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Abstract: Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid
genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes
associated with specific traits in livestock. In this study, we analyzed the resequencing data from
10 local goat breeds in Yunnan province of China and five additional goat populations obtained from
a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with
an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient
indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was
used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific
genes related to economic traits such as coat color and weight variation. These candidate genes
include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated
with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit
associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some
putative genes associated with high-altitude adaptability and immune. This study uncovers genetic
diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification
of specific genes associated with economic traits and adaptability provides actionable insights for
utilization and conservation efforts.

Keywords: runs of homozygosity; heterozygosity; local goat breeds; candidate genes; Yunnan province

1. Introduction

Believed to have been domesticated around 10,000 years ago, the goat (Capra hircus)
species ranks among the earliest livestock to be tamed [1,2]. Since the Neolithic era, goats
have been pivotal in agriculture, providing fiber, milk, and meat [3]. The evaluation of
genetic diversity for native goat breeds is not only essential for the conservation and uti-
lization of animal resources but also crucial for understanding the basis of key traits such
as disease resistance, productivity, and adaptability [4]. It also sheds light on their evolu-
tionary history and domestication process and ensures the sustainability and adaptability
of goat populations to changing environments [5].

Yunnan province is located in southwestern China, bordering the countries of Myan-
mar, Laos, and Vietnam. It is characterized by its complex topography, diverse climate,
and abundant biodiversity and is the home to the highest concentration of ethnic minori-
ties [6,7]. During long-term natural and artificial selection, various local goat breeds in
Yunnan province emerge with divergent traits. In this study, we focused on ten goat breeds
from Yunnan, all listed in China’s National Livestock and Poultry Genetic Resources Cata-
log. For example, the Maguan polled goat breed is a rare and valuable genetic resource
with the polled trait since its population size has decreased dramatically in recent years.
Longling yellow goat is a unique breed with high meat quality and disease resistance
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and is included in the Yunnan Province Livestock and Poultry Genetic Resources Protec-
tion List to better safeguard this exceptional breed. This situation highlights the need for
comprehensive genetic studies, such as those employing microsatellite markers to assess
genetic diversity in Yunnan indigenous goat populations [7], underscoring the importance
of conservation and utilization for these unique goat breeds in Yunnan. However, a com-
prehensive analysis of the genome-wide patterns of homozygosity and selection signatures
in these breeds is still lacking.

In diploid genomes, ROH are continuous homozygous segments of the DNA se-
quence [8,9]. Demographic events like population bottlenecks, genetic drift, and inbreeding
primarily contribute to the formation of ROH [10,11]. These homogenous DNA segments
are instrumental in the analysis of inbreeding in livestock species [12–14]. In livestock,
the length of ROH segments serves as an indicator of the level of inbreeding, with longer
ROH segments denoting recent inbreeding events and shorter segments indicating in-
breeding that occurred earlier in the generations [15,16]. ROH islands, first identified by
Nothnagel et al. [17], provide insights into exploring genomic regions with significant in-
breeding in populations [18]. The ROH islands were observed in various livestock species,
including cattle [19], pigs [20], horses [21], sheep [22], and goats [23]. However, there
has been limited research on the identification of ROH in local goat breeds from Yunnan
province, China.

Recent studies have played a crucial role in assessing genetic diversity and inbreeding
levels in goat populations utilizing SNP microarrays and whole-genome resequencing
methods. These studies emphasize the differences in genetic diversity across various breeds
and point out the considerable inbreeding present in some breeds [13,24,25]. Compared to
microarray methods, the whole-genome resequencing method offers a more comprehensive
detection of genetic variations, providing deeper insight into the genetic landscape [26–28].
Furthermore, the iHS analysis applied to whole-genome resequencing and SNP microarray
data have proven effective in identifying genomic regions under positive selection in
goats; this approach facilitated the identification of genes associated with key traits such as
productivity, disease resistance, and climate adaptability [4,29,30].

