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Abstract: Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathy-
roidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities
involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizy-
gous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes
of this region cannot fully explain the clinical phenotype and the phenotypic variability observed
among patients. Additional mutations in genes located outside the deleted region, leading to “dual
diagnosis”, have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2
region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele.
Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the
whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an
alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation
epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we
summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of
the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the
22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes
and altered epigenetic regulation.

Keywords: 22q11.2 deletion syndrome; epigenetics; micro-RNAs; methylation; CpG islands

1. Introduction

Briefly, 22q11.2 deletion syndrome (22q11.2DS) is a complex and heterogeneous clini-
cal syndrome. Under the 22q11.2DS definition are included several phenotypes such as
the historically known DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS) and
conotruncal anomaly face syndrome (CTAF) [1]. The primarily acknowledged presentation
is the classic clinical triad including congenital heart defects (CHD) (75% of patients), T-cell
compartment immunodeficiency due to hypoplastic/aplastic thymus (75% of patients)
and hypocalcemia due to the developmental defect of parathyroid glands in 50% of cases,
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formerly referred to as DGS [1]. This term is now used for those individuals who show
clinical phenotype of 22q11.2DS in the absence of an identified 22q11.2 deletion, in whom
alternative pathogenetic alterations occur. Briefly, 22q11.2DS represents the most frequent
microdeletion syndrome observed in the human genome, with an estimated incidence of 1
in 1.000 fetuses [2,3] or approximately 1 in 3.000-6.000 newborns [1]. However, a recent
study conducted using DNA samples from dried blood spots for newborn screening reports
an estimated minimum 22q11.2 DS prevalence of 1 in 2.148 live births [4]. Despite the
significant incidence, no routine approach to prenatal screening for this condition has been
established [5-8]. Newborn screening to measure the number of TREC copies successfully
identifies 22q11.2 DS with T-cell lymphopenia, which can be helpful to prevent subsequent
complications such as hypocalcemia [9,10]. In 90% of cases, the 22q11.2 deletion occurs
de novo during gametogenesis as a consequence of nonallelic homologous recombination
events. In 10% of patients, the syndrome is inherited in an autosomal-dominant fashion.
The predominance of de novo cases may be partially explained by the impaired reproduc-
tive fitness of the patients carrying the deletion [11], especially males [12]. This hypothesis
is also supported by the evidence that, in the familial forms, the disease is usually inherited
from the mother [13,14]. Apart from the most recognizable aspects, more than 180 different
phenotypic features have been described [15-17] in 22q11.2DS patients, and the syndrome
is characterized by the extreme variability of the type and severity of the clinical mani-
festations, which can be also observed in members of the same family [1,15,18-22]. The
phenotypic variability consists of a different combination of clinical manifestations, which
compose a syndromic picture with various degrees of severity. Moreover, the same clin-
ical abnormality can vary from mild to life-threatening in different subjects [23-26]. The
syndrome can be associated with different size 22q11.2 region deletions. However, there is
no correlation between the extension of the deletion and the severity of the syndrome [27].
Interestingly, microduplications of the 22q11.2 region result in a syndrome characterized
by developmental delay, congenital heart defects, craniofacial dysmorphisms, behavioral
alterations, visual and hearing impairment, and urogenital abnormalities, presenting with
great clinical variability and absent genotype—phenotype predictability [28-30]. In this
review, we summarize the main genetic and epigenetic mechanisms that may underlie the
clinical variability in 22q11.2DS.

2. Main Clinical Features

Congenital heart defects (CHDs) are observed in up to 75% of the patients and rep-
resent the main cause of mortality in young patients affected by 22q11.2DS (87%). The
most frequent abnormalities are conotruncal heart defects involving the outflow tract such
as tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B (between the left
carotid and subclavian arteries) and ventricular septal defect [31]. Pulmonary artery hy-
poplasia and discontinuity, and aortic arch defects can be present as isolated manifestations
(40%) or in association with conotruncal abnormalities (60%) [32]. CHDs are usually diag-
nosed in the prenatal approach or as one of the first manifestations during the neonatal
period [33]. Conotruncal heart defects usually undergo early surgical repair, which requires
complex perioperative management in order to lower the complication risks that may
derive from comorbidities of the syndrome (e.g., hypocalcemia or airway anomalies) and
from the inherently complex cardiovascular anatomy [31,34]. Long-term surveillance is
required for all 22q11.2DS patients, not only for those who undergo surgical intervention.
In fact, arrhythmias and aortic root dilation have been identified in the absence of CHDs,
and long-life risk factors for CHDs including hypertension, obesity and hyperlipemia may
also arise during follow-up [35,36].

