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Abstract: For marine invertebrates, the disruption of organismal physiology and behavior by
nanoplastics (NPs) has been extensively reported. Heat shock proteins (Hsps) are important for
redundant protein breakdown, environmental changes, and intracellular protein transport. An
exhaustive identification of Hsp70 genes and an experiment where different concentrations of NPs
were stressed were performed to study how Hsp70 genes respond to NPs stress in Monodonta labio.
Our results identified 15 members of Hsp70 within the genome of M. labio and provided insights
into their responses to different concentrations of acute NP stress. Phylogenetic analyses revealed
extensive amplification of the Hsp70 genes from the Hsc70 subfamily, with gene duplication events.
As a result of NP stress, five of fifteen genes showed significant upregulation or downregulation.
Three Hsp70 genes were highly expressed at an NP concentration of 0.1 mg/L, and no genes were
downregulated. At 10 mg/L, they showed significant upregulation of two genes and significant
downregulation of two genes. At 1 mg/L treatment, three genes were significantly downregulated,
and no genes were significantly upregulated. Moreover, a purifying selection was revealed using
a selection test conducted on duplicate gene pairs, indicating functional redundancy. This work is the
first thorough examination of the Hsp70s in Archaeogastropoda. The findings improve knowledge
of Hsp70s in molluscan adaptation to NP stress and intertidal living and offer essential data for the
biological study of M. labio.

Keywords: Monodonta labio; heat shock protein 70; nanoplastics stress; phylogeny; gene duplication;
expression pattern

1. Introduction

Cells can be protected from stress by heat shock proteins (Hsps) that have been con-
served throughout evolution [1]. Hsp70 participates in a number of post-stress mechanisms,
and under normal physiological conditions, including adaptation to stress [2], develop-
ment [3], and apoptosis [4], because of its chaperone properties. Through its interactions
with unfolded proteins, Hsp70 inhibits irreversible protein aggregation and catalyzes sub-
strate refolding in a way that is reliant on co-chaperone molecules and ATP [2]. When
the cell is subjected to stresses, such as heat, salinity, ultraviolet light, heavy metals, and
various chemicals, Hsps are expressed rapidly to provide a potent buffering system to
adapt to such stresses [5].

Following the identification of Hsps in Drosophila, researchers started examining the
composition and capabilities of these proteins [3]. Multiple Hsp70 gene products exist
in all eukaryotes, and they vary from one another in terms of gene structure, subcellular
location, and expression level [6]. Hsp genes, particularly those in the Hsp70 family, are
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very conserved. Hsps are currently divided into multiple categories according to their
function, amino acid sequence, and molecular weight [7].

Monodonta labio (Linnaeus, 1758) is an important fishery commercial mollusk that
belongs to the family Trochidae (Mollusca, Gastropoda) [8]. It is widely distributed in the
Indian Ocean–Pacific Ocean and inhabits the intertidal zone [8]. It lives in a variety of
intertidal environments, including mangroves and rocky, cobble, and boulder shorelines [9].
M. labio is a remarkable component of the intertidal zone and a eurythermic and eurysalinity
marine mollusc; it is very tolerant to a broad range of temperatures (0 ◦C–28 ◦C) and salinity
conditions (13.23–34.95 psu).

Nanoplastics (NPs) pose a threat to the growth and survival, feeding activities, em-
bryogenesis, immune systems, fecundity, and metabolisms of marine organisms and thus
have attracted great attention [10]. Since M. labio feeds on seaweed and NPs are attached to
seaweed, the species is susceptible to NPs [11]. M. labio is consistently found in intertidal
zones, which are in close contact with NPs, making it a prevalent medium for NPs to
enter the human body [12]. In order to prevent damage and preserve cellular homeostasis,
the evolution of organisms can activate some genes that adapt to stress, such as Hsp70s;
however, little is known about how abiotic stress influences Hsp70s’ expression in the
marine environment [13]. The shells of mollusks provide excellent models for researching
adaptation evolution and plasticity. Therefore, M. labio has been widely used as a model
for the adaptation of the abiotic stress of Mollusca [11]. However, genes and pathways that
may be involved in this defense response have not yet been discovered, and the mechanism
underpinning the molecular toxicology to abiotic stress is yet unknown. To evaluate the
impact of microplastics on mollusks and comprehend the biological role of Hsp70s in
molluscan adaptation to NP stress and intertidal lifestyle, ecotoxicology studies ought to
be carried out.