In this study, we focused on ten goat breeds from Yunnan, all listed in China’s National
Livestock and Poultry Genetic Resources Catalog. We investigated the genome-wide
patterns of ROH and estimated the genomic inbreeding coefficients in these populations.
Additionally, our research also identified candidate genes associated with important traits
through selection signal analysis of SNPs within ROH regions. This research reveals
the genetic diversity, inbreeding level, and specific set of genes with significant selection
signals in local goat breeds from Yunnan province, which provide useful information for
the conservation and utilization of these goat breeds.

2. Materials and Methods
2.1. Ethics Statement

The experimental procedures involving animals received approval from both the Chinese
Ministry of Agriculture and the Institute of Animal Science at the Chinese Academy of Agri-
cultural Sciences. The ethical committee of the Institute granted approval for animal welfare
under the reference number IASCAAS-AE-03. Approval was given on 1 September 2014.

2.2. Sample Collection, DNA Extraction, and Sequencing

Ear marginal tissue samples were collected from a total of 98 goats, including 94 indi-
viduals from Yunnan province (Fengqing Polled Black goat, 8; Guishan goat, 10; Longling
Yellow goat, 10; Luoping Yellow goat, 10; Maguan Polled goat, 10; Mile Red Bone goat, 6;
Ninglang Black Head goat, 10; Weixin White goat, 10, Yunling goat, 10; Zhaotong goat,
10) and 4 samples with Laoshan Dairy goat. The samples were stored in 75% alcohol and
then stored at −80 ◦C. In addition, we downloaded 24 goat resequencing data from NCBI
(National Center for Biotechnology Information (nih.gov)) (Supplementary Table S1). The
feeding regimens for these goats were designed to fulfill their nutritional needs, tailored to
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their body weight and production performance, ensuring the collection of representative
biological samples under optimal physiological conditions.

DNA extraction was conducted using a Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI, USA), which involves preparing the sample with EDTA and
Nuclei Lysis Solution, digesting the tissue with Proteinase K, purifying the DNA through
precipitation and centrifugation, and finally, rehydrating the DNA pellet for storage. The
concentration and purity of DNA samples were quantified using a NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Only DNA samples
with a concentration of more than 20 ng/µL and a purity ratio (A260/A280) of 1.8–2.0 were
used for library construction and sequencing.

The sequencing libraries were constructed according to the manufacturer’s instructions
(Illumina Lnc., San Diego, CA, USA) and sequenced on the DNBSEQ-T7 platform (Shenzhen
MGI Co., Ltd., Shenzhen, China) with PE150 model. Briefly, the sequencing libraries were
generated following the protocol of the NEBNext Ultra II DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, USA). Initially, DNA was sonicated to a target size
of 300 bp, followed by end repair, A-tailing, and adapter ligation with NEBNext adapters.
Size selection was conducted using AMPure XP beads (Beckman Coulter, Brea, CA, USA),
and the fragments were PCR amplified. Library quality and concentration were evaluated
using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

2.3. Resequencing Data Processing, SNP Calling, and Annotation

Quality filtering and trimming of the raw sequencing reads were performed us-
ing NGS QC Toolkit (Version: 2.3.3) [31]. Then, the clean reads aligned with ARS1.2
(GCF_001704415.2) goat reference genome, using the BWA-MEM (Version: 0.7.12) [32,33].
The alignment output was formatted into BAM format and sorted by SAMtools (Ver-
sion 1.3.1) [34]. Duplicate reads were removed using SAMtools. The genome-wide SNPs
were identified with HaplotypeCaller and then merged by GenomicsDBImport and Geno-
typeGVCFs using GATK (Version 3.7) [35]. SNPs were annotated using SnpEff software
(Version 4.0) [36] based on the goat reference genome ARS1.2.

