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Abstract: Despite extensive research over the last few decades, the etiology of schizophrenia (SZ)
remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the
lifestyle and minds of those affected. Several factors (one or in combination) have been reported
as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and
epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification
(PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional
activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After
establishing a summary of epigenetic processes in the context of schizophrenia, this review aims
to highlight the current understanding of the role of DNA methylation and histone PTMs in this
disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.
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1. Introduction

Schizophrenia (SZ) is a severe neuropsychiatric disorder affecting 1% of the general
population and ranking among the top 10 causes of disability in developed countries world-
wide. Importantly, it is a major cause of suicide in youth populations; out of more than
30% of SZ sufferers attempting suicide, 5% will succeed [1]. The disorder is exceptionally
difficult to diagnose at first, striking down seemingly healthy individuals, usually in the
second and third decades of their life [1]. Patients suffering from SZ exhibit three types
of symptoms, including “positive” (i.e., excessive types of behaviors including hallucina-
tions and delusions), “negative” (i.e., including decreased interest and motivation, such
as avolition and anhedonia), and cognitive, as defined by the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) [2]. Despite significant progress in understanding the
mechanisms underlying SZ pathophysiology and the management of its symptoms, this
disorder remains an elusive and complex etiology believed to be due to a combination of
environmental, genetic and epigenetic factors [3–8]. Twin studies in schizophrenic families
have reported a high heritability of this disorder, with estimates varying between 60 to 80%,
and a complex polygenic architecture [9]; environmental factors such as obstetric complica-
tions, maternal viral infections or malnutrition, drug and stress exposure, and childhood
trauma may also contribute to an increased risk of developing SZ [10–12]. Delivery by
emergency caesarean section and use of forceps along with low birth weight, pre-eclampsia
and bleeding during pregnancy have been associated with susceptibility to developing
SZ [2–4]. Other factors such as place and time of birth (late winter or spring), along with
advanced parental age and maternal elevated inflammatory factors (high blood levels of C
reactive protein and Interleukin 8) may also be SZ risk factors [5–8]. Exposure to one or
several risk factors prenatally or early in life seems to impact normal brain developmental,
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supporting the theory that SZ is a neurodevelopmental disorder [9,10]. Disturbances to
brain developmental in the early stages of life have long-lasting effects via genetic and
epigenetic modifications, which can appear in adolescence and later in life [11,12]. Envi-
ronmental conditions during upbringing such as city living, social isolation, and exposure
to neurotoxins such as psychostimulants and cannabis can increase the risk of a psychotic
episode and/or developing SZ [13–19]. In summary, exposure to one or several of the
adverse environments mentioned above, particularly during a sensitive developmental
period, may lead to epigenetic modifications or “molecular scarring” [20], with long-lasting
effects affecting neurobiology in some individuals. In addition to environmental factors, dif-
ferences between males and females in the age of onset, negative, and affective symptoms
have been consistently reported in recent decades [13–15].

Although the molecular mechanisms underpinning these sex differences and devel-
opment of SZ later in life are still poorly understood, epigenetic regulation seems to play
a critical role in the establishment of SZ and the development of pathology. In the last
decade, epigenetic regulation has emerged as an integral component of brain development,
and when dysfunctional may lead to some central nervous disorders including SZ [16–18].
Epigenetics is defined as alterations in gene expression without modification of the deoxyri-
bonucleic acid (DNA) sequence [19]. Both DNA methylation and histone post-translational
modifications (PTMs) constitute the main epigenetic regulators mediating the influence
of the environment on the genome and regulating the cascade of transcriptional activity
crucial for both the stability and plasticity of neuronal functioning (See Figure 1; [19,20]).
Considering that SZ is known as a neurodevelopmental disorder, both genetic and environ-
mental adverse conditions may lead to abnormal brain development with the symptoms
of the disease appearing later in life. It is critical to further establish the role of epige-
netic regulation in SZ, particularly in the context of brain plasticity and cognition. While
transcriptome regulation including any type of non-coding RNA has been reported as an
emergent regulator in epigenetic processes along with factors affecting chromatin remod-
eling complexes (such as the ATPase chromatin remodeler from the SNF2 superfamily of
proteins [21]), these processes will not be reviewed here. In this review, we will focus on
examining some of the current literature investigating changes in DNA methylation and
PTMs in both central and peripheral tissues in SZ patients and discuss their implications
for diagnosis and therapy for this pathology.
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2. DNA Methylation: Focus on Genetic and Genomic Studies in SZ