Palatal abnormalities reported in individuals affected by 22q11.2 DS include a range
of defects with variable severity. Only 11% of the children present overt cleft palate,
while milder defects like submucosal cleft palate (SMCP), bifid uvula and velopharyngeal
dysfunction [37] affect almost 65% of patients. These abnormalities may lead to prenatal
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nasal regurgitation, and later may lead to nasal emissions or even to the impairment of
articulation and the worsening of speech intelligibility in children [38,39].

Due to the absence of the parathyroid glands, up to 50-65% of patients may experience
hypocalcemia manifesting with paresthesia, muscle spasms, cramps, tetany, circumoral
numbness and seizures [40]. These symptoms represent red flags for the diagnosis of
22q11.2DS. Given their impact, such endocrinological aspects should be routinely moni-
tored, assessing relevant biochemical parameters including parathyroid hormone, calcium
or ionized calcium, magnesium and 25-hydroxy vitamin D [41,42] at least annually. In
the pediatric population, if calcium levels are low or the dietary intake is not sufficient,
supplementation therapy based on calcium and vitamin D should be taken into account
whereas daily vitamin D is recommended for all adult patients, reserving calcitriol for
refractory cases in both age categories. Overcorrection should be avoided as to prevent
hypercalcemia, nephrolithiasis and, ultimately, renal failure. Hence, kidney function, uri-
nary calcium and renal ultrasound should be regularly monitored as well [43]. Other
endocrinological manifestations include hypothyroidism in children and in 20% of adults
(later-onset manifestation), and hyperthyroidism in children and in 5% of adults; thus,
thyroid-stimulating hormone and free thyroxine should be assessed at least annually and,
generally, standard treatment is effective [44]. Short stature has been described in 15% of
patients, while GH-deficiency and intra-uterine growth retardation have been reported in
4% [45,46].

Immunological features of 22q11.2DS are very heterogeneous, ranging from a com-
pletely normal T-cell compartment to severe combined immunodeficiency (SCID) [47].
Most of the patients have moderate T-cell deficiency and are defined as having partial DGS
(pDGS). In some cases, a variable association of reduced serum IgG, IgA and IgM levels
with reduced vaccines response such as anti-tetanus, anti-diphteria and anti-pneumococcus
can be observed [48]. Less than 0.5-1.5% of patients suffer from complete DGS (cDGS)
characterized by severe T-cell deficiency, reduced TRECs (T-cell receptor excision circles)
and an absent response to mitogens recapitulating the clinical and laboratory features of
SCID [49,50]. Recently, data on treatment with cultured thymus tissue (formerly known
as thymus transplant) in patients with cDGS are being gathered; in a trial on 105 subjects,
a l-year survival rate of 77% was achieved, along with a T-cell production, developing
6 to 12 months after the procedure, sufficient to provide adequate immune function to
prevent serious infections [47,51]. Atypical cDGS has been observed in some cases, and it
is characterized by rash, lymphadenopathy and enteropathy arising from the oligoclonal
expansion of memory T-cells CD45RO+ [52]. The patients may suffer from recurrent
respiratory tract infections. However, previous studies suggest that the susceptibility to
recurrent infections is primarily related to the anatomical alterations associated with the
syndrome [53] {Giardino, 2019 #1}. Patients with 22q11.2DS may also develop immune dys-
regulatory manifestations [54] including allergy and asthma, autoimmune diseases such as
juvenile idiopathic arthritis [55], hemolytic anemia [56], idiopathic thrombocytopenia [57],
autoimmune thyroid dysfunction [58,59] and others.

Developmental delay with gross and fine motor difficulties, articulation and speech
abnormalities are also reported in pediatric patients, as well as increased risk for psychiatric
disorders such as anxiety, attention deficit, autism spectrum disorders, usually appearing
during adulthood. Since 25% of patients are diagnosed with schizophrenia, 22q11.2DS is
considered the main genetic predisposition for the development of this disorder [60,61].
From the neurological point of view, 22q11.2DS is also associated with increased risk of
provoked and unprovoked seizures and movement disorders like dystonia, myoclonus,
and parkinsonism. In particular, provoked (hypocalcemic) neonatal seizures and hypotonia
are very early signs [62].

Skeletal alterations including kyphoscoliosis, syndactyly or polydactyly, foot abnor-
malities and arthropathies are important findings in 22q11.2 DS patients. The reported
prevalence of at least one cervical or occipital anomaly is 90.5-100% [63].
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Around 60% of patients experience mild-moderate gastrointestinal symptoms such as
abdominal pain, gastro-esophageal reflux disease (GERD), constipation and vomiting [64]
that can lead to esophagitis or aspiration with aspiration pneumonia. Dysembryogenetic
abnormalities including esophageal atresia, imperforate anus, tracheo-esophageal fistula,
Hirschsprung disease and predisposition to intestinal malrotation have also been reported,
with minor frequency [1].

Almost 30% of patients suffer from congenital anomalies of the kidneys and of the
urinary tract (CAKUT) such as bilateral or unilateral renal agenesis, duplicated collecting
system and hydronephrosis, cryptorchidism and hypospadias, absent uterus or inguinal
hernia [65].