The Hsp70s has so far been systematically found in mammals, fishes [14,15], crus-
taceans [16], Echinozoa [17], and bivalves [18]. The exploration of Hsp70s in humans and
Larimichthys crocea has unveiled a total of 17 members [15,19]. Phylogenetic analyses and
systematic identification of the Hsp70s were conducted in bivalves, for example Patinopecten
yessoensis and Crassostrea gigas [18,20]. The Hsp70s expanded; 73 of 86 hsp70 genes were
found to be expanded in Pacific oysters, and 56 of 61 hsp70 genes were expanded in scallops.
Adaptation of oysters to a high-stress intertidal-fixation life may be primarily due to an
increase in hsp70 genes [21]. Tandem duplication of hsp70 genes may have evolved adap-
tively to produce toxic stress responses [20]. Nevertheless, no research has been conducted
on Hsp70s in snails. Therefore, further investigation is needed to identify and analyze the
evolution of Hsp70s across the snail genome.

To comprehend the changes in Hsp70 genes’ expression and its function during
acute NP exposure, the hsp70 gene was discovered and examined using bioinformatics
techniques. The findings of this investigation can offer fundamental information for the
biological analysis of M. labio, as well as the molecular regulation of the intertidal snails’
response to NP stress.

2. Materials and Methods
2.1. Identification of the Hsp70 Gene Family

The National Genomics Data Center database (https://ngdc.cncb.ac.cn/) (accessed
on 11 December 2022) provided the genome data that were downloaded. We downloaded
the Hidden Markov Model (HMM) of the Hsp70 domain from the Pfam database (pfam:
PF00012) in order to find candidate Hsp70 protein sequences [22]. We downloaded the
additional HMM maps from the PANTHER classification system for Hsp12a and Hsp12b
(PTHR14187: SF46 and PTHR14187: SF3). HMMER 3.2.1 was used to identify the Hsp70s
from the M. labio genome [23]. The Hsp70 domain was screened for their presence in the
acquired protein sequences using the NCBI Conserved Domain Database (CDD, https:
//www.ncbi.nlm.nih.gov/cdd/; E-value < 0.001; other settings that are in the default state)
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(accessed on 11 December 2022) and the Pfam database (http://pfam-legacy.xfam.org/)
(accessed on 11 December 2022).

2.2. Phylogenetic Analysis of the Hsp70 Genes

The Hsp70 gene, known in vertebrates such as crustaceans and in mammals, is
used to identify M. labio. The representative species were humans (Homo sapiens), platy-
puses (Ornithorhynchus anatinus), mice (Mus musculus), chickens (Gallus gallus), medakas
(Oryzias latipes), large yellow croakers (L. crocea), zebrafish (Danio rerio), torafugu (Tak-
ifugu rubripes), Chinese soft-shelled turtles (Pelodiscus sinensis), Nile tilapias (Oreochromis
niloticus), African clawed frogs (Xenopus laevis), lizards (Anolis carolinensis), and swimming
crabs (Portunus trituberculatus). According to Song et al. [24], the query sequences were
obtained from Ensembl (http://asia.ensembl.org/index.html) (accessed on 13 December
2022), NCBI (http://www.ncbi.nlm.nih.gov) (accessed on 13 December 2022), and UniProt
(http://www.uniprot.org) (accessed on 13 December 2022). The S1 file in the references [17]
was where the P. trituberculatus sequences were obtained. A Multiple Protein Sequence
Alignment (MUSCLE) program was used to conduct multiple sequence alignments (other
options default). RAxML (version 8.2.12) [25] was used to construct the maximum likeli-
hood (ML) phylogenetic tree (1000 bootstrap replicates).