DNA methylation is a mechanism of epigenetics that can regulate gene expression
or suppression [22]. DNA methylation is catalyzed by DNA methyltransferases (DN-
MTs), which add a methyl group into fifth carbon position of the cytosine residue within
the cytosine phosphate guanine (CpG) dinucleotide [23,24]. Gene expression or suppres-
sion are regulated by the DNMT family, including DNMT1, DNMT3a, DNMT3b, and
DNMT3l [24]. While DNMT1 has been classified as the “maintenance methyltransferase”
of the genome, DNMT3a and DNMT3b mediate de novo methylation [24]. In contrast,
DNMT3l has no catalytic activity but can indirectly activate methylation via stimulation
of DNMT3a and DNMT3b [25]. Active demethylation occurs via enzymes belonging to
the ten-eleven translocation (TET) family proteins, undertaking thymine-DNA glycosy-
lase (TDG)-mediated base excision repair for a return to unmethylated cytosines in DNA
sequences [26].

Table 1 summarizes differentially methylated genes previously reported in post-
mortem tissues, blood, and saliva from SZ sufferers compared to controls. Cohort samples
and methodology were also stated, but further conversion into 5hmC (hydroxymethyl-
Cytosine) catalyzed by TET proteins has not been specifically addressed. The character-
ization of the presence of 5mC or 5hmC has been reported to be quite challenging since
conventional bisulfite sequencing is unable to discriminate between these forms of modified
cytosine [27]. For the majority of the studies a lower density of methylated CpG sites in the
tested gene and/or the full genome in schizophrenia patients was noted compared to their
respective control groups [28–30]. Interestingly, differential global hydroxymethylation
levels were also found increased in male SZ patients, but decreased levels were found in
female SZ patients compared to their respective controls [31]. Although only a limited
number of studies have investigated global methylation in SZ, DNA methylation changes
in SZ specific genes have been largely explored using a candidate gene strategy resulting
from whole-genome approaches.

Recent findings have shown that dopamine (DA) hypothesis may be due to a spe-
cific DA dysregulation in SZ pathogenesis rather than overall DA hyperactivity involving
selected receptor types and regional variations [32]. Levels of DA and its metabolites,
homovanillic acid (HVA) and 3, 4-dihydroxyphenylacetic acid (DOPAC), were found signif-
icantly decreased in the cerebro-Spinal Fluid (CSF) from patients who stopped antipsychotic
treatment [33,34]. Interestingly, numerous studies [35–37], but not all [38], have reported
higher HVA levels in both CSF and plasma from schizophrenic patients who have acutely
relapsed compared to stable patients. Plasma Catechol-O-methyltransferase (COMT), an
enzyme involved in the metabolism of DA, is encoded by a gene in the 22q11.2 region,
reported to have the strongest association with SZ in the largest genome-wide association
studies (GWAS) of structural variations [39]. Hypomethylation of the promoter in the
membrane-bound isoform of COMT (MB-COMT) gene was reported in 115 postmortem
brain samples from the frontal lobe of SZ patients compared to healthy controls [40], a
result not replicated in the frontal cortex in a smaller case–control cohort [41]. Interestingly,
methylation profiling in a promoter of DRD4, DRD5, and DRD2 genes was reported to
be lower in blood from 80 SCZ cases compared to 71 healthy controls, with a significant
differentially gene expression for DRD2, DRD4, and DRD5 genes, but not for DRD1 [42].
Taking into account that receptor targets of common antipsychotics (D2 receptors) and
the variability of response to this treatment in SZ patients, DNA methylation may play an
important part within disease development itself and/or response to treatment [43].