Due to the complexity of the above listed clinical manifestations, daily activities of
patients affected by 22q11.2 DS can be seriously compromised [66] and in particular severe
forms of CHD contribute to a lower life-expectancy than unaffected population [67,68].

The summary of the principal clinical manifestations described in 22q11.2 DS patients
and their percentages of occurrence is listed in Table 1.

Table 1. Schematic representation of the most common clinical manifestations described in 22q11.2DS
patients and their percentages of occurrence.

Apparatus Involved

Clinical Features Percentage References

Congenital Heart Disease (CHD)

Interrupted aortic arch type B
Truncus arteriosus
Tetralogy of Fallot

Conoventricular septal defects

Isolated aortic arch anomaly
Double outlet right ventricle
Transposition of the great arteries
Hypoplastic left ventricle
Pulmonary arteries hypoplasia

75% [1,31-33]

Hypocalcemia (hypoparathyroidism)

35% [69]

Immune Deficiency

Athymia
Thymic hypoplasia/ectopy
Humoral immunity impairment

50-70% [70,71]

Craniofacial dysmorphisms

Elongated face
Hooded eyelids
Epicanthus
Wide nasal bridge
Short philtrum
Micrognathia and retrognathia
Low-set small ears

50% [22,72]

Palatal anomalies

Velopharyngeal insufficiency
Overt cleft palate
Submucosal cleft palate
Bifid uvula

69-100% [37-39]

Renal anomalies

Renal agenesis
Multicystic kidney
Hydronephrosis
Duplicated collecting system

14% [65]

Skeletal defect

Spine and vertebral anomalies

- - 60%
Fingers anomalies

[63]

Learning problems
Developmental delay

70% [42]

Psychiatric disorders

Anxiety
Autism spectrum disorders
Schizophrenia
Behavior disorders
Parkinson’s disease

30% [60,61]

Gastrointestinal abnormalities

Esophageal atresia
Esophageal reflux
Hirschsprung disease
Imperforated anus

30% [64]
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3. Genetic Features of 22q11.2DS

The 22q11.2 region has a complex structure, characterized by low copy repeats
(LCR22A, LCR22B, LCR22C, LCR22D) which share >96% of their sequence and are par-
ticularly prone to nonallelic homologous recombination during gametogenesis [21]. In
particular, LCR22A region is more susceptible to rearrangements, since it is characterized by
hypervariability in the organization and in the copy number of duplicons which is human-
specific and potentially variable in the population [73,74]. Depending on LCRs involved,
the deletions causing 22q11.2DS may have different sizes and localizations. Almost 85% of
patients share the so-called typical deletion of 3 Mb between LCR22A and LCR22D [27].
In patients with the typical deletion, the breakpoints within LCR22A and LCR22D are
substantially clustered; they show small differences in genes not directly linked to clinical
signs of the syndrome, thus not playing a major role in the variability of 22q11.2 DS [27].
Less frequently, the syndrome is caused by atypical, proximal or distal deletions [1].

In 90% of cases with typical 3 Mb or 1.5 Mb deletions the meiotic error occurs de novo.
On the contrary, smaller size proximal or distal deletions are more frequently inherited [75].
These deletions are less penetrant and may be unrecognized since the patients are usually
less symptomatic and the deletion cannot be identified using FISH (Fluorescent In Situ
Hybridization). CMA (chromosomal microarray) is the most useful genomic testing method
that allows to determine the copy number of sequences and to detect the recurrent deletion
in a proband. The ability to size the deletion depends on the type of microarray used and the
density of probes in the 22q11.2. Cardiovascular manifestation is found in approximately
two-thirds of children with 22q11.2DS, so it represents one of the major diagnostic clues for
22q11.2DS [37,42].

FISH with a probe that targets the proximal fragment of the region (LCR 22A-22B) can
also be used for the diagnosis.

The 3 Mb typically deleted region includes 90 genes: 46 protein-coding genes, 7 microRINAs,
10 non-coding RNAs and 27 pseudogenes [76] (Figure 1 and Table 2).

DGCR2 [Hira | [718x1| [comr | arvar [ cax | HIC2
DGCR6 DGCR14  MRPL4O GNBIL DGCR6L mepis [ snap2s |
[ProDH |Tssk2 UFDIL  TXNRD2 TRMT2A 2ZNF74 PI4KA  AIFM3
Gsc2 cocas : 1286 SCARF2 SERPIND1  LZTRI
SLC25A1 CLONS ARVCF  USP4l KLHL22 THAP?
aret SEPTS GP1BB TANGO2 mir-68 P2RX6
1 SLC7A4
RANBP1 '
ZDHHCS
ccoc18s

