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Abstract: While animal model studies have extensively defined the mechanisms controlling cell
diversity in the developing mammalian lung, there exists a significant knowledge gap with regards
to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program
(LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and
mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human
lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP
Human Tissue Core Biorepository, were captured, and library preparation was completed on the
Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed
using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human
lung cells identified distinct clusters representing multiple populations of epithelial, endothelial,
fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational
integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through
10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification
of distinct cellular lineages among all the major cell types. Integration of the newborn human and
mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of
newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated
into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular
profile were spatially resolved within newborn human lung tissue. This is the first comprehensive
molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at
distinct states of maturity.

Keywords: single-cell RNAseq; matrix fibroblast; lung development; newborn lung

Genes 2024, 15, 298. https://doi.org/10.3390/genes15030298 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15030298
https://doi.org/10.3390/genes15030298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-1140-7845
https://orcid.org/0000-0003-4347-6036
https://orcid.org/0000-0001-9453-0747
https://orcid.org/0000-0002-1352-4378
https://orcid.org/0000-0003-2694-7465
https://doi.org/10.3390/genes15030298
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15030298?type=check_update&version=1


Genes 2024, 15, 298 2 of 20

1. Introduction

The lung is a complex organ comprised of over 40 different cell types [1,2]. Despite
recent advances in our understanding of lung development, the complex cellular function
and intercellular interactions in the developing human lung are yet to be clearly under-
stood. Development and maintenance of lung structure requires cross talk among multiple
cell types to coordinate lineage specification, cell proliferation, differentiation, migration,
morphogenesis, and injury repair. The diverse array of pulmonary cells can be categorized
into four major cell populations, namely, epithelial cells, endothelial cells, mesenchymal
cells, and lung-resident and -transient immune cells, with each group being relatively
well-distinguished by specific cell-surface proteins. Even though key signaling molecules,
genes, and pathways driving lung development have been identified [3–9], significant
knowledge gaps still exist in our understanding of this process especially in humans and
interdisciplinary efforts will be required to further our understanding of the early life origin
of lung disease [10].

The transition of the lung from fetal to neonatal states is highly complex, and has
been characterized in murine models [11–15]. Cell lineages, and their relationships, during
lung development and in diseased states have been extensively studied in rodent models,
thanks in large part to use of transgenic technology. It has been more difficult to confirm
independent cell types and their lineages in the relatively rare and non-experimental nature
of human lung tissue analysis. While early stages of human fetal lung development have
been characterized at the molecular level [16,17], data describing the newborn human
lung is lacking [18]. Although molecular profiling has been applied to pre-viable human
lung [17,19], further understanding of later human lung development has been limited by
lack of access to tissue of sufficient quality for molecular analysis. These limitations have
been recently overcome by the NHLBI Molecular Atlas of Lung Development Program
(LungMAP). The establishment of the LungMAP program, and its success in obtaining
human tissues for structural, cellular and molecular analysis has, and will continue to,
facilitate this progress [20–23]. The LungMAP consortium was formed to create a molecular
atlas of the developing human lung that incorporates detailed structural and molecular
mechanisms involved normal perinatal and neonatal lung development. The LungMAP
website (https://www.LungMAP.net; accessed on 1 February 2024) serves as a reposi-
tory of datasets generated from multiple species across multiple omics platforms. The
portal also incorporates novel computational tools for the analysis and interpretation of
omics and image data that have been extensively used by researchers in the pulmonary
field [24]. Additionally, most high-throughput molecular studies of lung development have
used whole lung tissue [11], limiting insights into the activities of and interactions among
different cell types. However, given recent advancements in high-throughput molecular
profiling technologies, rapid progress is being made [25–27]. Single-cell RNA-seq enables
transcriptomic mapping of individual cells, to measure and understand cellular heterogene-
ity and mechanistic responses in complex biological systems [27]. It offers an opportunity
to explore the whole transcriptome of individual cells, and thereby organizing the cells into
cellular states in an unsupervised manner. Single-cell RNA-seq can be performed in a mul-
titude of organisms, which allows for unbiased comparisons across different species [28].
Recently, the Human Cell Atlas consortium has prioritized the characterization of cellular
composition of lung tissue using single-cell sequencing [29]. Single-cell RNA-Seq has also
been applied for the identification of known or novel cell populations and to assess cellular
heterogeneity and gene expression in changes in lung cell populations during health and
diseases [20,30–37]. Here, we report transcriptional analysis of donor newborn human lung
cells, including all major cell types, and describe the molecular profile for matrix fibroblast
subtypes that may represent cells at different stages of development.

LungMAP was developed to generate detailed structural and molecular data regard-
ing normal perinatal and postnatal lung development in mice and humans [21,38]. We
have recently reported that high-throughput analysis (transcriptomics, proteomics, etc.)
of sorted dissociated cells from human neonatal and pediatric lungs reveals retention

https://www.LungMAP.net
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of in vivo phenotypes [19,21,39,40]. Here, we build on the rapid advancement in single-
cell transcriptomics that enables the identification of cell-type specific transcriptomes of
neonatal and ageing murine lungs, serving as a comparative basis for understanding the
transcriptomic landscape of the newborn human lung [25,27]. We computationally inte-
grated single-cell signatures of donor newborn human lungs with single-cell transcriptomic
profiles of developing perinatal mouse lung to generate a trans-species cellular impression
of the developing lung.

