplicer is designed based on the ResNet18 architecture. To demonstrate
the effectiveness of the improvements we made for gene sequence characteristics, we
conducted ablation experiments on DRANetSplicer and compared it to the ResNet18
model. The experimental results are presented in Table 5, showing that DRANetSplicer
outperforms ResNet18 significantly in terms of accuracy on datasets from three different
species. Supplementary Materials Table S2 provides the model accuracy for each individual
experiment. Furthermore, DRANetSplicer achieves substantial optimizations in terms of
model Params and FLOPs compared to ResNet18, which results in reduced model size and
improved memory/time efficiency.

Table 5. Accuracy in model ablation experiments.

Model
Oryza Arabidopsis Homo

Params (M) FLOPs (G)
Donor (%) Acceptor (%) Donor (%) Acceptor (%) Donor (%) Acceptor (%)

ResNet18 96.30 94.86 94.79 93.53 96.54 95.61 11.19 0.41

ResNet34 96.26 94.51 94.78 93.24 96.34 95.30 21.31 0.86

ResNet50 95.48 93.39 94.02 92.13 95.72 93.89 23.59 0.93

DRANetSplicer 97.21 96.30 95.63 94.91 96.88 96.25 2.66 0.34

4.3. Comparison with Benchmark Methods

To provide a more comprehensive evaluation of DRANetSplicer’s performance, we
compared it with other state-of-the-art prediction models, including four outstanding deep
learning methods: SpliceFinder [17], Splice2Deep [30], Deep Splicer [10], EnsembleSplice [11],
and DNABERT [33].

As shown in Table 6, the DRANetSplicer model outperforms the benchmark methods
in terms of accuracy and F1-score on both the donor and acceptor datasets for all three
biological species. A comparison of the performance of each individual experiment with
the benchmark method is shown in Supplementary Materials Table S3. In the donor splice
site dataset, DRANetSplicer achieves the best average accuracy of 96.57%, resulting in
average error rate relative reductions of 28.4%, 58.8%, 48.1%, 19.1%, and 4.2% compared
to SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, respectively.
In the acceptor splice site dataset, DRANetSplicer attains the highest average accuracy of
95.82%, resulting in average error rate relative reductions of 39.2%, 58.1%, 64.4%, 23.7%,
and 11.6% compared to the same benchmark models. Across both donor and acceptor
splice sites, DRANetSplicer consistently reduces the relative error rate, with at least a 4.2%
and 11.6% relative reduction in average error rates compared to the benchmark models.

In Table 6, we also include the harmonic mean of sensitivity and specificity, which is
the F1-score, reflecting the overall performance in correctly predicting splice sites. DRANet-
Splicer achieves an average F1-score of 96.54% for donor splice sites and 95.80% for acceptor
splice sites, whereas the second-ranking model, DNABERT, achieves average F1-scores of
96.42% and 95.27%, respectively. This means that the average F1-score error (1 − F1-score)
is relatively reduced by 3.4% and 11.2% for donor and acceptor splice sites, respectively.
Additionally, we have plotted the ROC curves for DRANetSplicer and other benchmark
models, as shown in Figure 4. From the curves, it can be observed that the performance of
the DRANetSplicer model is excellent.
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Figure 4. ROC curve of donor site model and acceptor site model.

Importantly, in comparison to DNABERT, which represents the outstanding gene
prediction model pretrained on DNA sequences with splice site prediction as one of its
downstream tasks, DRANetSplicer significantly reduces the model’s parameter and com-
putational complexity while ensuring predictive performance. Specifically, DNABERT
has 99.95 M parameters (Params) and requires 2.56 G of computation (FLOPs), whereas
DRANetSplicer has 2.66 M parameters and requires 0.34 G of computation. This makes
DRANetSplicer more efficient than DNABERT and more suitable for deployment in pro-
duction environments.
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Table 6. Comparison of prediction results between DRANetSplicer and benchmark methods.