Recent findings suggest epigenetic mechanisms may also affect both the serotonin
system and phenotypes induced by treatment with antipsychotics [23]. Interestingly, epige-
netic dysregulation of both the MB-COMT and 5-HT2A receptor in the brains of patients
with SZ associated with an early age of disease onset was attenuated with anti-psychotic
drugs [40,44]. Atypical antidepressants, such as mirtazapine and its structurally related
counterpart mianserin, also block the function of 5-HT2A receptors. As mentioned above,
hypermethylation was reported in the promoter of 5-HT2A (-1438A/G polymorphism)
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in post-mortem frontal cortices of SZ patients compared with controls, thus affecting
the response to antipsychotic medication [44]. Interestingly, reduction in serotoninergic
transporter (5-HTT) gene expression was correlated with DNA hypermethylation in the
5-HTT promoter in SZ patients (drug-naïve) when compared to controls, suggesting that
an epigenetic controlled hypoactivity of 5-HTT neurotransmission may be linked to SZ
pathogenesis [45].

In the same cerebral region, another hypermethylated promoter was reported for
the glutamic acid decarboxylase 1 gene (GAD1), encoding for a rate-limiting enzyme
converting glutamate into γ-aminobutyric acid (GABA) from SZ in postmortem tissue
when compared to controls [1]. GAD dysfunction has been associated with changes in
GABAergic circuitry, affecting a vast portfolio of functions including motor, cognitive,
and behavioral functions [46], as reported in schizophrenic patients. Reelin (RELN), a
glycoprotein mainly secreted by cells and a subpopulation of GABAergic interneurons,
has also been reported as playing an essential role in the development of cortical neural
connectivity in utero and synaptic plasticity at postnatal stages, both critical processes in SZ
pathogenesis [47,48]. A significantly higher level of methylation in the RELN promoter was
found in the SZ group compared to controls [49], significantly reducing RELN expression in
different areas of the brain and blood in SZ individuals compared to healthy controls [50,51].

Table 1. Summary of DNA methylation from human tissues reported for candidate genes in SZ.

Pathways/Function Genes Tissues
(n SZ vs. Controls C.)

DNA Methylation
Status in SZ vs.

Healthy Controls
Methodology References

GABA and
glutamate

neurotransmission

GAD 1

NR3B, GRIA2

GRM2, GRM5

Frontal Cortex
(5 SZ vs. 5 C.)

Frontal Cortex
(35 SZ vs. 35 C.)

Blood (81 SZ vs. 71 C.)

Hypermethylation

Hypomethylation

Hypermethylation

Bisulfite sequencing
methylation-specific

PCR (MSP)

Bisulfite sequencing

Bisulfite sequencing
and MSP

[1]

[41]

[52]

Dopaminergic
neurotransmission

MB-COMT

DRD4, DRD5,
DRD2

Saliva
(63 SZ vs. 76 C.)

Dorsolateral
Prefrontal cortex (PFC)

(40 SZ vs. 40 C.)
Blood

(80 Sz vs. 81C.)

Hypomethylation

Hypomethylation

Hypomethylation

Bisulfite sequencing
and MSP

Bisulfite sequencing
and MSP

Bisulfite sequencing
and MSP

[53]

[40]

[42]

Serotoninergic
neurotransmission

5-HT2A

5-HT1A

5-HTT

Frontal Cortex
(35 SZ vs.35 C.)

Saliva
(63 SZ vs. 76 C.)

Saliva
(40 SZ vs. 67 C.)

Saliva/PFC
(30 SZ vs. 20 C./
35 SZ vs. 35 C.)

Hypermethylation

Hypomethylation

Hypermethylation

Hypermethylation

Bisulfite sequencing
and quantitativeMSP

(qMSP)
Bisulfite sequencing

and qMSP

Bisulfite sequencing
and qMSP

Bisulfite sequencing
and qMSP

[44]

[54]

[55]

[45]

Neuronal migration,
dendrites,

synaptogenesis and
synaptic plasticity

RELN

Frontal Lobe
(5 SZ vs. 5 C.)