2. Materials and Methods
2.1. Study Population

Two newborn (one-day old) lungs were donated for research and provided, with
de-identified clinical data, through the federal United Network of Organ Sharing via the
National Disease Research Interchange (NDRI) and International Institute for Advancement
of Medicine (IIAM). While both the lungs were from individuals who were deceased at
one day of life due to diagnosed anencephaly, they differed at their gestational age at birth
(GAB). While both the donors were female, one of them (Donor 1) was a full term (GAB
of 38 weeks), whereas the other (Donor 2) had a pre-term birth (GAB of 31 weeks). The
organs were received by the LungMAP Human Tissue Core at the University of Rochester,
and subjected to processing as previously described [39]. The LungMAP program and
resulting studies are approved by the University of Rochester IRB (RSRB00047606). Sample
demographic information for the donor lungs used in the study have been presented in
Table S6.

2.2. Single-Cell Suspension Preparation

The right upper and middle lung lobes were digested to single-cell suspensions using a
four-enzyme cocktail (collagenase A, DNase, dispase and elastase) according to LungMAP
protocol, as described previously [39]. Isolated cells were resuspended in freezing media
(90% FBS, 10% DMSO) at a concentration no more than 60 × 106 cells/mL, slow cooled to
−80 ◦C overnight and stored in liquid nitrogen until use.

2.3. Human Single-Cell Sequencing

Unfractionated dissociated cells from each subject were rapidly thawed and, without
resting, used for two separate captures of single cells for RNAseq. For each lung, one
capture was preceded by removal of dead or dying cells through magnetic selection using
a Dead Cell Removal Kit (Miltenyi Biotech, Santa Barbara, CA, USA). Cell capture and
library production was performed on the Chromium 10X Genomics system (v2 chemistry).
Sequencing was performed on a HiSeq4000, with read alignment to GRCh38. Cells filtered
to exclude low quality cells, and potential doublets, were used to create analytical dataset.
Highly variable genes were identified using “FindVariableGenes” function in Seurat [41].
Principal component analysis (PCA) was used for dimension reduction based on only the
highly variable genes. Top principal components (PCs) identified by JackStrawPlot() and
graph-based Louvain-Jaccard methods [42] were used for t-Distributed Stochastic Neighbor
Embedding (tSNE) and clustering analysis. All single-cell sequencing data analysis was
performed using Seurat v2.4 [43,44]. Cluster markers were defined by differential expres-
sion using a parametric Wilcoxon rank sum test at a corrected significance level of p < 0.05
and upregulated the cluster compared to all other cells using the FindAllMarkers() com-
mand implemented in Seurat. Pathway analysis and cell type association was performed
using ToppGene Functional Annotation tool (ToppFun) [45]. The human cell sequencing
counts data is available for visualization and downloading through the LungMAP por-
tal (https://lungmap.net/breath-omics-experiment-page/?experimentTypeId=LMXT00000
00016&experimentId=LMEX0000004390&analysisId=LMAN0000000347&view=entitySet; ac-
cessed on 1 February 2024).

https://lungmap.net/breath-omics-experiment-page/?experimentTypeId=LMXT0000000016&experimentId=LMEX0000004390&analysisId=LMAN0000000347&view=entitySet
https://lungmap.net/breath-omics-experiment-page/?experimentTypeId=LMXT0000000016&experimentId=LMEX0000004390&analysisId=LMAN0000000347&view=entitySet
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2.4. Mouse Single-Cell Sequencing

Animal protocols were approved by the Institutional Animal Care and Use Committee
at Cincinnati Children’s Medical Center (CCMC) in accordance with NIH guidelines. RNA
from cells isolated from C57BL6/J mice (n = 2, at each time point) were used in the pro-
duction of the mouse single-cell RNA-seq data set using Drop-Seq platform, as previously
described [27]. Filtered data were log transformed, scaled, clustered and represented by
t-Distributed Stochastic Neighbor Embedding (t-SNE), similar to the analysis of human
cells. Cell clusters were assigned to putative cell types based on inspecting the expression
of known cell type markers, and the individual cluster markers analyzed using ToppFun.
Single-cell gene expression data from mouse lungs from all four time points have been
made available on the Lung Gene Expression in Single Cell (LungGENS) web portal [19].

2.5. Integrating Human and Mouse Data

We integrated our newborn human lung data set with single-cell sequencing data
(Drop-Seq) from longitudinal postnatal (post-natal days 1, 3, 7, and 10) mouse lung sam-
ples [27] (Figure S5). These data characterized mouse datasets, hosted by LungMAP
(https://lungmap.net; accessed on 1 February 2024), were used as a reference to help
define the human lung cell populations. The useMart and getLDS functions, within
the biomaRt package, were used to identify human and mouse orthologues (https://
bioconductor.org/packages/release/bioc/html/biomaRt.html accessed on 1 February
2024). A list of 21,608 mouse MGI symbols were queried against HGNC symbols to identify
14,647 non-redundant orthologues. For all downstream analyses, HGNC symbols replaced
MGI symbols within the mouse data set based on the biomaRt query [46]. We integrated
human cells (n = 5499; 15%) and mouse cells (n = 32,849) using canonical correlation anal-
ysis (CCA) implemented within Seurat [43] (https://satijalab.org/seurat/ accessed on 1
February 2024) (Figure S1). No batch effects were evident following implementation of
CCA. Marker genes from individual clusters were used to determine the cellular identity
of co-clustered human cells in ToppFun.