2.3. Physicochemical Properties, Gene Structure Analysis, Motif Analysis, and Chromosome
Localization of Hsp70 Genes

The ExPASy program (https://web.expasy.org/protparam/) (accessed on 15 Decem-
ber 2022) was used to forecast the basic physicochemical properties of Hsp70 proteins, such
as isoelectric points (pI) and theoretical molecular weights (kDa). The Multiple EM for
Motif Elicitation (MEME) software (version 5.4.1) [26] was used to identify the conserved
motifs of the M. labio Hsp70s. For the MEME analysis, the parameters included a width
range from 6 to 50 and a restriction of zero or one site per sequence; the default values were
assigned to all other parameters. The structure and chromosomal position of the M. labio
Hsp70s were examined using TBtools v1.09861 software [27] in accordance with the genome
annotation file. Using the default settings, DOG 2.0 [28] was utilized to visualize the protein
structure. Jalview (version 2.11.1.5) [29] was used for multiple sequence alignment, and
homologous gene visualization was used in order to confirm hsc70-like names.

2.4. Analyzing the Subcellular Localization and Predicting Signal Peptides of Hsp70 Proteins

SOPMA (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)
(accessed on 20 December 2022) was utilized to forecast the secondary structure of the
proteins. Based on the chromosomal location given in the genomic annotation file, the
subcellular localization of Hsp70 proteins was predicted using the WoLF PSORT program
(https://wolfpsort.hgc.jp/) (accessed on 21 December 2022). The SignalP 6.0 program
(https://services.healthtech.dtu.dk/service.php?SignalP) (accessed on 25 December 2022)
was utilized to forecast the Hsp70 protein’s signal peptide.

2.5. Expression and Analysis of Hsp70 Genes

We gathered twenty-eight healthy, whole females with comparable sizes and develop-
mental stages from Zhoushan Aquatic Products Market in Zhejiang Province. To lessen the
impact of other factors on RNA-seq, all M. labio individuals were momentarily placed into
artificial saltwater (25 psu) and acclimated during a 24 h period [11]. For 48 h, seven snails
in each of four 500 mL beakers were subjected to different levels of polystyrene (PS) PS-NPs.
In the experiment, there were three groups: L, M, and H, which were exposed to PS-NPs
concentrations of 0.1, 1, and 10 mg/L, respectively; the control group (C) did not undergo
exposure to PS-NPs, with 7 snails in each group. Polystyrene nanoplastics (2.5% w/v,
80 nm) suspension was prepared by the Base Line Chromtech Research Centre (Tianjin,
China), and then diluted with saline (25 psu) to prepare three concentrations of suspension.
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After the stress was over, dead and diseased snails were removed, and three complete,
healthy snails were collected from each group, and their muscles were taken. Individual
variance might have been reduced in stress treatments by using a pooling sample method.
Then, they were put in RNA buffer, −80 ◦C standby. After building the sequencing library
in accordance with the manufacturer’s kit, the samples were sequenced using the Illumina
Hiseq 2500 platform. Out of the 14 expressed genes, 10 genes were chosen at random
for qRT-PCR confirmation. Three bioreplications of each cDNA template were performed
using 18s as the reference gene.

Bowtie2 was used to build an index from transcripts to the coding sequence diagram.
RNA-Seq expectation maximization (RSEM) was used to evaluate the expression of dif-
ferential genes [30]. RSEM 1.3.1 and Bowtie2 were used to align reads to quantify the
expression level. Based on the length of the gene, the predicted number of fragments per
kilobase of transcript sequence per million base pairs sequence (FPKM) of the Hsp70s
was determined as the unit of expression. Normalized data were used to compute the
fold changes and results of gene comparison. The log2-based fold change (log2FC) were
then computed.