LCR22A— LCR22D, typical, 3 Mb
LCR22A - LCR228B, 1.5 Mb
LCR22A - LCR22C, 2 Mb

LCR22B - LCR22D, 1.5 Mb
LCR22C - LCR22D, 0.7 Mb

Figure 1. Schematic representation of the 22q11.2 region, including the four low-copy repeats (LCRs)
LCR22A-LCR22D. The 46 protein-coding genes are indicated in black. TBX1 (T-box 1) is highlighted
in red, since it is considered the main genetic driver of 22q11.2 DS. The potential pathogenetic role
of PRODH, HIRA, COMT, DGCRS8, SNAP29 and CRKL genes (in the box) is discussed in the text.
The 7 micro-RNAs are indicated in violet. The size and the localization of the different deletions are
shown at the bottom of the figure. Mir, microRNA.
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Table 2. 46 protein-coding genes located in 22q11.2 region with the associated phenotype, genomic

coordinates, and inheritance (omim.org).

Associated Phenotype Genomic Coordinates Inheritance
DGCR6 - 22:18,906,319-18,912,087 -
PRODH Hyperprolinemia type 1 22:18,912,780-18,936,552 AR
DGCR2 - 22:19,036,285-19,122,453 -
DGCR14 - 22:19,130,278-19,144,725 -
TSSK2 - 22:19,131,307-19,132,621 -
GSC2 - 22:19,146,992-19,150,291 -
SLC25AL Presymaptic Congenttal Myssthenic Syndrome 2 22:19,175,580-19,178,735 AR
CLTCL1 - 22:19,179,472-19,291,718 -
HIRA - 22:19,330,697-19,431,732 -
MRPL40 - 22:19,432,544-19,436,074 -
UFD1L - 22:19,449,910-19,479,192 -
CDC45 Meier-Gorlin Syndrome 22:19,479,293-19,520,611 AR
CLDN5 - 22:19,523,023-19,525,336 -
SEPT5 - 22:19,714,502-19,723,318 -
TBX1 - 22:19,756,702-19,783,592 -
GNBI1L - 22:19,783,222-19,854,873 -
TXNRD2 Glucocorticoid deficiency? 22:19,875,521-19,941,817 -
GP1BB Bemargf&“ﬁiiﬁﬁg’gjgype B; 22:19,723,538-19,724,770 ﬁi
COMT schizophrenia, susceptibility 22:19,941,771-19,969,97 AD
ARVCF - 22:19,966,726-20,016,822 -
TGO, Mool enepblomyopaticces e b ponmisamoneniss
DGCRS8 - 22:20,080,240-20,111,871 -
TRMT2A - 22:20,111,871-20,117,253 -
RANBP1 - 22:20,116,103-20,127,354 -
ZDHHCS - 22:20,131,803-20,148,006 -
CCDC188 - 22:20,148,113-20,151,828 -
RTN4R schizophrenia, susceptibility 22:20,241,414-20,268,317 AD
DGCR6L - 22:20,314,237-20,320,059 -
uUsPr41 - 22:20,350,578-20,390,758 -
ZNF74 - 22:20,394,150-20,408,454 -
SCARF2 Van den Ende-Gupta Syndrome 22:20,424,583-20,437,824 AR
KLHL22 - 22:20,441,518-20,497,304 -
MED15 - 22:20,507,581-20,587,620 -
Gastrointestinal defects and immunodeficiency syndrome 2;
PIAKA perisylvian polymicrogyria with ce.rebellar hypoplasia and 22:20.707 690-20.858 811 AR
arthrogryposis; T U
spastic paraplegia 84
SERPIND1 Thrombophilia 10 due to heparin cofactor II deficiency 22:20,774,112-20,787,719 AD
SNAP29 CEDNIK Syndrome 22:20,859,006-20,891,213 AR
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Associated Phenotype Genomic Coordinates Inheritance
CRKL - 22:20,917,406-20,953,746 -
AIFM3 - 22:20,965,171-20,981,357 -
Noonan Syndrome 10; AD
LZTR1 Noonan Syndrome 2; 22:20,982,296-20,999,031 AR
Schwannomatosis 2, susceptibility AD
THAP?7 - 22:20,999,103-21,002,117 -
P2RX6 - 22:21,009,699-21,028,013 -
SLC7A4 - 22:21,028,717-21,032,560 -
HIC2 - 22:21,417,370-21,451,462 -