2.6. Flow Cytometry

The presence of immune cell populations in newborn human lungs were validated by
flow cytometry, essentially as previously published [47]. Frozen lung cells were thawed,
blocked (2% serum in 1% BSA/DPBS) and stained for anti-hCD45 (APC-R700, clone HI30),
anti-hCD235a (PE-Cy5.5, clone GA-R2), anti-hCD3 (PE-Cy7, clone SK7) (all from BD Bio-
sciences, San Jose, CA, USA) and anti-hHLA-DR (BV785, clone L243, Biolegend, San Diego,
CA, USA) and 7-AAD (viability marker, BD Biosciences). Staining was assessed on a
four-laser 18-color FACSAria flow cytometer (Becton Dickenson, San Jose, CA, USA). Single
antibody stained Simply Cellular® compensation beads (Bangs Lab, Fishers, IN, USA) were
used for fluorescence overlap compensation. Fluorescence minus one (FMO) controls and
heat-killed 7AAD stained cells were used to set expression gates for each antibody and
for live/dead gating. Data were analyzed using FlowJo software (version 10; FlowJo LLC,
Ashland, OR, USA). Cell multiplets, DTo ensure high viability and to exclude lysis-resistant
nucleated RBCs found in neonates, 7-AAD+ dead cells, and CD235a+ erythrocytes were de-
tected and excluded from FACS analysis. From viable, RBC-depleted cells, mixed immune
cells (MICs) were identified by CD45.

2.7. Estimation of Maturation State of Human Cells (In Terms of Murine Maturity)

For the human cells, we estimated their individual developmental state in terms of
post-natal days (PND) age of mouse lung cells. In order to look at different cell types
independently, we isolated the human and mouse cells of same type from the integrated
human and mouse cell Seurat object, and created new objects of each of those cell types.
As a first step, within the Seurat object of each individual cell types, we applied Principal
Component Analysis (PCA) as a means of dimension reduction. Once we identified the
loadings for each of the cells for first ten principal components, we correlated the ages of

https://lungmap.net
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://satijalab.org/seurat/
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the cells with the PC loadings, restricted to the mouse cells only. Based on the r values,
we identified the PC with highest significant correlation with age and termed that as the
age-associated PC or PCAge.

Now, within this PCAge space, for each human cell, we calculated the absolute dis-
tance between that human cell and every mouse cells of the same type. We subsequently
identified the 100 nearest neighboring mouse cells from every human cell, in terms of
sample loadings. We further adjusted the estimated age based on the proportion of mouse
cells belonging to each of the time points (post-natal days 1, 3, 7, and 10). The estimated
maturation stages of the individual human cells was calculated according to Equation (1)
listed below.

Estimated Maturity of Human Cells = Average {(Frequency × Age × Weight)PND1 +
(In Terms of Murine Maturation) (Frequency × Age × Weight)PND3 +

(Frequency × Age × Weight)PND7 +
(Frequency × Age × Weight)PND10}

(1)

2.8. In Situ Hybridization and Immunostaining

Fluorescence in situ hybridization (FISH), combined with immunofluorescence stain-
ing, was performed on formalin fixed, paraffin embedded native human postnatal lung
sections (6 µm). FISH was completed using the RNAscope Fluorescent Multiplex Assay (Ad-
vanced Cell Diagnostics, Newark, CA, USA, cat. # 323110) as previously described [26,48],
with minor adjustments. Treatment time with Protease Plus was reduced to 22 min. Tissues
were incubated with the following probes: HES1 (cat. # 311191-C4), TCF21 (cat. # 470371)
or COL6A3 (cat. # 482631) (Advanced Cell Diagnostics). Following washing and signal
development, tissues were blocked (3% bovine serum albumin in 5% normal goat sera and
0.1% Triton) and incubated overnight at 4 ◦C with primary antibodies: CD31 (Neomarkers,
RB-10333-P0) or CDH1 (BD Biosciences, 6315829). Slides were washed and incubated
with Cy3-goat-anti-mouse or anti-rabbit-conjugated secondary antibodies (Jackson Im-
munoresearch Laboratories, Inc., West Grove, PA, USA). Slides were counter-stained with
DAPI (LifeTechnologies, Carlsbad, CA, USA, cat. # DE571) and mounted using ProLong
Diamond Antifade Mountant (LifeTechnologies). Images were acquired on an LSM710
confocal system with a 20×/0.8 Plan-APOCHROMAT objective lens [48].

2.9. Statistics

Statistical analysis and calculations involving estimation of maturity state of human
cells and additional analyses were performed Minitab 17 (Minitab Inc., State College,
PA, USA). Additional images were generated using Graphpad Prism 6 and Microsoft
Excel 2016.

3. Results
3.1. Cellular Landscape of the Donor Newborn Human Lung

To characterize cellular heterogeneity in the newborn human lung, we performed
single-cell RNA sequencing (scRNAseq) of protease-dissociated cells from two one-day-
old donor lung samples (Donor 1: GAB 38 weeks, and Donor 2: GAB 31 weeks). While
these donors were deceased on day one of their life due to non-lung related complications
(anencephaly), the lungs appeared normal in appearance in histopathological analyses
(Figure S10), and were processed with warm ischemic time. To exclude low quality events,
cells having fewer than 500 genes detected, or with ≥12.5% mitochondrial genes, were
excluded (Figure S2). Prior studies have shown that high levels of mitochondrial gene
expression is an indication of presence of multiplets [49], and hence by using the filtering
threshold of greater than 12.5% mitochondrial genes would exclude potential doublets
from the analytical dataset. This filtering resulted in an analytical dataset of 19,136 genes
in 5499 cells (Table S1); 3001 cells from two separate captures on lung 1 and 2498 cells
from two separate captures on lung 2. Since the two lungs were obtained from individuals
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born at different gestational age at birth (GAB), cells from each of the lungs were initially
analyzed independently and their cellular composition was assessed at both major cell type
level, as well as the level of cellular subtypes (Figure S3). Irrespective of the differences
in terms of the estimated gestational age at birth, there were no observable differences in
cellular composition of the two lungs, and hence cells from both lungs were combined
using Canonical Correlation Analysis (CCA) as implemented in Seurat [43].