In order to investigate the particular gene expansion of this species, we performed
a selective test of M. labio hsc70-like gene pairs from the developmental relationship and
expression profile of Hsp70s. KaKs_Calculator2.0 software [31] was used to calculate the
rates of synonymous (Ks) and nonsynonymous (Ka) substitutions and their ratios.

3. Results
3.1. Genome-Wide Identification and Sequence Analysis of Hsp70 Genes in M. labio

We obtained 21 Hsp70 candidate proteins from the HMM map of pfam Hsp70 domain
(PF00012). Annotation file confirmation, CDD searches, and Pfam scans led to the rejection
of six candidate genes (without the full Hsp70 domain). In M. labio, the Hsp70 gene family
consists of 15 Hsp70 protein sequences. Table 1 presents the basic characteristics (gene name,
protein length, coding-sequence length, Hsp70 domain region, isoelectric point, molecular
weight, and genome location) of Hsp70 genes of M. labio. These Hsp70 genes encoded
proteins with amino acids (aa) ranging from 591 to 967, while their CDSs varied in length
from 1776 to 2904 bp. Based on the anticipated amino acid sequence’s physicochemical
characteristics, hyou1 (752 aa) had the longest conserved domain and hspa9l.1 (553 aa)
had the smallest. The Hsp70 proteins ranged in projected isoelectric points (pI) from 4.86
(hyou1) to 5.92 (hspa9), with molecular weights between 64,170.27 and 109,317.80 kDa.

Table 1. The information of 15 Hsp70 genes identified in M. labio was summarized.

No. Gene
Name Gene ID

CDS *
Length

(bp)

Protein
Length

(aa)

Hsp70
Domain
Location

(aa)

MW *
(kDa)

PI
* Chromosome Location

1 hsc70 Mlab0082280.1 1959 652 6-612 71,385.57 5.24 chr6 29612442:29616687
2 hsc70l.1 Mlab0108740.1 1905 634 9-612 69,628.69 5.51 chr16 3599462:3601643
3 hsc70l.2 Mlab0108730.1 1905 634 9-612 69,628.69 5.51 chr16 3603044:3604948
4 hsc70l.3 Mlab0108940.1 1905 634 9-612 69,483.42 5.39 chr16 3103368:3111202
5 hsc70l.4 Mlab0108950.1 1905 634 9-612 69,582.56 5.45 chr16 3099140:3101222
6 hsc70l.5 Mlab0079900.1 1926 641 9-612 70,145.10 5.64 chr3 2896965:2899237
7 hsc70l.6 Mlab0033790.1 1905 634 9-612 69,631.49 5.56 chr9 11909551:11911455
8 hsc70l.7 Mlab0033800.1 1905 634 9-612 69,608.45 5.51 chr9 11912615:11914519
9 hsc70l.8 Mlab0114000.1 1902 633 6-609 69,727.77 5.55 chr10 4284735:4288100

10 hspa4 Mlab0150810.1 2577 858 3-707 96,570.18 5.18 chr10 34117494:34130454
11 hspa5 Mlab0102200.1 2004 667 39-644 73,546.11 5.03 chr14 17073207:17077361
12 hspa5l.1 Mlab0102100.1 1980 659 34-640 72,963.32 5.38 chr14 16986162:16990290
13 hspa9 Mlab0147970.1 2094 697 61-659 76,155.32 5.92 chr11 26113170:26125780
14 hspa9l.1 Mlab0204400.1 1776 591 1-554 64,170.27 4.86 ptg000096l 225489:227341
15 hyou1 Mlab0200990.1 2904 967 22-774 109,317.80 5.48 chr18 26557938:26579334

* CDS: coding sequence. MW: molecular weight. PI: isoelectric points.
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3.2. Phylogenetic Analysis of Hsp70 Genes