Among the most studied protein-coding genes, TBX1 (T-box transcription factor 1),
located at the proximal side of the 22q11.2 region, has been shown to play a crucial role
in the pathogenesis of 22q11.2DS [77]. TBX1 is implicated in DNA transcriptional regu-
lation, acting on chromatin accessibility through the interaction with histone modifiers
and chromatin remodeling complexes, with a direct effect on H3K4mel levels [78]. TBX1
regulates monomethylation of histone 3 lysine 4 (H3K4me1) through interaction with and
recruitment of histone methyltransferases and demethylases. It has been proposed as a
priming factor that plays a role in keeping targeted chromatin accessible to other regulatory
factors, which may be activators or repressors [78] and it is involved in the regulation of
developmental processes [79]. Heterozygous Thx1 mouse mutants (Tbx1*/~) show low
penetrance of cardiovascular abnormalities with normal thymus gland, while Thx1~/~
knockout is embryonic lethal and mice show abnormal development of pharyngeal arches
and pouches [39]. TBX1 is required for the characteristic segmentation of the pharyngeal
apparatus in arches and pouches [80]. A strict relationship between TBX1 dosage and
retinoic acid signaling pathway during embryonic development has been described [81,82].
The vitamin A active metabolite is a key morphogen involved in pharyngeal apparatus
segmentation [83], as demonstrated by teratogenesis evidence associated with its exposure
during pregnancy. Likewise, vitamin B12 has been identified as a positive regulator of
TBX1 gene expression. Studies conducted using mouse models have shown that vitamin
B12 can partially rescue the haploinsufficiency phenotype [84]. Furthermore, TBX1 finely
regulates the interaction between VEGFR2 (vascular endothelial growth factor receptor 2)
and VEGFR3 (vascular endothelial growth factor receptor 3) during brain microvascular
organization and is implicated in cerebral cortex development [85].

Another protein-coding gene involved in 22q11.2 pathogenesis is CRKL (V-crk avian
sarcoma virus CT10 oncogene homologue-like). Due to its central role in kidneys and
urinary tract development, CRKL is considered the genetic driver of CAKUT occurring
in 22q11.2DS patients [63]. In patients with “partial DGS”, characterized by a normal or
slightly reduced number of T-lymphocytes, CRKL deficiency is involved in the mechanisms
leading to impaired T-cell proliferation, something that has been shown even in the absence
of lymphopenia [86]. Indeed, proliferative response in 22q11.2DS patients is relatively
unaffected when assays are normalized for T-cells, and likewise, standard mitogen prolif-
eration tests are usually impaired due to extremely low T-cell counts [47]. Furthermore,
CRKL is required for natural killer cells” physiological activity, since its haploinsufficiency
is associated with the functional deficiency of this lymphocyte subpopulation [87].

Another gene of interest in 22q11.2DS is DGCRS (DiGeorge critical region 8). The role
of this gene will be discussed in Section 4.1.

HIRA (histone cell cycle regulator) regulates gene expression, modulating the incorpo-
ration of the H3.3 histone into the chromatinic structure [88].

Evidence suggests that genes deleted in the 22q11.2 region participate in complex
networks of interactions influencing, with their altered dosage, a plethora of different
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signaling pathways. Since 22q11.2 hemizygosity alone does not explain the genetic basis of
the phenotypic variability observed in patients, due to the evidence that patients sharing
the same deletion present with different clinical phenotypes, additional mechanisms have
been proposed. These include epigenetic mechanisms, which are better explained in the fol-
lowing sections. In particular, epigenetic regulation is extremely variable as a consequence
of TBX1 hemizygosity, which creates a random epigenetic marking that varies from cell to
cell [84,89]. In some, the deletion may unmask recessive mutations in genes located in the
intact 22q11.2 region, leading to atypical and more severe presentations of 22q11.2DS [21].
Furthermore, recent evidence demonstrates that 1% of patients with 22q11.2DS may be
affected by a second genetic condition in the context of a dual diagnosis [90-92].

Recent studies suggest that copy number variants (CNVs) of genes located outside the
22q11.2 region may partially explain the variability and complexity of different phenotypes
observed in patients sharing the same deletion, increasing the risk of developing certain
pathological manifestations. In 22q11.2DS patients, CNVs of the genes GPR98 (G-protein-
coupled receptor 98) [93], KANSL1 (KATS8 regulatory NSL complex subunit 1 gene) [94]
and SC2A3 (solute carrier family 2 facilitated glucose transporter member 3) [95] have been
described as risk factors for congenital heart anomalies.

Some conditions presenting with a phenotype overlapping 22q11.2DS, but without
22q11.2 region anomalies, have been described. The so-called phenocopies of 22q11.2DS are
a useful model with which to investigate the potential role of other regions of the genome in
the pathogenesis of the main clinical aspects observed in 22q11.2DS patients. Table 3 sum-
marizes the most common clinical manifestation described in 22q11.2DS patients, compared
with those observed in patients with other cytogenetic alterations sharing the DiGeorge-like
phenotype. In mice, HoxA3 (class 1 homeobox gene A3) knockout (HoxA3~/~) reproduces
the typical clinical defects of the DiGeorge phenotype [96]. Similarly, mutations in spe-
cific Vegf isoforms are responsible for the same congenital abnormalities caused by Thx1
knockout [97]. Furthermore, Cirillo et al. [98] identified the duplication of 15q11.2 region
and the deletion of the 22q13.3 and 14q32.1 chromosomal regions in patients with the
DiGeorge phenotype not presenting 22q11.2 deletion. The region on chromosome 15 is
involved in Prader-Willi/ Angelman syndromes, while deleted genes on chromosomes 22
and 14 participate in immune system functions.