Model Site
Oryza Arabidopsis Homo Average

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

SpliceFinder Donor 95.55 95.50 94.43 94.36 95.65 95.69 95.21 95.18
Acceptor 93.73 93.74 92.65 92.66 92.97 92.97 93.12 93.12

Splice2Deep Donor 91.96 91.99 88.91 89.06 94.13 94.14 91.67 91.73
Acceptor 90.99 91.05 86.13 86.39 92.98 92.97 90.03 90.14

Deep Splicer Donor 92.12 92.04 91.42 91.02 96.63 96.64 93.39 93.23
Acceptor 85.11 84.19 84.20 82.59 95.49 95.44 88.27 87.41

EnsembleSplice Donor 96.47 96.48 94.43 94.44 96.38 96.40 95.76 95.77
Acceptor 94.94 94.95 93.60 93.62 95.01 95.02 94.52 94.53

DNABERT Donor 97.14 97.14 95.32 95.31 96.80 96.80 96.42 96.42
Acceptor 95.94 95.94 93.80 93.80 96.06 96.06 95.27 95.27

DRANetSplicer Donor 97.21 97.19 95.63 95.56 96.88 96.88 96.57 96.54
Acceptor 96.30 96.29 94.91 94.86 96.25 96.25 95.82 95.80

4.4. Cross-Organism Validation

The results of cross-organism validation are shown in Table 7. Experimental results for
each cross-organism validation are provided in Supplementary Materials Table S4. When
tested on Oryza, the accuracy of DRANetSplicer for both donor and acceptor sites trained
on Oryza and Arabidopsis is (97.21%, 96.30%) and (93.58%, 93.40%), respectively. When
tested on Arabidopsis, the accuracy for donor and acceptor sites trained on Arabidopsis and
Oryza is (95.63%, 94.91%) and (94.89%, 94.25%), respectively. When tested on Homo, the
accuracy for donor and acceptor sites trained on Oryza and Arabidopsis is (82.95%, 80.17%)
and (78.00%, 75.99%), respectively. We observe that cross-organism validation between
Oryza and Arabidopsis yields better results, while cross-organism validation between Homo
and the other two species is less effective.

Table 7. Accuracy of DRANetSplicer in cross-organism validation.

Train
Test Site Oryza (%) Arabidopsis (%) Homo (%)

Oryza
Donor 97.21 94.89 82.95

Acceptor 96.30 94.25 80.17

Arabidopsis
Donor 93.58 95.63 78.00

Acceptor 93.40 94.91 75.99

Homo
Donor 91.97 91.44 96.88

Acceptor 87.45 87.23 96.25

“Train” indicates training the model with the respective biological data, and “Test” indicates test-
ing the model with the corresponding biological data. Bold data points indicate that the cross-
organism predictions of DRANetSplicer outperform the non-cross-organism predictions of certain
benchmark models.

Combining the experimental results from Table 6, we notice a phenomenon where
DRANetSplicer, when trained on one species and tested on another (cross-organism valida-
tion), achieves higher accuracy compared to the non-cross-organism validation of benchmark
models. For instance, for donor sites, DRANetSplicer trained on Oryza and tested on Ara-
bidopsis achieves an accuracy of 94.89%, whereas SpliceFinder, Splice2Deep, Deep Splicer,
and EnsembleSplice trained and tested on Arabidopsis achieve accuracies of 94.43%, 88.91%,
91.42%, and 94.43%, respectively. Bold data in Table 7 indicate that the cross-organism pre-
dictions of DRANetSplicer have higher accuracy than the non-cross-organism predictions of
benchmark models. The analysis suggests that DRANetSplicer exhibits strong generalization
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capabilities, particularly in cross-organism validation between similar organisms. The cross-
organism validation between Oryza and Arabidopsis demonstrates superior results compared
to cross-organism validation on Homo and the other two species.