2.4. ROH Analysis and Classification

ROHs were detected across autosomes for each samples using PLINK (Version 1.90b) [37]
(--homozyg-density 30 --homozyg-gap 1000 --homozyg-kb 500 --homozyg-snp 50 --homozyg-
window-het 1 --homozyg-window-snp 30 --homozyg-window-missing 5 --homozyg-window-
threshold 0.05). ROHs were divided into 4 classes based on length: (A) 500 kb to 1 Mb,
(B) 1 Mb to 2 Mb, (C) 2 Mb to 4 Mb, and (D) >4 Mb.

2.5. Genomic Inbreeding Coefficients

Genomic inbreeding coefficients were determined utilizing PLINK. The calculation
method of FROH was as follows: FROH = (LROH/LAUTO) [38], where LROH represents the
sum length of an individual’s ROH in the genome, and LAUTO is the specific length of
the autosomal genome covered by SNPs of goat (2466.19 Mb) based on the goat reference
genome ARS1.2.

2.6. iHS Analysis and Gene Annotation
The top 5% of SNPs with the highest occurrence frequency in each population were

selected for further analysis [39,40]. The iHS for SNPs within high-frequency ROH regions
was calculated for the local goat breeds from Yunnan province utilizing the rehh [41] R
package (Version: 3.2.2). SNPs in the top 1% of iHS scores were designated as strongly
selected sites [42]. SnpEff software (Version: 4.0) was used to annotate genes with strongly
selected sites.
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3. Results
3.1. Sequencing and Genetic Variation

Whole-genome resequencing was conducted on 94 goat samples from Yunnan province
and four LSD samples (Table 1), generating a total data of 2.94 Tb, with an average depth
of 10× per individual. The data of BEZ, ANG, BER, and BLB goat populations were
downloaded from NCBI (Supplementary Table S1). A total of 11,603,450 SNPs were filtered
for subsequent analysis in ROH.

Table 1. The descriptive statistics of ROH for 15 goat populations.

Code Breed/Population Sample Size Total Number 1
Average

Number per
Individual

Total Length
(Mb) 2

Average
Length per
Individual

(Mb)

ANG Angora goat 8 1709 214 2055 257
BER Bermeya goat 5 253 51 272 54
BEZ Bezoar 5 675 135 1043 209
BLB Black Bengal goat 6 117 20 83 14
FQ Fengqing Polled Black goat 8 1672 209 1964 246
GS Guishan goat 10 1617 162 2217 222
LL Longling Yellow goat 10 1737 174 1681 168
LP Luoping Yellow goat 10 1069 107 985 99

LSD Laoshan Dairy goat 4 434 109 369 92
MG Maguan Polled goat 10 3288 329 5067 507
ML Mile Red Bone goat 6 955 160 1155 193
NL Ninglang Black Head goat 10 927 93 848 85
WX Weixin White goat 10 953 95 906 91
YL Yunling goat 10 3333 333 4918 492
ZT Zhaotong goat 10 1750 175 2430 243

1 The total number of ROH events for each population. 2 Cumulative ROH event lengths per individual within
each population.

3.2. Genomic Distribution of ROH and Inbreeding Coefficients

Across 15 goat populations, we assessed ROHs on a genome-wide scale spanning
29 autosomes. The analysis revealed 21,029 ROHs, averaging 172 per individual. These
segments ranged from 0.5 to 21 Mb in length, with an average segment size of 1.27 Mb
across all autosomes (Table 1, Supplementary Tables S2 and S3). Notably, the YL and MG
goat breeds exhibited the longest average ROH segment length at 492 Mb and 507 Mb,
double the length of the breed of ANG (257 Mb), which underwent intensive selection
in wool production (Figure 1). The breeds of local goat FQ (246 Mb), ZT (243 Mb), GS
(222 Mb), and ML (193 Mb) from Yunnan were similar to the length of ANG (Figure 1). In
contrast, the BLB goats showed the lowest homozygosity, with 117 ROH events with an
average length of 14 Mb (Figure 1). Furthermore, MG goats had the most extensive genome
coverage by ROH (corresponding to ~20.55% of goat autosomes genome) (Figure 1). Our
study revealed breed-specific variations in the frequency and dimensions of ROH events,
with the MG breed showing a greater average ROH length compared to other breeds.