The M. labio Hsp70 gene family members were given names based on branches of
the evolutionary tree. All of M. labio Hsp70 members were clearly divided into different
systems and grouped with proteins from other species in the phylogenetic ML tree. The
ML tree clearly showed one distinct cluster in M. labio (Figure 1). The cluster included nine
copies of M. labio Hsc70 genes (hsc70-like), suggesting a mollusk-specific gene expansion.
Nine copies of M. labio Hsc70 genes (hsc70-like) were strongly orthologous to the hsc70
genes of D. rerio, L. crocea, O. latipes, T. rubripes, O. niloticus, and P. trituberculatus. The
zebrafish Hsps nomenclature criteria were followed in the naming of the Hsp70 genes
(Figure 1).
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3.3. Analysis of Motif, Structure, and Conserved Domain

Fifteen conserved motifs of M. labio in protein sequences were found after employing
MEME to investigate and analyze them (Figure 2). The Hsp70 gene family has one to
fifteen motifs, which are referred to as motifs 1–15. The recently duplicated hsc70 homologs’
protein structures in our study displayed a similar motif arrangement (Figure 2).
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Although Hsp70 genes were assigned into different groups, they had motifs 1, 3, 7, and
11 of the same kind and distribution. hsc70-like genes had all the same conservative motifs,
namely, motifs 1–15. To learn more about this gene family’s evolutionary conservation, we
also investigated the gene structures of 15 Hsp70 genes. In these Hsp70 genes, the quantity
of CDS-intron structures differed significantly, reflecting the evolution of gene families
(Figure 2). The number of CDS varied from 1 to 22 in these genes (Figure 2). The quantity
of CDS separated these genes into two patterns: pattern 2 has more than two CDS, while
pattern 1 only has one or two CDS. Pattern 1 included hsc70l.1–hsc70l.8, and hspa9l.1. hsc70,
hspa9, hspa5, hspa5l.1, hspa4, and hyou1 were all present in Pattern 2.

Using CDD and Pfam, the structures of the Hsp70s were further described (Figure 3).
A highly conserved region at the N terminus, between 1 and 774 aa, was present in all
Hsp70 proteins. Their existence acted as evidence that they were, in fact, Hsp70 proteins.

3.4. Secondary Structure Prediction, Subcellular Localization, and Analysis of Hsp70 Proteins

Among the 15 Hsp70 proteins, α helices and random coils are the most important
secondary structures. According to Table 2, α helices made up 40.95–47.05%, β turns,
3.03–7.89%, random coils, 29.44–38.81%, and extended strands, 14.10–21.32%.

Hsp70 proteins are expressed in the mitochondria, cytoplasm, nucleus, and endo-
plasmic reticulum in M. labio. The majority of Hsc70-like proteins were expressed in the
cytoplasm (Table 2). The endoplasmic reticulum expressed the proteins Hspa5 and Hyou1.
The proteins Hspa9 and Hspa5l.1 were expressed in the mitochondrion. Within the nucleus,
Hspa4 and Hsc70l.5 proteins were expressed.
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Table 2. Hsp70 proteins’ secondary structure and subcellular localization prediction in M. labio.

Protein α Helix β Turn Random Coil Extended Strand Subcellular Location Prediction

Hsc70 40.95% 7.21% 33.44% 18.40% Cytoplasm
Hsc70l.1 41.48% 7.89% 31.55% 19.09% Cytoplasm
Hsc70l.2 41.48% 7.89% 31.55% 19.09% Cytoplasm
Hsc70l.3 41.64% 7.41% 32.18% 18.77% Cytoplasm
Hsc70l.4 41.64% 7.41% 32.02% 18.93% Cytoplasm
Hsc70l.5 42.28% 6.40% 32.61% 18.72% Nucleus
Hsc70l.6 42.43% 7.10% 31.39% 19.09% Cytoplasm
Hsc70l.7 42.90% 7.10% 31.23% 18.77% Cytoplasm
Hsc70l.8 42.81% 6.79% 32.07% 18.33% Cytoplasm
Hspa4 44.06% 3.03% 38.81% 14.10% Nucleus
Hspa5 43.03% 7.20% 31.63% 18.14% Endoplasmic reticulum