Occipital and PFC
(15 SZ vs. 15 C.)

PFC and
Frontal cortex

(14 SZ vs. 13 C./35 SZ
vs. 35 C.)

Hypermethylation

Hypermethylation

No detectable
difference

Bisulfite sequencing
and qMSP

Bisulfite sequencing
and nested PCR

Pyrosequencing
Bisulfite sequencing

[50]

[56]

[41,57];
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Table 1. Cont.

Pathways/Function Genes Tissues
(n SZ vs. Controls C.)

DNA Methylation
Status in SZ vs.

Healthy Controls
Methodology References

Neuronal growth
and survival,

synaptic plasticity
BDNF PFC

(17 SC vs. 17 C.) Hypermethylation Bisulfite sequencing
and MSP [58]

Embryonic
development
myelination

SOX10

LINGO-1

PFC
(11 SZ vs. 12 C.)

Blood
(268 SZ vs. 268 C.)

Hypermethylation

Hypomethylation

Bisulfite sequencing

Bisulfite sequencing
and qMSP

[59]

[60]

Transcriptional
regulator in
embryonic

development
Neuronal Growth

FOXP2

EGR1

Para-hippocampus
gyrus

(13 SZ vs. 13 C.)
Blood

(64 SZ vs. 64 C.)

Hypermethylation

No difference

Bisulfite sequencing

Pyrosequencing

[27]

[61]

Dendritic density
Synaptic plasticity BAIAP2

Superior temporal
gyrus

(16 SZ vs. 22 C.)
Hypomethylation

Bisulfite sequencing
Genome methylation

Bead Array
[62]

GAD 1: Glutamic acid decarboxylase 1, NR3: Nuclear Receptor Subfamily 3, DRD2: Dopamine Receptor D2,
DRD4: Dopamine Receptor D4, DRD5: Dopamine Receptor D5, MB-COMT: Membrane-bound catechol-O-
methyltransferase, 5-HT2C: 5-hydroxytryptamine-type receptor 2C, 5-HT1: 5-hydroxytryptamine-type 1 recep-
tor, 5-HTT: 5-hydroxytryptamine transporter, GRM2: Glutamate Metabotropic Receptor 2, GRM5: Glutamate
Metabotropic Receptor 5, GRIA2: Glutamate receptor ionotropic 2, RELN: Reelin, BDNF: Brain-derived neu-
rotrophic factor, FOXP2: Forkhead box protein P2, BAIAP2: Brain-specific angiogenesis inhibitor 1-associated
protein 2, LINGO-1: Leucine rich repeat and Immunoglobin-like domain-containing protein 1, EGR1: Early
growth response r 1 and SOX10: SRY-related HMG-box 10.

Similarly to RELN, which is involved in synaptogenesis and synaptic plasticity in
developing and adult brains, DNA methylation of additional genes essential for embryonic
development (including Brain-derived neurotrophic factor (BDNF), Forkhead box protein P2
(FOXP2), Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2)) and for the
myelination process (such as Leucine rich repeat and Immunoglobin-like domain-containing
protein 1 (LINGO-1) and SRY-related HMG-box 10 (SOX10)) has been reported as differ-
entially expressed in SZ-affected brain and blood tissues when compared to respective
controls [27,58–62]. During development, DNA methylation in the genome is much more
active than in a somatic adult cell, and this dynamic process involving both de novo DNA
methylation and demethylation is critical for controlling gene expression and protein ex-
pression [24]. Hypermethylation has mostly been reported with decreased related gene
expression [63]. As illustrated in Table 1, genes stimulating neuronal growth, differentia-
tion and myelination and considered “positive” for healthy brain development for these
processes were all reported to be hypermethylated (BDNF, SOX10 and FOXP2) in SZ
key brain structures (prefrontal cortex (PFC) and hippocampus) when compared to their
respective controls, suggesting a decrease in gene expression of these positive factors in
SZ. Meanwhile, a gene leading to inhibition of myelination (LINGO-1) and potentially
considered a “negative’ factor in healthy brain development was reported as hypomethy-
lated, suggesting a potential increase in expression of this gene [60,64]. Supporting this
hypothesis, the LINGO-1 protein was reported to be significantly increased in post-mortem
dorsolateral PFC in SZ when compared to controls [65]. Considering that the myelination
process increases in a linear manner through infancy to middle-aged adulthood and taking
into account hypomethylation of LINGO-1 was associated with dysfunction of cognition
function and white matter integrity in SZ when compared to controls [60], imbalance of
methylation/demethylation patterns seems to persist and potentially increase across the
lifetime of individuals suffering from schizophrenia.