To obtain the inbreeding coefficients of each population, the FROH was used to estimate
the value of inbreeding coefficients. The FROH values for each population ranged from
0.02 to 0.21 (Figure 2). In the native goat breeds from Yunnan province, the breed MG
exhibited the highest average FROH at 0.21, closely followed by the YL goat breed at 0.20
(Figure 2). Conversely, the breed of NL displayed the lowest average FROH at 0.03 (Figure 2).
Notably, the inbreeding coefficients of local goat breeds from Yunnan were generally higher
compared to those in the BER, BLB, and LSD breeds. BLB (0.05), with the fewest number
of ROH events and the shortest ROH segment length, showed the lowest inbreeding
coefficient. Interestingly, despite having a higher count of ROH events, the breed of ZT
goat exhibited relatively low levels of FROH.



Genes 2024, 15, 313 5 of 14

Genes 2024, 15, x FOR PEER REVIEW 5 of 14 
 

 

study revealed breed-specific variations in the frequency and dimensions of ROH events, 
with the MG breed showing a greater average ROH length compared to other breeds. 

 
Figure 1. The distributions of ROH statistics per individual for 15 goat populations, including ANG 
(n = 8), BER (n = 5), BEZ (n = 5), BLB (n = 6), FQ (n = 8), GS (n = 10), LL (n = 10), LP (n = 10), LSD (n = 
4), MG (n = 10), ML (n = 6), NL (n = 10), WX (n = 10), YL (n = 10), and ZT (n = 10). (A) The length of 
ROHs per individual. (B) The number of ROHs per individual. 

To obtain the inbreeding coefficients of each population, the FROH was used to esti-
mate the value of inbreeding coefficients. The FROH values for each population ranged from 
0.02 to 0.21 (Figure 2). In the native goat breeds from Yunnan province, the breed MG 
exhibited the highest average FROH at 0.21, closely followed by the YL goat breed at 0.20 
(Figure 2). Conversely, the breed of NL displayed the lowest average FROH at 0.03 (Figure 
2). Notably, the inbreeding coefficients of local goat breeds from Yunnan were generally 
higher compared to those in the BER, BLB, and LSD breeds. BLB (0.05), with the fewest 
number of ROH events and the shortest ROH segment length, showed the lowest inbreed-
ing coefficient. Interestingly, despite having a higher count of ROH events, the breed of 
ZT goat exhibited relatively low levels of FROH. 

Figure 1. The distributions of ROH statistics per individual for 15 goat populations, including ANG
(n = 8), BER (n = 5), BEZ (n = 5), BLB (n = 6), FQ (n = 8), GS (n = 10), LL (n = 10), LP (n = 10), LSD
(n = 4), MG (n = 10), ML (n = 6), NL (n = 10), WX (n = 10), YL (n = 10), and ZT (n = 10). (A) The length
of ROHs per individual. (B) The number of ROHs per individual.

3.3. Genomic Patterns of Homozygosity

To investigate the patterns of ROH in each goat population, we categorized ROH
segments into four size classes: (A) 500 kb to 1 Mb, (B) 1 Mb to 2 Mb, (C) 2 Mb to 4 Mb, and
(D) >4 Mb. Notably, a significant number of ROHs were observed on chromosome 1, while
chromosome 28 exhibited the fewest (Figure 3A). We provide a detailed distribution of
ROHs across each chromosome, including the count and classification of ROHs in different
size ranges (Figure 3A).
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The total number and each category of ROHs for populations are depicted in Figure 3B.
Particularly, breeds MG and YL displayed the highest total number of ROH segments
(greater than 4 Mb), contrasting with the BLB breed, which showed the lowest number
in this category. The analysis also indicated that ROH segments in categories A and
B, predominantly featuring segments ranging from 500 kb to 1 Mb, were predominant
across all populations (Figure 3B). Additionally, our study found that ROH segments
between 2 and 4 Mb are relatively abundant in the genomic landscape of local goat breeds
from Yunnan province, particularly in the YL and MG breeds. These results reveal breed-
specific differences in ROH distribution, providing insights into the genetic diversity of
these breeds.