Hspa5l.1 42.49% 6.98% 31.26% 19.27% Mitochondrion
Hspa9 44.19% 7.32% 29.56% 18.94% Mitochondrion

Hspa9l.1 42.47% 6.77% 29.44% 21.32% Cytoplasm
Hyou1 47.05% 4.65% 33.92% 14.37% Endoplasmic reticulum
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3.5. Analysis of Protein Signal Peptides Predictively

Only Hspa5 and Hspa5l.1 were predicted and preliminarily identified as secreted
proteins in Hsp70 protein in M. labio. The 22nd alanine (A) had the highest raw cleavage
site score (CS) for Hspa5, with a value of 0.9796. Hspa5l.1 CS reached its maximum value
of 0.9722 on the 23rd glycine (G). Based on the SP value, Hspa5 and Hspa5l.1 had signal
peptides, with lengths of roughly 22 and 23 amino acids, respectively (Figure 4).
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3.6. Chromosomal Location Analysis of Hsp70s

Based on chromosomal localization analysis, the 15 members of the Hsp70 gene family
are distributed on eight chromosomes. As shown in Table 1, hsc70l.1-hsc70l.4, hsc70l.6,
and hsc70l.7; hsc70l.8 and hspa4; and hspa5 and hspa5l.1 were distributed on the same
chromosomes. The density was highest on chromosome 16, which contained four hsc70-
like genes (Figure 5).

3.7. Expression of the Hsp70 Genes in M. labio Muscles under NP Stress

After M. labio were acutely exposed to various NP concentrations, the study’s findings
revealed that of the 15 hsp70 genes, 14 were expressed in muscle tissue, but hspa9l.1
was not (Table 3, Figure 6). Five hsp70 genes among them were significantly involved in
responses to different concentrations of NPs (log2FC > 1.0 or log2FC < −1.0). Under group
L (NP stress treatment at 0.1 mg/L), three genes were significantly upregulated (hsc70l.3,
hsc70l.7, hspa5l.1; log2FC: 2.47, 1.09, 1.14), and the rest were slightly upregulated. Under
group M (NP stress treatment at 1 mg/L), two hsp70 genes were significantly upregulated
(hsc70l.3, hsc70l.7; log2FC: 1.90, 1.39), and two were significantly downregulated (hspa5l.1,
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hyou1; log2FC: −1.0, −1.41). Under group H (NP stress treatment at 10 mg/L), three hsp70
genes were significantly downregulated (hsc70l.5, hspa5l.1, hyou1; log2FC: −1.37, −1.09,
−1.07), and two genes were slightly upregulated (hsc70l.3, hsc70l.7; log2FC: 0.44, 0.52). The
remaining hsp70 genes were slightly downregulated.

3.8. Selection Test on Duplicated Hsp70 Genes

According to the Ka and Ks and their ratios in order to comprehend the selection
pressure and species-specific gene expansion, for hsc70l.2-hsc70l.1, hsc70l.3-hsc70l.4, and
hsc70l.6-hsc70l.7 couples, the corresponding Ka/Ks ratios were 0, 0.1244, and 0.0495. The
Hsp70 genes pairs’ Ka/Ks values were all less than 1.0, suggesting that purifying selection
was applied to these genes during the evolutionary process (Table 4).
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Table 3. M. labio Hsp70 genes’ expression in the muscle at NP stress was measured using log2FC and
FPKM. Bold indicates the prominent genes (p < 0.05; log2FC > 1.0 or log2FC < −1.0).