Table 3. Schematic representation of the most common clinical manifestation described in 22q11.2DS
patients, compared with those observed in patients with other cytogenetic alterations sharing the
DiGeorge-like phenotype.

. Del22q13.33

Clinical Manifestations D%;ngl :I;:(}élus 3p10.3 4q34.1-35.2 Del2p11.2 Ngzcé(ﬁl 1;13 Phel;n—NE:Dermid
yndrome

(CZCc)ﬁgDe;mtal Heart Disease 82% Yes 15% No Yes 3-25%,
Hypocalcemia L1 22% Yes Na Yes Yes Na
(hypoparathyroidism)
Immune Deficiency 17% Yes Na Yes Yes Na
Craniofacial dysmorphisms 50% Yes 95-99% Yes Yes >75%
Renal anomalies 5% Yes Na No Yes 38%
Skeletal defects 30-80% Na 88% Yes Yes >75%
Learning problems/ 80-99% Yes 65% Yes Yes >75%
Developmental delay
Psychiatric disorders Na Na Na Na Yes >75%
Gastrointestinal abnormalities Na Na Na No Yes >25%
Genes mapping in the region Ni FOXI3 See Table 3 SHANK3

Na, not available; Ni, not identified; DGS2, Di George Syndrome; Del, deletion; Microdup, microduplication; FOXI3,
Forkhead Box I3; SHANK3, SH3 and multiple ankyrine repeat domains 3 [99-101].

4. Epigenetic Mechanisms Implicated in the Syndrome

So far, no single gene has been identified to explain all the features of 22q11.2DS,
and therefore the correlation between genotype and phenotype is not fully understood.
Among the mechanisms involved in conditioning the phenotypic variability of the syn-
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drome, epigenetics seems to play a role [102]. Epigenetic regulation is expressed through
DNA methylation, chromatin variation and noncoding RNAs, particularly micro-RNAs
(miRNAs) [99].

4.1. Micro-RNA Profile

MiRNAs are small non-coding RNAs that negatively regulate gene expression at
the post-transcriptional level, resulting in the degradation of target messenger RNA
(mRNA) [103]. The involvement of miRNAs in the pathogenesis of 22q11.2DS is sug-
gested by the fact that the deletion involves, among the other factors, the genes encoding
for 7 miRNAs and the DGCRS8 (DiGeorge syndrome critical region gene 8) gene, which
plays a crucial role in the biogenesis of miRNAs [99]. DGCRS8 encodes a double-stranded
RNA-binding protein that is a component of the microprocessor complex Drosha/Rnaselll,
involved in the canonical pathway of miRNAs biogenesis [27]. In fact, DGCRS8 deletion
leads to the subversion of physiological miRNA expression. This aspect is central for
understanding the implications of 22q11.2 deletion on the epigenetic regulation of gene
expression on a larger scale in the genome.

In particular, the microprocessor complex cuts pri-miRNAs, resulting from direct
gene transcription, into stem loop structures called pre-miRNAs. The pre-miRNAs are
then transferred to the cytosol, where after several steps they are transformed into mature
single-stranded miRNAs and guided to their target mRNAs, which are recognized through
base pairing [104-107]. The microprocessor complex plays a crucial role in the canonical
biogenesis pathway; the absence of Drosha or DGCRS, in fact, induces the generation of
noncanonical miRNAs (Figure 2).

The consequence of the haploinsufficiency of DGCRS, therefore, is an alteration in
the expression levels of different miRNNAs, which can be reduced or increased in affected
subjects compared with healthy subjects [108]. Some authors, in addition, correlate miRNA
subset expression patterns to specific clinical conditions characterizing 22q11.2 DS. In
particular, the upregulation of miR-29 is observed in patients with immunodeficiency; the
downregulation of miR-145 is linked to hypocalcemia; the simultaneous upregulation of
miR-23 and miR-363 and the downregulation of let-7g are described in association with
congenital heart disease [109]. In another study conducted by Stark et al. in 2008, the hap-
loinsufficiency of DGCRS is associated with the altered expression profile of some miRNAs,
including mir-134, mir-324-5p, mir-491, mir-532 and mir-299, resulting in synaptic alter-
ation and impaired neuronal development [110]. Furthermore, in mouse models, specific
miRNA levels have been linked to the size of the hippocampal region of the central nervous
system [108,111]. Several genes likely implicated in the pathogenesis of schizophrenia
have been identified as targets for miRNA altered by DGCRS haploinsufficiency, including
DISC1, RELN and SYNI. In another study, DGCRS heterozygosity in mice led to a decreased
rate of neurogenesis in the adult hippocampus and to altered hippocampus-dependent
learning, as well as to the downregulation of some schizophrenia-related genes. Insulin-like
growth factor 2 was shown to be able to rescue neurogenesis both in vitro and in vivo,
suggesting that impaired adult cell proliferation may contribute to the cognitive deficit
schizophrenia found in 22q11.2DS and that it could be “corrected” by IGF2 [112]. As for
other experimental therapeutic agents, it has been recently shown that the use of protopor-
phyrins may play a role in 22q11.2DS patients, increasing miRNA biogenesis in DGCRS8
haploinsufficient mouse cells in vitro [113]. It should be noted that often impaired miRNA
expression may not be detectable in resting conditions since it may be the result of stress
responses [114].