Although variation of methylation profiling plays an important role in SZ develop-
ment, future work is required to further characterize DNA methylation profiles expressed
centrally and on the periphery in the context of SZ as well as their effects on related gene
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expression. DNA methylation can lead to either induced or suppressed gene expression
depending on the region wherein it is situated (and other factors such as genetic vulner-
ability) [66]. Higher risk factors for SZ have been reported in individuals with a family
history of psychosis who experienced a viral infection during fetal development compared
to individuals with no reported infection [67], confirming the cumulative effects of both
genetic and environmental factors. Over 1000 genes have been identified in SZ genetic
susceptibility through association studies based on their chromosomal position and/or
their function in SZ pathophysiology [68]. DNA methylation in these candidate genes
(involved in critical neurotransmitter pathways such as dopamine or GABA) has been the
focus of research for the last decade. As illustrated in Table 1, differences in methylation
profiles have been reported for some candidate genes (for example, RELN) in the same
tested region (PFC). This lack of reproducibility in DNA methylation studies [69] may
be due to several limitations including cohort size and tissue quality [27], experimental
protocol (pyrosequencing vs. bisulfite sequencing and quantitative methylation-specific
PCR (qMSP) [70]), and other cofounders such as smoking [71], exercising [72] or use of
medication (antipsychotics [73,74]). These limitations may also apply to other epigenetic
process such as the methylation of proteins including histone proteins [69]. Modification of
histone proteins has recently emerged as a critical post-translational change affecting gene
expression via changes in chromatin structure.

3. Histone PTMs Roles in SZ Human Studies
3.1. Histone Proteins

Histone proteins are key structural units of chromosomes that mediate a higher level of
folding of the chromatin [75]. The nucleosome contains an octamer of histones consisting of
an H3-H4 tetramer and two H2A-H2B dimers [75]. In physiological conditions, the H3/H4
tetramer is the core of the histone octamer, and the H2A/H2B is symmetrically located
on both sides of this tetramer. The nucleosomes are all joined by linker DNA (around
20 bp between each nucleosome) and histone H1 to form the chromatin. Binding to the
nucleosomal core around the DNA entry and exit sites, the linker histone H1 can affect
the stability of the nucleosome and chromatin architecture [76]. Slightly coiled chromatin
presents DNA regions that allow transcription to occur, while tightly coiled chromatin
comprises transcriptionally inactive DNA regions [77]. All histone proteins have a similar
structure, which includes a globular domain and unstructured N-terminal ‘tail’ [76]. These
histone tails do not contribute significantly to the structure of the nucleosomes, but they are
essential for regulating chromatin’s degree of condensation into higher-order structures [78]