Gene
log2FC

0.1 mg/L 1 mg/L 10 mg/L

hsc70 0.62 −0.57 −0.52
hsc70l.1 0.54 0.41 −0.39
hsc70l.2 0.54 0.41 −0.39
hsc70l.3 2.47 1.90 0.44
hsc70l.4 0.34 −0.31 −0.29
hsc70l.5 0.24 −0.49 −1.37
hsc70l.6 0.35 −0.13 −0.29
hsc70l.7 1.09 1.39 0.52
hsc70l.8 0.60 0.28 −0.08
hspa4 0.68 −0.30 −0.06
hspa5 0.68 −0.98 −0.91

hspa5l.1 1.14 −1.00 −1.09
hspa9 0.62 −0.38 0.00

hspa9l.1 0.00 0.00 0.00
hyou1 0.67 −1.41 −1.07
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Table 4. Ka/Ks values of homologous Hsp70 genes’ pairs. Ka: nonsynonymous substitution rate;
Ks: synonymous substitution rate.

Gene-Pair Ka Ks Ka/Ks

hsc70l.2–hsc70l.1 0 0 0
hsc70l.3–hsc70l.4 0.0008 0.0064 0.1244
hsc70l.6–hsc70l.7 0.0007 0.0139 0.0495

4. Discussion

Hsp70s are crucial for responses to both biotic and abiotic stressors. Recent years
have seen a large-scale effort to identify Hsp70 genes across the genome in insects [32],
plants [33], mollusks [20], fishes [24], and mammals [34]. In the present study, 15 Hsp70
genes were found, including two single-copy genes (hspa4, hyou1) and three pairs of genes
with duplicates (hsap5, hspa5l.1; hspa9, hspa9l.1; hsc70-like genes). The number of Hsp70
genes in M. labio differed from those of vertebrates, which do not have hspa2, hspa8, hspa12,
hspa13, hspa14, and hsph1 (Table 1). In contrast to the members of bivalves, whether hspa12,
hspa13, and hspa14 genes were truly missing from the M. labio genome remains unclear. Nine
copies of duplicate hsc70-like genes were discovered in M. labio, these genes’ structures
and motifs are similar to the function. Similar conserved domains were also present in the
amino acids of hsc70-like genes 6 to 612, suggesting that they may have comparable roles,
as supported by evidence from the homologous protein sequence alignment. According to
the subcellular localization of Hsp70 genes, these genes are dispersed throughout the cell,
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including the cytoplasm, mitochondria, endoplasmic reticulum, and nucleus [35]. Prior
research has documented the critical functions of cytosolic Hsp70s in both stressful and
non-stressful environments [36]. Gene pairs can be found on various chromosomes based
on the members and chromosomal location of Hsp70 genes and a phylogenetic tree in
M. labio. It is important to note that gene duplication might be regarded as fragmented
once gene pairs are found on distinct chromosomes. Furthermore, genes duplicated on the
same chromosome are referred to as tandem duplication [37].

Gene duplications are traditionally considered a significant evolutionary source of
new protein functions; they are present in all living forms and serve as a foundation for
functional innovation. The common selection of existing genes can produce new functions,
and new transcriptional regulatory sites can be developed to alter gene expression [38]. In
the present work, local gene duplications are an important component of the mechanism
hsp70 genes’ amplification in M. labio because all amplified hsc70-like genes (9 copies)
existed as tandem gene clusters. Various species have various numbers and kinds of
duplicated genes, suggesting that these duplications may have separate origins [39]. Gene
duplications and tandem duplications have been previously described in teleost fishes,
echinoderms, and bivalve species as well as in crustaceans [39,40]. For example, previous
studies indicated the expansion of the Hsp70 genes from Hspa4 (4 copies) in L. crocea,
Hspa1 in B. pectinirostris (7 copies), Hspa12 in C. gigas; P. yessoensi (73 copies and 57 copies),
Hsc70 in P. trituberculatus and M. labio (4 and 9 copies, respectively).

This replication event revealed the dynamic evolution of the genome, resulting in
a series of complex physiological mechanisms, enabling intertidal animals to have their
own unique way of life to respond to stresses. Numerous common instances of particular
gene sets expanding within particular lineages are linked to modifications in morpholog-
ical, behavioral, or physiological characteristics. For instance, the hsp70 (5 copies) gene
expression profiles in sea cucumbers Apostichopus japonicus during aestivation showed
patterns distinct to both tissues and individuals [17]. P. yessoensis has large numbers of Hsp
gene (hspa12) expansion to deal with defensive mechanisms against various environmental
stresses [20]. Oysters express a large number of Hsps genes during low-tide stress [21].