The reduced expression of DGCRS8 and a subset of miRNAs has also been described in
the forebrain of a heterozygous mouse model in which pyramidal neurons show altered
electrical properties [115].
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Figure 2. RNA: ribonucleic acid. RISC: RNA-induced silencing complex. DGCR8: DiGeorge syn-
drome critical region gene 8. The biogenesis of miRNA starts in the nucleus, where RNA polymerase
II transcribes miRNA genes into long and capped RNA molecules, called primary miRNAs (pri-
miRNAs). The pri-miRNAs can follow two pathways: the canonical and non-canonical pathways.
In the canonical pathway, the pri-miRNAs are processed by a complex (microprocessor complex)
composed of DGCRS, which works as the noncatalytic subunit, and Drosha, a type of double-stranded
RNA-specific endoribonuclease. The microprocessor complex cleaves pri-miRNAs into premature
miRNAs (pre-miRNA), which preserve a hairpin structure. In the non-canonical pathway, instead, pri-
miRNA are processed by the spliceosome and cleaved into pre-miRNA. Pre-miRNAs are transported
into the cytoplasm by Exportin 5. In the cytoplasm, Dicer, an RNase III enzyme, cleaves the hairpin
loop and generates a mature miRNA duplex. Subsequently, the mature miRNA duplex separates
into two single strands: one is degraded, and the other is incorporated into the RISC complex. In
the RISC complex, the mature miRNAs recognize their specific mRNA targets through base pairing,
fulfilling the function of transcription regulators. If the base pairing is complete, the mRNA target is
degraded; if base pairing is incomplete, mRNA target translation is repressed.

In mouse models, selective Dgcr8 knockout (Dgcr8*/~) leads to behavioral and
cognitive abnormalities like hyperactivity and altered spatial working memory [110]. Some
authors proposed that 22q11.2 deletion-related miRNA alteration, which could affect
genome-wide proteins, may exacerbate altered gene dosage effects of genome-wide rare
CNVs (at the level of transcription). miRNA perturbation and CNVs are two well-known
pathogenetic elements contributing to the schizophrenia expression risk, and schizophrenia
is a typical psychiatric aspect of 22q11.2 DS patients [116]. It has recently emerged that
DGCRS is involved not only in miRNA biogenesis, but also in other processes, such as the
repair of UV-induced DNA damage, the promotion of the nucleotide excision of nucleotides,
or the regulation splicing process in embryonic stem cells [117,118]. In recent years, several
studies have highlighted how miRNAs influence the pathways of physiologic e pathologic
stress tissue behavior. In fact, in stress conditions, the upregulation and the downregulation
of miRNA expression has direct effects on the mRNA target and cellular response [114].
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Among the miRNAs encoded in the deleted 22q11.2 region, miR-185 is certainly the
most characterized, especially regarding its targets and their phenotypic implications.
SERCAZ2 is a neuronal regulator of calcium homeostasis, and SERCA2-dependent CaZ*
dysregulation has been implicated in several disorders that affect cognitive function, in-
cluding Darier’s disease, schizophrenia, Alzheimer’s disease and cerebral ischemia. The
SERCA2 gene is a target of miR-185, and its upregulation at the level of excitatory synapses
may contribute to the development of cognitive symptoms. miR-185 levels also appear
to be crucial for the development of brain abnormalities related to 22q11.2DS [119-121].
In the immune system, miR-185 targets are BTK in B-cells and MZB1 in T-cells. A recent
study shows that miR-185 overexpression in murine follicular B-cells downregulates Btk
expression, dampening B-cell receptor signaling. Viceversa, miR-185 downregulation
in a Dicer-deficient mouse model is associated with increased Btk levels, a skewed BCR
repertoire and high titer autoantibodies, suggesting that miR-185 might be implicated
in the pathogenesis of autoimmune manifestations [122,123]. Similarly, miR-185 overex-
pression in thymocytes and peripheral T-lymphocytes in a transgenic mouse model is
associated with peripheral T-cell lymphopenia due to impaired T-cell development dur-
ing the pre-TCR and TCR selection stages. The effect on T-cell development seems to be
mediated by the effect of miR-185 on Mzb1, Nfatc3 and Camk4 expression. Elevations in
miR-185 enhanced TCR-dependent intracellular calcium levels, whereas the knockdown
of miR-185 diminished these calcium responses. This effect was mediated by Mbz1, an
endoplasmic reticulum-associated protein that was already known to be implicated in B-cell
receptor-driven calcium responses. MZB1 levels were found to be elevated in thymocyte
extracts from several 22q11.2DS patients [124]. Similarly, the overexpression of Nfact3 and
Camk2d in the presence of reduced miR-185 levels impairs T-cell development due to their
involvement in Ca2+-activated pathways [125,126].