This data set was used for analysis and visualization by t-Distributed Stochastic
Neighbor Embedding (t-SNE). We identified 15 separate clusters of cells, along with corre-
sponding marker genes (Figure 1). Each cluster displayed relatively equivalent distribution
of cells from both subjects (Figure 1a). Among these 15 clusters, four major cell types were
identified on basis of expression of known markers (Figure 1b). Epithelial cells (n = 209)
were defined by expression of EPCAM, SFTPB, SCGB1A1, and NKX2-1. Endothelial cells
(n = 1092) were defined by expression of PECAM1, VWF, CLDN5, and CDH5). Mesenchy-
mal cells (n = 3553) were defined by expression of ACTA2, ELN, COL1A1, and CYR61.
Immune cells (n = 618) were defined by expression of leukocyte and lymphocyte cell
markers PTPRC, CD8A, CD19, and CD3E (Figure 1c).
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Figure 1. Identification of lung major cell types using single−cell RNA sequencing of newborn
human lung. (a) t−Distributed Stochastic Neighbor Embedding (tSNE) analysis of cells. Cells are
indicated by donor (lung 1: GAB 39 weeks; lung 2: GAB 31 weeks; GAB: Gestational Age at Birth).
(b) The assignment of cell clusters to four major cell types, including endothelial cells, mesenchymal
cells, immune cells, and epithelial cells. (c) Expression of some known cell type markers.

Based upon selective expression, we identified marker genes for individual clusters
(Figure 2a). Functional enrichment analysis successfully identified lung cell sub-types for
each of the 15 clusters (Figure 2b and Table S1). The markers for each individual cluster are
presented in Table S2.
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Figure 2. Identification of cell sub−type markers in newborn human lungs. (a) Gene expression
patterns of select markers for corresponding cell clusters (5499 cells obtained from two newborn
human lungs. (b) Assignment of cell types to 15 distinct cell clusters.

A majority of the cells (>63%) appeared to be of mesenchymal origin. Distinct large
populations of myofibroblasts (Cluster 0, n = 820), matrix fibroblasts (Cluster 1, n = 814),
and smooth muscle cells (Cluster 2, n = 592) were identified. In addition, two distinct
populations of pericytes were observed (Cluster 5, n = 419 and Cluster 6, n = 398).

We also identified four separate endothelial cells clusters; Cluster 3 (n = 567), Cluster
8 (n = 321), Cluster 10 (n = 146), and Cluster 12 (n = 85). Interestingly, pathway analysis
performed independently using the cluster marker genes using ToppGene Functional
Annotation tool (ToppFun) [45], associated Cluster 3 cells with vascular development and
Cluster 12 cells with integrin signaling pathways.

A much smaller fraction of cells (<4%) were identified as epithelial cells. Epithelial
cells were separated into AT1 cells (Cluster 11, n = 131) and AT2 cells (Cluster 14, n = 14).

Interestingly, immune cells represented a sizeable fraction (11%) within the newborn
human lung cells obtained from the two donors. Among immune cells (n = 649), we
were able to distinguish multiple discrete populations including macrophages (Cluster 7,
n = 349), T cells (Cluster 9, n = 190), and B cells (Cluster 13, n = 79).

When analyzed independently, the proportion of immune cells varied between the two
donors ranging from 17% in Donor 1 (GAB 38 weeks), to 4% in Donor 2 (GAB 31 weeks).
While there have been prior reports of presence of immune cells in neonatal lungs, [50],
we have previously shown the proportion of mixed immune cells in newborn lungs to
range from 4 to 15% [39]. Further validation of the presence of these immune cells in
newborn human lungs was performed by flow cytometry of single-cell dissociates from
additional age-matched lungs (one day old) as described in the section on Flow Cytometry
in the Supplemental Methods. The percentage of leukocytes detected varied from donor to
donor, and ranged from 3 to 14%, which was similar to the observed frequency of immune
cells from the donor lungs used for generating the single-cell transcriptomics data set
(Figure S6).
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3.2. Cellular Landscape of the Postnatal Mouse Lung

Single-cell RNA sequencing of murine lung tissue was performed using custom
Drop-seq technology as previously described [27]. Cells with fewer than 500 detected
genes and greater than 12.5% of transcript counts mapped to mitochondrial genes were
removed. Filtering resulted in an analytical data set of 17,508 genes, from 32,849 cells (PND1
n = 8003, PND3 n = 8090, PND7 n = 6324 and PND10 n = 10,432). All mouse cells were
grouped into 32 clusters, and each cluster had relatively similar distribution of cells from
individual time points (Figure 3a). Similar to the human cells, the four major cell types were
readily identified based upon the expression of known selective marker gene expression
(Figure S4, Tables S3 and S8). Mesenchymal cells, again represented the largest fraction
of the population (n = 10,678; 33%) and were further identified into different sub-types
including of multiple clusters of matrix fibroblasts, myofibroblasts, stromal cells, and mixed
fibroblasts. Endothelial cells comprised a sizeable portion of the mouse cells (n = 8891),
and compared to human newborn lungs, mouse lungs appear to have relatively greater
proportion of epithelial cells (n = 6133), which were further sub-classified into pulmonary
alveolar type I (AT1), alveolar type II (AT2), and ciliated respiratory epithelial cells. As in
the human, immune cells were detected in the neonatal mouse lung (n = 7244) and were
further classified as B-cells, T-cells, macrophages, monocytes, and myeloid cells among
others (Figure 3b).
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Figure 3. Identification of cell types in mouse lung. (a) t−Distributed Stochastic Neighbor Embedding
(tSNE) analysis of cells. Cells are colored by mouse age. (b) Visualization of cell clusters in tSNE plot
of cells, with assignment of cell types to 32 distinct tSNE clusters. Mouse lung transcriptomic profile
data was generated at Cincinnati Children’s Hospital and Medical Center (CCHMC) [27].