Based on these findings, we conclude that DRANetSplicer is applicable to a broader
range of organisms and can transfer well from one species dataset to related species with
limited research. Therefore, the DRANetSplicer model is highly valuable for genome
annotation work on less-studied organisms.

4.5. Interpretability

We computed the average absolute weighted contribution scores for each nucleotide
position learned by the Oryza donor and acceptor models. The results were compared
with the sequence conservation calculated by WebLogo for the positive dataset, as shown
in Figure 5a. We observed a high similarity between the average absolute weighted
contribution scores for each nucleotide position learned by the model and the sequence
conservation at that position. The cosine similarities between the two in the Oryza donor
and acceptor datasets were 0.93 and 0.90, respectively. This suggests that the model can
effectively learn known gene motif patterns during the training process. Furthermore, the
conclusion drawn from Figure 5a is that nucleotides around the splice sites have the most
significant average impact on the model’s prediction results, and regions around the splice
sites are generally more crucial than the marginal regions. The heatmap of importance for
each nucleotide position learned by the donor and acceptor models, as shown in Figure 5e,
confirms the correctness of this observation. This observation is consistent with the findings
of previous studies by Jasper Zuallaert et al. [9] and Julie D. Thompson et al. [16].

In Figure 5b, we conducted a detailed investigation of the highlighted regions in the
Oryza donor and acceptor models (marked in Figure 5a). We compared the individual
average weighted contribution scores for the four nucleotides at each nucleotide position
with the known gene motifs visualized by WebLogo. Within the studied regions, we
observed that the most conserved nucleotide at each position, according to WebLogo,
consistently corresponded to the nucleotide with the highest average weighted contribution
score at that position in our model. Additionally, the proportions of average weighted
contribution scores for different nucleotides at each position were similar to the proportions
of nucleotide frequencies calculated by WebLogo.

According to the study by Amit et al. [46], the G + C content of exons in the Arabidopsis
genome is significantly higher than that of introns. To validate whether our model learned
this biological feature during training, we plotted the average weighted contribution scores
for G + C and T + A at each nucleotide position in the Arabidopsis donor and acceptor models,
as shown in Figure 5c. The plot illustrates that the upstream region (exons) of the donor
splice site, indicated by positive average contribution scores for G + C and negative scores
for T + A, exhibits the opposite trend in the downstream region (introns). Similarly, the
downstream region (exons) of the acceptor splice site shows positive average contribution
scores for G + C and negative scores for T + A, while the upstream region (introns) displays
the opposite pattern. This analysis indicates that our model can automatically learn these
biological features to distinguish between exons and introns.

In eukaryotic organisms, the splicing process is conserved, involving not only direct
splicing at the donor and acceptor splice sites but also the participation of feature sequences
such as branch points (BP) and polypyrimidine tracts (PPT). The PPT, rich in pyrimidine
bases are located between the BP and the acceptor splice site, with the BP positioned several
dozen nucleotides upstream of the PPT [47]. From Figure 5a, we observe that the Oryza
acceptor model distinctly learns the PPT sequence features preceding the acceptor splice
site, with the average weighted contribution scores for T + C in this region being positive.
Iwata et al.’s study revealed a strong negative correlation between PPT and BP signals in
eukaryotes, with a strong positive correlation with the acceptor splice site signal [47]. In
Figure 5d, we investigate the impact of CTNA and PPT on splicing in the Homo acceptor
model, where CTNA is a reported typical BP motif [47].
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Figure 5. Explanatory analysis of the DRANetSplicer model. (a) Importance at each nucleotide
position. We computed the average absolute weighted contribution scores for each nucleotide
position in the O. sativa japonica donor and acceptor models, where donor and acceptor splice sites are
located in the sequence’s 201–202 region. (b) Average weighted contribution scores for each of the four
nucleotides at each position. For comparison, we utilized WebLogo to visualize known gene motifs.
(c) Average weighted contribution scores for G + C and T + A in the donor and acceptor models of
A. thaliana. (d) Average weighted contribution scores for the occurrence of CTNA and AG motifs in
the H. sapiens acceptor model, where we denote the position of the motif by the position of the first
nucleotide of the motif. (e) Heatmaps depicting the average nucleotide position importance calculated
by the Grad-CAM method for the positive and negative datasets of the donor and acceptor models.
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We observe a negative correlation between the average weighted contribution scores
of CTNA and PPT in the region several dozen bases upstream of the acceptor splice site.
Additionally, there is a small peak in the average weighted contribution scores of CTNA
in a small region just before the rise in the average weighted contribution scores of PPT
(highlighted in Figure 5d). Furthermore, we notice that as we approach the acceptor splice
site, the average contribution scores of CTNA become smaller and negative, while PPT
exhibit the opposite trend. These observations confirm that our model can automatically
learn the biological features of BP and PPT.