During evolution, gene replication is an important mechanism for genome-wide du-
plication (WGD) or single-gene duplication (SSD) to amplify gene families [41]. Therefore,
the repeated selection strategy is predicted by calculating the Ka/Ks ratio of gene pairs [42].
Moreover, purifying selection was observed in the selection test conducted on the duplicate
hsp70 genes pairs, indicating that these genes can go through sub-functionalization and
result in functional redundancy in M. labio.

Different types of stresses have different effects on the expression profile of Hsp70s,
such as thermal stress, low salinity, and high ammonia. In muscle tissue under NP stress,
14 out of the 15 Hsp70s were expressed. The significantly expressed Hsp70s were found
from the Hyou1 gene and the mollusk-specific expansion of the Hsc70, Hspa5 subfamily.
Hence, to evaluate the expression regulation of M. labio Hsp70s in response to NP stress, this
study concentrated on genes that were significantly expressed. The expression patterns of
various Hsp70s varied under NP stress, potentially due to the diverse physiological effects
caused by different concentrations of NPs. Under normal circumstances, the expression of
several Hsp70 gene members was incredibly low, but in response to stressors, it increased
dramatically. Comparable findings showed that following exposure to biotic and abiotic
stressors, the hsp70 gene was significantly expressed in L. crocea [15], B. pectinirostris [14],
P. yessoensis [20], and P. trituberculatus [16].

hsc70l.3 and hsc70l.7 were significantly upregulated in the muscle after treatment with
0.1 and 1 mg/L NPs; however, hsc70l.5 was significantly downregulated after 10 mg/L NP
stress treatment. Strong expression of hsc70l.3 and hsc70l.7, at 0.1 and 1 mg/L, shielded
cells from NP-induced misfolding and harm [39]. The production of Hsc70l.3 and Hsc70l.7
progressively increased, most likely due to the requirement for more Hsc70l.3 and Hsc70l.7
proteins, which encouraged aberrant proteins to renaturate [16,43]. When exposed to
10 mg/L of NP stress, the quantity of damaged proteins increased [16]. With increasing
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concentrations of NPs, we speculated that the synthesis and degradation of misfolded
proteins were inhibited by high NP stress [15]. It may result in intracellular hypoxia at 1
and 10 mg/L NP stress, which would slow down the rates of membrane transport and
enzymatic activities. Hspa5l.1 was predicted and tentatively identified as a secreted protein
present in the mitochondrion with a transmembrane domain and a signal peptide. In this
investigation, protein synthesis in mitochondria was suppressed and expression decreased
with increasing NP concentrations. Thus, the folding and secretion of proteins may be
impacted by the expression of the hspa5l.1 gene.

5. Conclusions

Using bioinformatics, the toxicological response of M. labio to NP stress was investi-
gated for the first time. Fifteen Hsp70 genes were found to be present when exposed to NPs.
Nine of the 15 Hsp70s genes belong to the Hsc70 subfamily and have undergone mollusk-
specific gene amplification. Hsp70s’ expression was shown to be regulated; upon exposure
to NPs, a few inducible genes, including hsc70l.3, hsc70l.5, hsc70l.7, hspa5l.1, and hyou1, were
either up or downregulated, and they were from the Hyou1, Hspa5 sub-family, and the
mollusk-specific enlarged Hsc70 sub-family. The NP-stress response may be the result of
the evolution of tandem repeats of Hsp70s. These data ought to be helpful for both studying
the evolutionary history of mollusk species and comprehending the roles played by Hsp70s.
Further investigation of the activities of mollusk Hsp70s will advance knowledge of the
defense strategies mollusks employ to fend off a variety of environmental threats.
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