3.3. Integration of Newborn Human and Mouse Lung Data Sets

The two donor newborn human lungs differed in terms of gestational age at birth
leading to minor morphological differences, however the cellular compositions were very
similar across the two lungs (as shown in Figure S3) when it comes cellular annotations
associated with the clusters of cells from individual donors. Admittedly, there would be
differences in maturity status in the two donor lungs, however due to limited sample size,
it is difficult to determine whether the differences between the two are due to technical
variation (batch effect) or biological variation (maturity). In order to expand our analytical
horizons, we subsequently combined the human and murine lung data sets (Figure 4). A
total of 14,502 orthologous genes were identified using BioMart [46]. Canonical correlation
analysis (CCA), implemented in Seurat, was used for data integration across the species.
The combined dataset was filtered using the same criteria as applied independently on the
human and mouse datasets (excluding cells having fewer than 500 genes detected, or with
≥12.5% mitochondrial genes), the species-integrated analytical data set contained a total
of 29,762 cells: 2327 (15%) human cells and 27,435 (85%) mouse cells. The loss of some of
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the human and mouse cells can be attributed to the use of a limited set of genes (14,502)
that were used for integrating the data across species, and thereby leading to those cells
being filtered due to not passing the filtering thresholds. In this integrated data set, we
identified 17 clusters of cells, along with corresponding cluster marker genes. Each cluster
was composed of a combination of mouse and human cells (Figure 4a, Tables S4 and S9).
We again identified four major cell types by known cell-type selective marker expression
(Figure 4b–d); mesenchymal cells (n = 9980, 15% human), endothelial cells (n = 8292, 8%
human), epithelial cells (n = 5146, 0.5% human) and immune cells (n = 3342, 6% human).
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Figure 4. Integration of human and mouse lung cell data sets. (a) t−Distributed Stochastic Neighbor
Embedding (tSNE) analysis of cells. Cells are indicated by species. (b) Expression of known cell type
markers in tSNE plot of cells in the integrated data set. (c) Visualization of mouse cell clusters in tSNE
plot of cells grouped by major cell types. In the integrated object created from combining both human
and mouse lung cells, the assignment of cell clusters to four major cell types, including endothelial
cells, mesenchymal cells, immune cells, and epithelial cells. (d) Proportion of cells derived from
human and mouse data. In the integrated dataset 9% of cells are human (as indicated by the dotted
line); human mesenchymal cells (15%) are over-represented, but endothelial (8.0%), immune (6.0%)
and epithelial cells (0.5%) are under-represented.

Based upon selective expression, we identified marker genes for individual clusters
(Figure 5a). Functional enrichment analysis successfully identified lung cell sub-types for
each of the 17 clusters in the integrated data set representing postnatal lung tissues from
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human and mouse (Figure 5b and Table S4). We observed multiple clusters of mesenchymal
cells; myofibroblasts (n = 4592; Clusters 3, 10, and 11), matrix fibroblasts (n = 4743; Clusters
1 and 14) and pericytes (n = 645, Cluster 12). We observed multiple clusters of endothelial
cells (n = 8292; Clusters 0, 5, 9, and 15). We observed multiple immune cell populations
including macrophages (n = 3002, Cluster 4), T cells (n = 1330, Cluster 8), B cells (n = 1388,
Cluster 7), and myeloid cells (n = 585, Cluster 13) as well.
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Figure 5. Identification of cellular sub−types in combined human and mouse lungs. (a) Gene
expression patterns of select markers for corresponding cell types is shown in the heatmap. (b) The t-
Distributed Stochastic Neighbor Embedding (tSNE) visualization shows unsupervised transcriptomic
clustering, revealing 17 distinct cellular identities.