4.2. Methylation Profile

Due to the presence in the deleted region of different transcription factor genes, such as
TBX1, and chromatin remodeling genes, such as HIRA [127], some authors have suggested
that 22q11.2DS is mainly a transcription deregulation syndrome. The role of TBX1, with a
direct effect on H3K4mel levels, was described in Section 3 [41]. HIRA encodes a histone
chaperone that preferentially places the variant histone H3.3 in transcriptionally active
genes, thus regulating neural progenitor proliferation and neurogenesis [128].

Methyltransferases have been shown to be responsible for episignatures in other neu-
rodevelopmental disorders, such as DNMT3A in patients with Tatton-Brown-Rahman
syndrome [129] and KMT2D in Kabuki syndrome [130]. DNA methylation is an epigenetic
modification, regulating chromatin status and gene transcription. Aberrant DNA methyla-
tion profiles have often been observed in cancer, and are characterized by the hypermethy-
lation of tumor suppressor gene promoters or methylation defects at imprinted loci [131].
Genome-wide DNA methylation analysis has been used to identify specific episignatures
in more than 40 genetic diseases, including some common microdeletion/duplication syn-
dromes [129]. To date, only few studies have been performed to investigate the methylation
profile in patients with 22q11.2DS [132,133].

By measuring three histone modifications classically associated with promoter activa-
tion status (H3K4me3), enhancer and promoter activation status (H3K27ac), and chromatin
opening (H4ac) in CD4 T- and CD19 B-cells, Zhang et al. were able to demonstrate that
histone modifications were significantly impaired in both CD4 T-cells and B-cells from
22q11.2DS patients compared with those in controls. The alterations identified were more
pronounced in CD4 T-cells. Furthermore, they observed that genes with significantly
increased promoter histone modifications in CD4 T-cells from patients with 22q11.2DS
significantly overlapped with clusters related to early NFkB and STAT activation and in-
flammatory responses. By analyzing a cohort of 49 patients with a diagnosis of 22q11.2DS,
the authors of [134] were able to identify 160 differentially methylated CpG probes, re-
tained for 22q11.2DS episignature discovery. These probes represent the most differen-
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tially methylated CpGs in the cohort when compared with those in the controls; indeed,
the selected probes were able to completely separate the 22q11.2DS cases from age- and
sex-matched controls.

Moreover, among the patients, they were able to identify two distinct clinical groups
based on the methylation profile: patients carrying typical deletions, with a similar pheno-
type, and those carrying atypical distal deletions, with a milder phenotype. This specific
episignature suggests the presence of a common process in the alteration of chromatin re-
modeling. In addition, methylation alterations in specific imprinted genes and in the MHC
(major histocompatibility complex) locus were found to distinguish 22q11.2 individuals
with schizophrenia spectrum disorders from those without psychiatric involvement [132].
The role of MHC genes in schizophrenia has been previously reported. Besides their
well-studied immune functions, HLA genes contribute to neurogenesis, neural differenti-
ation and migration, synaptogenesis, and synaptic plasticity [135]. An unresolved issue
remains in terms of whether or not the DNA methylation signatures found in blood cells
reflect the pattern belonging to specific tissues such as the brain. However, it is reasonable
thinking that the phenotype of 22q11.2DS could be a result of the combination of the
haploinsufficiency of 22q11.2 genes as well as global and specific methylation defects.

5. Discussion and Conclusions

Phenotypic features of 22q11.2DS are not fully obvious in patients, and its clinical
presentations are remarkably variable. This variability remains largely unexplained. While
certain features are more directly related to individual genes, as identified for TBX1 and
CRKL regarding cardiac and urinary tract development, other features may require the
effects of multigenic reduced gene dosage within the 22q11.2 deletion interacting with
permissive variants in modifier genes elsewhere in the genome. Likewise, it is possible
that a fine balance deriving from the cooperation between the deleted genes is needed to
orchestrate regulatory pathways acting on genome accessibility and transcription. While a
role for miRNA in the pathogenesis of the syndrome has been hypothesized, the challenge
will be to identify the target genes that are affected by those microRNAs that are found to be
dysregulated in 22q11DS and to characterize the pathways of involvement in a much more
comprehensive manner. Similarly, further investigation on the effects of the alterations in
the DNA and histone methylation profile on gene expression will lead to the identification
of potentially targetable networks.
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