The N-terminal and C-terminal tails of H2A, H2B, H3 and H4 histones are subject to
numerous and dynamic modifications. More than 70 histone amino acid modifications
have been reported, including methylation, acetylation, phosphorylation, ubiquitination,
and sumoylation [77]. Some of these histone modifications have been associated with
transcriptional activation, for example, acetylation, while methylation controls gene activa-
tion and repression depending upon the specific position of the histone tail residue [77].
For instance, the methylation of histone H3meK5/K37 or K80 has been associated with
actively transcribed genes, while methylation in H3meK10/K28 or K21 has been previously
related to gene silencing [79]. Histone acetylation is performed by histone acetyltrans-
ferases (HATs), which catalyze the transfer of an acetyl group from acetyl Co-A to the lysine
on the N-terminal tails of histone protein [80]. Acetylation can also be reversed through
histone deacetylase (HDAC). The balance of these two dynamic processes is involved in the
regulation of many cellular processes such as chromatin architecture, gene transcription,
cell cycle and division, apoptosis, differentiation, and DNA replication and repair [78].
There are two main classes of HATs (A and B), which play an essential role in controlling
H3 and H4 acetylation [81]. With opposite effects to HATs, HDAC enzymes wrap the DNA
tightly around the histone proteins, leading to a decrease in gene transcription [82]. There
are two types of HDACs families, sirtuin families and HDAC families, which include four
sub-classes (1 to 4) [81]. Interestingly, the levels of HDAC1 in SZ were found to be increased
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when compared to controls in the PFC and hippocampus, brain structures essential for
high functioning and cognition and both affected in SZ pathogenesis [83].

Considering the critical role of histone proteins in the fine-tuning and coordination of
gene expressions on a spatiotemporal basis during neurogenesis, studies of histone proteins
and PTMs are of significant interest for SZ pathogenesis due to the neurodevelopmental
nature of this disorder.

3.2. Role of Histone Modifications in SZ: Human Studies

Histone PTMs represent one of the epigenetic modulation switches determining the
status of chromatin (restrictive vs. permissive) potentially involved in the pathogene-
sis of SZ, although there are a limited number of studies looking at the contribution of
specific histone PTMs in SZ. Initial evidence originated from a report that valproate, a
mood stabilizer, inhibits HDAC when administrated as a therapeutic [84]. Based on these
observations, researchers have further explored whether SZ is associated with specific
histone PTMs and/or alterations in the enzymes catalyzing such modifications. As illus-
trated in Table 2, the acetylation of H3 at lysine 9 and 14 (H3acK9/K14) is correlated with
changes in the acetylation of promoters of SZ-related genes including GAD67, translo-
case of outer mitochondrial membrane 70 homolog A (TOMM70A), 5-hydroxytryptamine
receptor 2C (5-HT2C), protein phosphatase 1E (PPM1E), and UDP-glycosyltransferase 8
(UGT8) and their levels of related levels of gene expression in young PFC postmortem SZ
tissues only [85]. This finding is consistent with a previous study which reported com-
mon molecular changes in healthy human aging and the early stage of SZ [86]. The same
acetylation of histone 3 H3acK9/K14, along with methylation (H3meR17, active chromatin)
and phosphorylation at Serine 10 (H3pS10) were not reported associated with differential
levels of gene expression in PFC, except for a subgroup of SZ exhibiting higher levels of
methylation when compared to controls associated with changes in the level of expression
of metabolic genes (see Table 2, [87]). It is unclear if the increased level of H3meR17 in the
SZ group reflected an adaptive response to a decrease in the gene expression of metabolic
genes specifically, or if it more generally reflected an alteration of the transcriptome in
PFC in the SZ group. Interestingly, in the same brain region, the same histone 3 with
3 methylations was also associated with a decrease in GAD 1 gene expression [1]. This
finding is consistent with previous studies reporting a reduction of GAD gene expression
associated with SZ in the frontal cortex and hippocampus, both brain structures highly
involved in SZ pathophysiology [29,88–90].