Research by Gooding et al. suggests a unique biological feature upstream of the
acceptor splice site, known as the AG exclusion zone [48]. To verify the model’s learning of
this biological feature, we studied the average contribution scores of the AG motif in the
Homo acceptor model, as shown in Figure 5d. We observe a sharp decrease and negative
values in the average weighted contribution scores of the AG motif in a region just before
the acceptor splice site.

Figure 5e displays the importance of heatmaps for each nucleotide position in the
donor and acceptor models. In the heatmap, it is observable that nucleotides around
splice sites have the greatest average impact on the model’s predictive results. Moreover,
the broader regions around splice sites are generally more important than the marginal
regions. The heatmaps of the three biological models mutually affirm the correctness
of these observations, consistent with the findings in Figure 5a. Notably, we observe a
high similarity between the heatmaps of Oryza and Arabidopsis models, indicating a high
similarity in the nucleotide regions crucial for decision-making in the model learning
process for these two organisms. However, there are substantial differences in the decisive
nucleotide regions between the Homo model and the models of Oryza and Arabidopsis.

Our observation results from the nucleotide position heatmaps validate that the cross-
species validation experiment results are accurate. The cross-species validation between
Oryza and Arabidopsis performs better than the cross-organism validation involving Homo.
This underscores that similar organisms have a high degree of similarity in the decision
features learned during model training. From a model interpretation perspective, we
further emphasize that DRANetSplicer possesses the capability for cross-species prediction
of splice sites.

In summary, we have demonstrated that the DRANetSplicer model can learn known
biological features, indicating its ability to automatically learn biological features from gene
sequences. However, we need to further enhance model interpretability to achieve the goal
of providing biological insights that human experts have not described yet, rather than
being just a black-box classifier. This represents a major challenge and is a direction for our
future work.

The numerical data used in all figures are included in Supplementary Materials
Table S5.

5. Conclusions

We have developed DRANetSplicer, a splice site prediction model with a deeper
network structure based on residual learning and attention mechanisms. Extensive evalua-
tions, including model comparisons and cross-organism validation on splice site datasets
from O. sativa japonica, A. thaliana, and H. sapiens, confirm the exceptional performance of
DRANetSplicer. Not only does DRANetSplicer outperform other advanced deep learning
models in splice site prediction, but it also contributes to genome annotation efforts for
understudied organisms. Our visualizations consistently produced qualitatively coherent
results, which were able to confirm known biological features. This indicates that DRANet-
Splicer possesses a high level of feature representation and discriminative ability during
training, which is an important aspect for ensuring its predictive performance. We have
thoroughly validated the exceptional performance of DRANetSplicer from multiple levels
and perspectives, and it is feasible to apply the model in real production environments.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes15040404/s1, Table S1: DRANetSpllicer respective prediction
performance per experiment; Table S2: Accuracy in model per ablation experiments; Table S3:
Comparison of performance with the benchmark method in each individual experiment; Table S4:
Experimental results for each cross-organism validation; Table S5: Plotting basic data information for
Figure 5.
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