3.4. Estimating Developmental State of Human Cells

Lung development and morphogenesis occurs both prenatally and postnatally, and is
typically divided into five phases, with the final alveolar phase occurring principally after
birth in humans and rodents. The final stage of lung development, termed alveolarization
or alveogenesis, begins prior to birth in humans and extends through at least the first
decade of life, while occurring entirely postnatally in mice [18]. There exists a degree of
uncertainty regarding the state of development states of the human and mouse lungs at the
time of birth, since rodents and humans are born at different histological stages, alveolar in
humans, but saccular in mice. The process of lung morphogenesis is a continuous process
which varies by cellular types, as shown in newborn mouse lung [27]. Even though the
two donor human lungs were collected at day 1 of birth, we hypothesized that due to the
continuous nature of cellular development and dissociation, individual cells would be at
different stages of their development throughout the process of lung morphogenesis. We
sought to determine the “cellular developmental state” of the newborn human lung in
comparison to the postnatal mouse lung, using the integrated human-mouse data set. Since
a one-day old human lung is developmentally and morphologically similar to 5–7-day old
mouse lung, we aimed to estimate the developmental stage or maturity of the human cells
in terms of the corresponding murine maturation state by using the full spectrum of the
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available murine lung development data. Even if we consider the early gestational age of
one of the donor lungs, the timespan covered by the mouse lung data complements the
developmental state of the human lungs, and is therefore most appropriate background
for integration and estimation of developmental state of the human cells. We performed
this analysis separately for each distinct cell type independently (Figure S1), performed
Principal Component Analysis (PCA), and tested the relationship between each PC vector
and the known age of the mouse cells. We calculated an “estimated age” for every human
cell using its linear distance to 100 mouse cells in space defined by the age-related PC
(PCAge) that was statistically correlated with age and explained the greatest variance in
the data set. The PC associated with age differed for each cell type, and the correlation
coefficients (r) values, which were used as metric for identifying the PC related to age
(Table S5). Irrespective of the cell type, the largest influence on the variance within each of
them was due to species differences, as demonstrated by cells separating by species on the
first principal component (PC1).

The estimated maturity of individual human cell types differed slightly, but primar-
ily remained in the range of 5–9 murine days, consistent with the known histological
relationships between human and mouse (Figure 6a). Interestingly, epithelial cells, en-
dothelial cells and matrix fibroblasts displayed a more diverse distribution in estimated
maturity. Matrix fibroblasts, which represented a large proportion of all cells displayed
a somewhat bi-phasic pattern, where 29% of cells appeared to be an estimated maturity
stage consistent with other cell types (5–9 days), while a second set of cells appeared
to be of much younger estimated maturity stage (1–4 days) (Figures 6b and S8A). Even
though the maturation stages have been defined in terms of murine lung cell maturity,
it is significant that we observe two different groups of cells that have been classified
as matrix fibroblast. Both the early and late maturity matrix fibroblasts were evenly
distributed across both samples and showed no statistical difference in distribution
across the samples. We identified marker genes for younger and more mature matrix
fibroblast population using DESeq2 [51] leading to identification of 210 differentially
expressed genes, of which 23 genes were over expressed in “the older matrix fibroblasts”
(those presenting with an older estimated age), while 187 genes were over expressed in
“younger matrix fibroblasts” (those presenting with a younger estimated age). When
queried for cell types associated with these genes, we mostly observed then to be as-
sociated with lung or matrix fibroblasts, however, a subset of 44 (out of 187) genes
were found to be associated with progenitor fibroblasts. Pathway analysis using these
187 genes revealed smooth muscle, matrix, and collagen related pathways, along with
oxidative stress, stress response, degranulation and scavenging related pathways were
upregulated in the immature matrix fibroblasts (Figure S7 and Table S10).

One of the markers for younger matrix fibroblasts which had over two-fold induction
was HES1, which was also expressed in other mesenchymal cells (pericytes and stromal
cells) and endothelial cells as well (Figure S8B). We identified human cells expressing HES1
alone, and cells co-expressing HES1 with matrix fibroblast markers (COL6A3 or TCF21;
Figure S8C,D) or markers for other cell types (PECAM1 for endothelial cells or CDH1
for epithelial cells; Figure S8E,F). We further demarcated both human and mouse cells
expressing HES1 alone (Figure S9A, and cells co-expressing HES1 with matrix fibroblast
markers (COL6A3 or TCF21; Figure S9B,C) or markers for other cell types (PECAM1
for endothelial cells or CDH1 for epithelial cells; Figure S8D,E). In both instances, we
observed HES1 being co-expressed mesenchymal markers in human cells in cluster(s)
identified as matrix fibroblasts. Finally, we tested whether we could spatially resolve
the older and younger matrix fibroblasts in the newborn human lung. We performed
combined immunohistochemistry and in situ hybridization in three independent donor
lungs of same age (one day old), to identify the expression of general- (COL6A3 and TCF21)
and immature population-specific (HES1) markers at the cellular level. We were able to
identify individual matrix fibroblasts (as defined by expression of COL6A3 or TCF21, but
not PECAM1 or CDH1) that expressed HES1, as well as matrix fibroblasts that did not
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express HES1 (Figures 6c and S8G). These data indicate the presence of a distinct group of
immature matrix fibroblasts in the newborn human lung that display high expression of
HES1 transcript.
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Figure 6. Estimating developmental states of human cells. (a) Distribution of the estimated ages of
the human cells derived from post -natal age (PND) of 100 nearest mouse cells to each of the human
cells. (b) Proportion of cells of individual human cell types at each stage of development defined in
terms of estimated post-natal day age of mouse. (c) Fluorescent in situ hybridization (FISH) combined
with immunofluorescence of Immature Matrix Fibroblast marker HES1 (red), Non-Mesenchymal
Cell Markers, PECAM1 or CDH1 cyan), and Mesenchymal Cell Markers COL6A3 or TCF21 (green)
on newborn human lung sections from a donor lung of 1 day of age. Pink arrows indicated the
presence of immature matrix fibroblasts shown by co-localization of HES1 (red) and Mesenchymal
Cell Markers COL6A3 or TCF21 (green), while yellow arrows indicate non-HES1 expressing cells. The
scale bar is 50 µm. PND: Post-Natal Days.
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4. Discussion