3.4. iHS Selection Signature Analysis

To investigate the effect of selection in local goat breeds from Yunnan province, we
explored the distribution of ROH throughout the genome. The frequency of SNPs within
ROH regions in each breed was quantified, the top 5% SNPs with high frequency in ten
local goat breeds from Yunnan province were annoted, with the software SnpEff (Version:
4.0). To further refine the selection of candidate genes, a haplotype based on the iHS
method was then used to detect selection signals in the top 5% of SNPs with high frequency
across 10 native goat breeds from Yunnan, and these were then annotated with the software
of SnpEff.

In all breeds analyzed in Yunnan province, we identified the top 1% of iHS val-
ues, which represented strong signals of selection; a total of 443 genes were annotated
(Supplementary Table S4, Supplementary Figure S1). For instance, in the breeds of GS and
ML, the EPHA6 gene was annotated in the top 1% of iHS values (Figure 4A). This gene was
known for its association with litter size, the rs402032081 variant of EPHA6, which was
reported in Polish Mountain sheep [43]. Multiple strong selection signals on chromosome
2 in the breeds of LP, ML, and YL were annotated to the OCA2 gene (Figure 4B), known
for its association with skin pigmentation [44]. On chromosome 3 of both ML and GS
goats, we identified the MLPH gene (Figure 4C), which was characterized as a candidate
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gene for dilute coat color in some goat breeds [45]. Additionally, CDKAL1 (FQ) [46] and
POMC (FQ) [47] were identified as related to weight variation (Figure 4D), LIM domain
binding 1 (LDB1) and fibroblast growth factor 2 (FGF2) (NL) [48,49] were identified related
to high-altitude adaptation (Table 2). Our research also revealed that a specific subset of
genes shows pronounced selection signals throughout the local goat breeds from Yunnan
province, highlighting the presence of breed-specific selective loci. This pattern suggests
that each breed from Yunnan possesses a distinctive genetic identity, shaped by varying
degrees of artificial and natural selection.
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(D) CDKAL1 gene in FQ breed. The dashed line represents the top 5% SNPs with high frequency in
the local goat breed.

Table 2. Genes identified by iHS selection signature analysis.

Gene Symbol Gene Name/Description Breed in
This Study Chromosome Function Reference

OCA2 OCA2 melanosomal
transmembrane protein LP, ML, YL 2 Coloration of the coat [44]

IGF2BP2 insulin-like growth factor
2 mRNA binding protein 2 YL 1 Reproductive process and

reproduction in goats [50]

CAMK2D
calcium/calmodulin-

dependent protein kinase
II delta

GS 6
Protein serine/threonine
kinase activity. embryo

development
[51]

CDKAL1 CDK5 regulatory subunit
associated protein 1 like 1 FQ 23 Chest depth

measurements [47]

LDB1 LIM domain binding 1 NL 26 High-altitude adaptation [48]
FGF2 fibroblast growth factor 2 NL 17 High-altitude adaptation [49]

DGKB diacylglycerol kinase β LL 14 Innate and adaptive
immunity [52]

4. Discussion

The increase in homozygosity observed in specific genomic regions of livestock can be
attributed to various factors, including population bottlenecks, genetic drift, and inbreeding,
which collectively contribute to the heightened frequency of ROH and affect the genomic
diversity within these populations and breeds. Many studies investigated the patterns of
ROH and their correlation with inbreeding depression, particularly in relation to important
traits in various goat breeds [53,54]. However, the patterns and distribution of ROH in local
goat breeds from Yunnan province remain largely unexplored. In this study, whole-genome
resequencing was utilized to explore the ROH patterns and distribution in native goat
breeds from Yunnan.