Gene expression for GAD 67 was also reported as being decreased in the PFC from
16 SZ when compared to 27 controls and correlated with an increased expression of HDAC1,
HDAC3 and HDAC4 [91]. In contrast, relative HDAC1 expression was found lower in the
dorsolateral PFC of patients with SCZ/SAD compared with controls, and interestingly,
HDAC expression was also positively correlated with cognitive performance scores across
groups [92]. This last study used a radiotracer version of the potent HDAC inhibitor [11C]
Martinostat, which may explain the difference of results observed with postmortem brain
studies [92]. Increased levels of HDAC 1 protein and mRNA were also reported signifi-
cantly elevated in SZ in both the PFC and hippocampus when compared to controls [83].
In the same study, the levels of HDAC in blood samples were found to be higher in SZ pa-
tients who had encountered stress in their early life when compared with patients without
this stressful experience at an early stage [83]. This finding is consistent with high levels
of HDAC leading to a non-permissive chromatin and preventing transcription of genes
involved in adult neurogenesis. Both HDAC 1 and 2 play a significant role in neocortex
development, particularly for the control of the spatiotemporal neuron production, which
is essential for the functional integrity of the brain structure [93]. Interestingly, during
early brain development, HDAC1 and HDAC2 show an overlapping pattern of expres-
sion [90,94]. However, postnatally, contrasting patterns of expression for HDAC 1 and
HDAC 2 were reported in brain [95]. In addition, the expression of HDAC1 is primarily in
glial cells, while HDAC2 is predominantly expressed in mature neurons [95]. Imbalance of
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these expressions along with aberrant histone PTMs could be one of the major contributors
to the development of neuropsychiatric diseases due to their critical role during neurode-
velopment. Future longitudinal studies will be required to fully characterize the role of
histone modification at different stages of development in SZ.

Table 2. Summary of histone proteins and histone PTMs in human tissues in SZ.

Histone
Proteins PTMs Tissues Human Cohort Main

Findings References

H3acK9/K14 Acetylation
Postmortem

prefrontal cortex
(PFC)

32 SZ vs. 34
controls (C.)

Decreased genes expression
levels of GAD1, TOMM70A,

and HT2C, in young SZ groups,
not old SZ groups when
compared with controls

[85]

H3meR17

H3pS10
H3acK9/14

Methylation
Phosphorylation

Acetylation
Postmortem PFC 41 SZ vs. 41 C.

No significant difference,
except for a subgroup of SZ
(n = 6) with higher levels of

methylation (H3meR17) when
compared to controls

associated with decreased of 3
metabolic transcripts CRYM,

CYTOC/CYC1 and MDH.

[87]

H3meK4 Trimethylation Postmortem PFC
36 and 50 matched

case-control cohorts
for SZ

H3K4-trimethylation in SZ
(predominantly in females)

associated with decreased of
GAD1 gene expression

[96]

H3acK9/K14
H3S10

Acetylation

Phosphorylation
PBMCs

Clinical population
with SZ vs. healthy

individuals

H3K9/K14ac levels were
significantly lower in SZ
cultured cells compared

to controls

[97]

HDAC1
HDAC3
HDAC4

Postmortem PFC 16 SZ vs.
27 C.

HDAC1 levels higher in SZ
compared to controls. GAD67

gene expression negatively
correlated with mRNA levels

for HDAC1, 3 and 4

[91]

HDAC Postmortem
dorsolateral PFC

14 SZ or
schizoaffective

vs. 17 C.

HDAC levels significantly
lower in SZ when compared

to controls
[92]

HDAC 1
HDAC 2

Postmortem
dorsolateral PFC 175 SZ vs. 210 C.

mRNA HDAC2 levels were
significantly lower in SZ

compared to control group, no
difference for HDAC1

mRNA levels

[98]

HDAC
Postmortem PFC

and
hippocampus

10 SZ vs. 11 C. HDAC 1 levels were higher in
SZ group compared to controls [83]

GAD 1: Glutamic acid decarboxylase 1, GAD 67: Glutamic acid decarboxylase 67, TOMM70A: translocase
of outer mitochondrial membrane 70 homolog A, 5HT-2C: 5-hydroxytryptamine receptor 2C, PP1ME: protein
phosphatase 1E and UGT8: UDP-glycosyltransferase 8, CRYM: NADP-regulated thyroid-hormone-binding
protein, CYTOC/CYC1: cytochrome somatic C 1 and MDH: Malate dehydrogenase.