By applying single-cell RNA sequencing to newborn human lungs, we identified a
diversity of pulmonary cells, including epithelial, fibroblast, immune, endothelial, and
other cell subtypes based upon distinct gene expression patterns. We note a paucity in the
capture of epithelial cells, which is different from previous reports [32–34], but is consistent
with our recent report of similar analyses of human fetal lung tissues [26]. Our prior
studies using similar cell isolation protocols in older pediatric lung samples, demonstrated
a higher proportion of epithelial cells [39]. Similar to our prior studies applying similar
methodologies, we observed an over-representation of mesenchymal cells, which were
further classified into subtypes, namely fibroblasts, pericytes, and stromal cells [26]. We
also observed a sizeable cluster of endothelial cells, however, the number of cells were not
sufficient to identify rare capillary-type endothelial cell types seem in mouse lung cells [52].
Our analysis also indicates the presence of immune cells in the newborn lungs, which has
not been widely reported before. While there have been multiple recent studies involving
single-cell sequencing of the human lung [32,35,36,53], this is one of the first studies
reporting the cellular composition of human lungs at the time of birth. It has recently been
shown in the adult lung cells that NK cells tend to be relatively close in spatial resolution
to CD8 T cells [54]. Resident memory T cells are reported to be the most abundant T cells
detected in peripheral blood, however they present in multiple in tissues under stable
conditions [55]. A recent review article highlights the fact pediatric T cells often exhibit a
more effector-like phenotype and therefore resemble innate-like immune cell populations, it
is possible that resolution of T cells and NK cells is difficult [56]. Given that the lungs were
recovered from one-day-old donors, and the presence of maternal immune cells has been
reported, it is possible that some of the immune cells are of maternal origin [57]. Recent
transcriptomic studies using single-cell sequencing from adult human lung tissues have
revealed existence of the major cellular lineages, albeit with variations in proportion [32,58].
Recently, the Human Lung Cell Atlas (HLCA) has been developed by integrating multiple
single-cell sequencing datasets from human lung samples [54]. The integrated HLCA
demonstrated greater proportion of cellular lineages of epithelial and immune origin,
and a reduction in proportion of mesenchymal and endothelial lineages, compared to
our observations in the newborn lungs. However, the HLCA also demonstrated that the
different fibroblast subtypes are associated with inherited differences in lung functions,
which correlates with our findings of different maturation rates in the matrix fibroblasts [54].
Additionally, reports in mice have indicated that the presence of naïve immune cells could
be located in the vasculature of lung and not in the tissue [59], although our recovery
protocol includes a flush step which will help to reduce the presence of immune cells in the
vasculature of the lung. Further immuno-staining studies will be necessary to identify the
spatial location of cells from the adaptive immune system in one-day-old donors.

Although this is a novel and necessary study, it has to be acknowledged that some
bias likely exists in the cells isolated and described. While the sensitivity of single-cell RNA
sequencing allows the discovery of high-resolution cellular topography, it also gives rise to
susceptibility to technical and procedural biases which sometimes hide the true biological
signals [60]. Cellular recovery can be impacted by the methods used for mechanical
and enzymatic disaggregation, processing time and reagent concentrations. Developing
enzyme-mediated digestion conditions will depend on which assays will be completed
downstream. Our group’s initial goal was to optimally release all cell types from primary
human lung, including fibroblasts which are held in place by the proteinaceous extracellular
matrix [39,61]. The process requires careful testing of how changing conditions affects
the quality of sample generated [62]. While aggressive or prolonged digestion protocols
may lead to cell death or fragmentation [63], gentle dissociation protocols may lead to
greater capture of easily dissociated cells, which might be a challenge in the lung diseases
characterized by altered matrix structures [64]. We did observe an absence in type II
epithelial cell capture prior to selection, suggesting epithelial cell viability may contribute
their diminished detection. In fact, in a review of published datasets, Alexander et al.,
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have reported that in normal lung tissue cell types, such as broad, flat, sail-like alveolar
type I (AT1) cells and matrix-embedded fibroblasts, they are difficult to dissociate and
liberate and as such are relatively underrepresented when compared with cuboidal alveolar
type II (AT2) cells and alveolar macrophages [63]. Even within the limited number of
epithelial cells, we observed the expression of markers (SFTPC, AQP5, HOPX) of alveolar
epithelial differentiation in alveolar type II (AT2) cells [65] obtained from newborn lungs.
Low capture/detection of epithelial cells in the fetal and newborn human lung may be
attributed to the developmental age of the studied samples, cellular stress encountered
due to the dissociation protocols or difficulty in capture of these cells with the Chromium
10X protocol. Cellular capture from the young lungs is further complicated by the lack
of knowledge regarding cell dissociation, different protease sensitivity, and cell survival
during digestion and capture procedures. We performed two independent captures on each
sample, one involving selection for high-quality cells by removing dead or dying cells by
magnetic selection. Importantly, we noted consistent recovery of all major cell populations
regardless of capture (Tables S1 and S4). Furthermore, the use of dissociated cells has been
used by our group to develop an in vitro air liquid interface cell culture model system [6,9].
This provides an opportunity for further refinement of dissociation protocols to improve
the recovery of epithelial cell populations [26].

It is clear that although stages of lung development, and their morphological correlates,
are highly conserved across species, significant differences exist in their relative length and
timing [48]. An example is that the mouse lung is in the saccular stage at birth, while the
human lung at term birth is in the alveolar stage. The newborn human lung is histologically
and developmentally similar to a one-week-old mouse lung (Figure S5). We took advantage
of recent data from the LungMAP program, describing postnatal mouse lung development
at the single-cell level, to infer the “estimated maturity” or “developmental state” of
newborn human lung cells [27].