The distribution of the number and length of ROH can reflect the genetic diversity
within the studied populations. We observed variations in the total number and length of
ROH among local goat breeds from Yunnan province (Figure 1), consistent with previous
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studies on cattle [55], sheep [56], and horses [57]. The local goat breeds from Yunnan,
including MG, YL, and ZT, exhibited a higher number and length of ROH compared to
the populations of BEZ, BLB, BER, and LSD (Figure 1), the variations of which possibly
attributed to factors such as historical breeding practices, geographical isolation, or specific
genetic characteristics unique to each breed, reflecting adaptation to local environmental
conditions. The MG breed is endangered, exhibiting genetic degradation, a small effective
population size, and the polled unique genetic characteristic factors that likely contribute
to the accumulation of ROH segments (Figure 1). For YL goats, despite being distributed
throughout Yunnan province, they suffered from a lack of systematic selective breeding and
population protection. Consequently, these goats are characterized by their small size, slow
growth and development, and low lamb survival rates, leading to increasingly evident
population degeneration. Additionally, they exhibit a high number of long ROH segments
(Figure 1), indicating elevated inbreeding coefficients (Figure 2).

A breed exhibited a higher inbreeding coefficient, indicating a potential reduction in
genetic diversity and an increased frequency of deleterious genotypes [58]. Among these
local goat breeds, MG and YL have higher FROH than other breeds, which highlights the
urgent need for targeted efforts to preserve MG genetic diversity and reverse the trend of
population decline and genetic conservation and management strategies to mitigate the
adverse effects of inbreeding and promote the sustainable development of the YL goat
population. This is like the goat breeds of Mallorquina and Blanca de Rasquera, in which
population size declines led to an increase in the frequencies of large-size ROH segments
and the extent of inbreeding [59]. For the breeds of LP and ZT, a large number and length
of ROH segments were observed, but their FROH levels were relatively low. This pattern
might result from the presence of a few individuals with higher inbreeding coefficients
within the breeds.

Diverse patterns of ROH across different breeds offer insights into their genetic di-
versity and provide evidence for conservation. In our study, we observed that the longer
autosomes contained a higher number of ROH. This finding aligns with previous research
conducted on goats [13], sheep [60], and cattle [61]. These events can have profound
effects on the genetic diversity and breed characteristics of the studied goat populations.
For instance, inbreeding can lead to the accumulation of deleterious alleles, which can
negatively impact the health and fitness of the population [62]. Conversely, it can also lead
to the fixation of beneficial alleles, which can enhance certain breed characteristics. Notably,
we categorized ROH segments into four classes according to their length and discovered
that short ROH segments predominantly constitute the ROH in different breeds. As the
length of ROH segments increases, their frequencies decrease, indicating that the ROH
patterns can reflect the occurrence of inbreeding events in either a relatively recent or more
accent generational context. This finding aligns with the results of ROH analysis in cattle
populations from southern China [61]. Furthermore, our research revealed that in local
Yunnan goat breeds, particularly in MG and YL breeds, the number of ROH segments
exceeding 1 Mb was substantially higher than those ranging from 0.5 to 1 Mb. This pattern
suggests that these breeds may have undergone a reduction in effective population size or
experienced inbreeding, which needs further conservation measures for these breeds.

In breeding programs, particularly for local breeds facing challenges like low slaugh-
ter rates and limited market demand, managing genetic diversity and controlling the
inbreeding coefficient is crucial for preserving unique traits and ensuring long-term sustain-
ability [63]. The calculation of inbreeding coefficients using FROH was identified as a highly
accurate method for assessing inbreeding levels within a population [64]. For instance,
the inbreeding level of American Angus cattle was accessed using ROH, homozygous-by-
descent (HBD) segments, alongside traditional pedigree measures [65], which indicated
the FROH method was shown with higher accuracy for genetic diversity and inbreeding
quantification. A study on a Large White pig population utilized FROH, among other
inbreeding coefficient estimations, reinforcing the significance of genomic approaches in
understanding the genetic diversity of livestock populations [66]. This approach helps
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conserve and utilize local breeds, preserving their unique genetic traits and enhancing
their contributions to biodiversity and agriculture. In light of our findings, we propose
several conservation measures for local goat breeds, especially those with higher FROH
levels, which are at greater risk of inbreeding. Controlled breeding strategies, including
the introduction of unrelated individuals to increase genetic diversity and regular genetic
monitoring to track ROH and FROH levels, are suggested. Establishing gene banks for pre-
serving genetic material and ongoing research into their genetic characteristics are crucial
for the breeds’ long-term survival and well-being.

Under diverse climates, geographical distributions, and artificial selection, the local
goat breeds with distinctive traits from Yunnan province of southwest China have been
shaped. In our study, the iHS method was utilized to detect selection signals in the top
1% of high-frequency SNPs across local goat populations. iHS is a widely used method
for detecting positive selection in populations based on haplotype data. This analysis was
focused on these top SNPs, aiming to identify potential selective signals. The NL breed from
Yunnan province is situated in the middle section of the Hengduan Mountains. This region
serves as a transitional area between the Qinghai–Tibet Plateau and the Yunnan–Guizhou
Plateau, characterized by an average altitude of 2800 m. The iHS analysis revealed some
genes were identified in the NL breed, which was reported to be associated with high-
altitude adaptability, such as LDB1 and FGF2 [48,49]. It is suggested that the NL goats living
at high altitudes may be experiencing natural selection pressure due to the environmental
conditions of high altitudes. In local meat goat breeds, such as FQ and WX, iHS analysis
results revealed the genes of CDKAL1 and POMC linked to body weight [47,67], indicating
potential selection for traits associated with meat production. Additionally, genes associated
with coat color and skin pigmentation, such as MLPH (in GS and ML breeds) and OCA2 (in
LP, ML, and YL breeds), were identified [45,47]. Notably, the knockout of the OCA2 gene
in Astatotilapia calliptera was shown to lead to the absence of melanin [44]. The immune-
related genes CD53 (CD53 molecule) and SSBP2 (single-stranded DNA binding protein
2) were identified in the GS goat breed, which plays a role in pathogen resistance and the
regulation of mammary gland inflammation, thus indirectly influencing the efficiency and
quality of milk production [68]. Moreover, the MAGI2 (membrane-associated guanylate
kinase, WW, and PDZ domain containing 2) gene, associated with reproductive traits in
goats, was identified across six breeds (FQ, GS, LL, LP, NL, ZT). In dogs, MAGI2 was
reported to be associated with ovary formation during early embryonic development [69],
which may play a significant role in goat reproductive traits.

In conclusion, our study provides valuable insights into the genetic diversity and
structure of local goat breeds from Yunnan province, China. We identified variations in
the number and length of ROH among these breeds, which can be attributed to factors
such as historical breeding practices, geographical isolation, and breed-specific genetic
characteristics. Our findings underscore the importance of implementing effective con-
servation strategies, particularly for breeds with higher FROH levels, to preserve their
genetic diversity and mitigate the effects of inbreeding. Furthermore, through iHS analysis,
we identified candidate genes related to key traits, such as coat color, litter size, weight
variation, high-altitude adaptability, and immunity. These findings contribute to the con-
servation and utilization of local goat breeds and enrich our broader understanding of
livestock genetic diversity.
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Each ROH is described by the chromosome, starting and ending SNP, the number of SNPs, and the
length in kb. Supplementary Table S3: Summarizes the ROHs for each individual, including counts
and total lengths. Supplementary Table S4: Genes annotated with the strongest selection signals in
the top 1% overlapping among goat breeds from Yunnan province, China. Supplementary Figure S1:
Genes identified by iHS selection signature analysis as overlapping among various goat breeds from
Yunnan province, China.
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