We have analyzed and annotated the species-specific single-cell datasets separately
which helped us identify major cell types, as well as cellular subtypes. While the sepa-
rate analyses preserve the intra-dataset heterogeneity, the combined analyses across the
two species (human and mouse) increases the number of cells used for clustering and
annotation, potentially allowing for identification of additional heterogeneity and rare
cell populations. However, the combinatorial analytical process is more complex and
computationally intensive, and may undermine some of the species-specific cell types [66].
In the combined analyses, species-level differences can be minimized by applying “batch-
correction” approaches on the underlying transcriptomic data, and we have incorporated
that by using gene names matched across species [46], and performing subsequent integra-
tion using CCA [43]. In order to alleviate concerns regarding the retention of the lineage
and cell type information of the human cells when integrating with the murine cells, we
tested for the cell type identities and observed that over 96% of human cells identified
as mesenchymal, endothelial, and immune cells retain their identities in the combined
classification as well (Table S11). Even in case of epithelial cells, which were only 24 to
begin with, we observed 75% accuracy.

Our single-cell data was generated from two donated lungs that were of one day of
age, one of which was born full time (at 38 weeks of gestation), while the other was born
prematurely (at 31 weeks of gestation). The lung as we know is a heterogeneous organ
and is composed of over 40 cell types. We hypothesized that different cell types may have
different stages of development during the process of development. In order to assess the
differential growth of developmental states of different cell types, we have integrated the
human cells with the single-cell data from mouse lungs harvested from animals at different
ages of development (post-natal days 1, 3, 7, and 10).

The majority of the human cells, regardless of cell type/lineage, were estimated to be
4 to 9 days of mouse age, consistent with the histological comparisons. For some cell types
(e.g., matrix fibroblasts, endothelial cells, epithelial cells), greater diversity in estimated age
was noted. The epithelial cell population was not large enough to separate known distinct



Genes 2024, 15, 298 15 of 20

lineages. Among the other cellular populations, the extent of endothelial cell diversity (e.g.,
large vs. small vessel), has been well-documented [67]. We focused subsequent analysis on
the matrix fibroblasts, as phenotypic diversity among this population is less well-described.

Our observations on newborn human lung matrix fibroblast diversity are possibly one
of the first to be reported in humans, but there has been a prior report of different types
of murine lung matrix fibroblasts in a mouse model of pulmonary fibrosis [68]. While Xie
et al. [68] focused on mouse lung fibroblasts, they did observe a class of murine progenitor
lung fibroblasts. Interestingly, a set of 44 (out of 187) genes unregulated in the early matrix
fibroblasts in our newborn human lungs were found to be associated with progenitor lung
fibroblasts. The majority of newborn human lung matrix fibroblasts appeared to be more
similar to younger mouse matrix fibroblasts and displayed higher levels of expression of
HES1. These less-mature fibroblasts were evenly derived from both the newborn lungs,
as there was no significance difference in distribution observed across the two donor
lungs irrespective of the difference in gestational ages of the two. HES1 is a regulator
of Notch signaling and appears to actively suppress differentiation [69]. Interestingly,
the regulation of collagen expression by Notch is achieved through a HES1-dependent
mechanism [70]. Furthermore, HES1 appears to play a critical role in regulating lung
fibroblast differentiation [71], and is known to be expressed in mucus cells from patients
with chronic obstructive pulmonary disease, idiopathic pulmonary artery hypertension
or IPF [72]. Hes1-knockout mice have been reported to have a phenotype of premature
differentiation and rigorous defects in nervous tissue [73]. Another gene that displayed
higher expression in the younger/immature matrix fibroblasts was IGFBP7, which has
previously been associated with resistance to lung cancer by performing tumor suppression
function, especially in epithelial cells [74]. The younger/immature matrix fibroblasts may
represent cells in an immature state, with importance for normal development, and may
hint at a developmental origin for some adult diseases such as lung fibrosis.

We understand that the study is limited to the data from only two one-day-old human
lung samples, which are difficult to obtain. While these samples may not be the ideal healthy
lung samples due to them being obtained from deceased subjects, who have developmental
anomalies in other organs, however, we would like to reiterate that we have used utmost
caution to select the lungs samples to be user that are histologically normal (Figure S10),
and controlled for ischemic time. Also, while the two samples differ in their gestational age,
independent analysis of the two samples indicated similar cellular composition (Figure
S3), thereby alleviating any concerns regarding age specific differences. Additionally,
there is an underrepresentation of epithelial cells among the two subjects, which can be
attributed to the dissociation protocol, which has previously been documented [39], and
hence leaves the room for further refinement of the protocols leading to improved recovery
of the pulmonary epithelial cells. However, when integrated with the mouse lung cells,
they provide sufficient information to develop a molecular map of the human neonatal
lung, and potentially overcome the limitation of low sample numbers.

To summarize, here we report a dataset describing the transcriptome of newborn
human lung cells defined using single-cell RNA sequencing. Our results include markers
for all major lung cell types including multiple populations of mesenchymal, endothelial,
epithelial and immune cells. These lineage markers have been validated in the major
pulmonary cells types through bulk RNA-seq [39]. We also successfully integrated the tran-
scriptomes of newborn human cells with postnatal developing mouse lung cells, enabling
the estimation of cell-type specific developmental states of human cells. The data show
that maturation states, even though largely in the expected range of 4 to 9 murine postnatal
days, differ by cell type. Integrated single-cell RNA profiling of human and mouse lung
will help identify common and species-specific mechanisms of lung development and
respiratory disease. Even with the limited sample size, our novel observations can provide
valuable insights on the mechanisms of normal lung development.
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