4. Discussion

There is a growing body of studies investigating epigenetic mechanisms potentially
involved in neurodegenerative and neuropsychiatric conditions. Animal models, cell lines,
postmortem brain studies, and/or clinical studies have all demonstrated a dysregulation
of epigenetic processes in SZ. This review has reported major work performed using
human tissues and highlighted the importance of epigenetic regulation, particularly during
brain development (pre- and postnatally). Dysregulation of epigenetic regulation may
lead to reprogramming key functional genes (such as GAD) and changing the course of
healthy brain development. The result of these functional brain changes increases the
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risk of psychiatric disorders. Interestingly, epigenetic modifications are also involved in
maintenance of sex differences in the brain [99], which may explain the differences in
susceptibility, onset, pathogenesis, and severity of SZ between males and females [100].
SZ in women seems less severe, with a delayed onset and lower incidence compared to
men [101]. Interestingly, global DNA methylation in men has been reported to be higher
than in women [102], a process which may contribute to differences in SZ phenotypes
between genders. Another study reported that SZ female patients display around twice the
amount of HDAC1 levels that male patients do; however, this result must be considered
with caution as only 3 females vs. 13 males were included in this study, thus greatly
limiting its interpretation [91]. Peripheral studies have also reported a higher levels of
histone methyltransferases mRNA (G9 α, SETDB1 and GLP) and methylation of H3K9
in men when compared to women [100]. The high levels of histone methyltransferases
observed in men were also associated with higher expression of SZ symptoms and poorer
quality of life when compared to women [100]. These findings support a sex-dependent
epigenome potentially contributing to SZ etiology and disease development. Although
additional work is needed to establish a clear sex difference in epigenetic regulation, it
is important to keep this in mind while developing potential therapeutic action through
epigenome modulation.

As reported in Tables 1 and 2, the majority of SZ epigenetic studies have been per-
formed using peripheral samples [42,53] and/or postmortem brain tissues [29,41]. How-
ever, the use of postmortem tissues introduces limitations for co-founders (which may
influence epigenetic regulation) such as drug use (alcohol, cannabis, tobacco, etc.), medica-
tion use, and cause of death [20,71]. For instance, tobacco use was reported to significantly
affect global DNA methylation, leading to epigenome and transcriptome changes [103].
Consequently, it is difficult to clearly determine which epigenetic processes are solely
specific to SZ. In the meantime, variations in SZ phenotypes may be due to epigenetic
variations, taking into account these various co-founders, and life experiences; this reflects
the variability of SZ symptoms and severity observed in SZ cohorts [20].

There is a growing body of literature studying the use of medication (antipsychotics)
in the context of epigenetic processes [73,104–106]. In a longitudinal study, treatment
with clozapine, an atypical antipsychotic drug, led to higher methylation levels corre-
lated negatively with diagnosis [106]. Higher methylation levels were demonstrated in
antipsychotic-treated patients, with haloperidol treatment reversing DNA methylation
levels close to levels similar to healthy control groups [107]. Chronic treatment with clozap-
ine and sulpiride, but not haloperidol and olanzapine, induced the demethylation of the
methylated genes of RELN and GAD67 (glutamic acid decarboxylase 67) reported in SZ
patients, potentially leading to the restoration of GABAergic gene expression and neuro-
transmission in SZ brains [108,109]. Although clinical studies showed that antipsychotic
treatment can alter the methylation patterns of SZ genes and related gene expression in SZ
patients, it is important to consider that variation of methylation patterns prior to the use of
SZ medication can also affect the influence of the efficacy of antipsychotics in patients [110].
More work in drug-naïve patients is necessary to further determine the role of antipsychotic
drugs on DNA methylation.

Clinical studies have reported an upregulation of HDAC2 in the human frontal cortex
after chronic administration of atypical antipsychotic drugs [111]. This finding was also
associated with a 5HT2A-dependent regulation of HDAC2 transcriptional activity and an
increase in the binding of HDAC2 with the promoter region of the metabotropic glutamate
2 receptor mGlu2 gene [111]. Previous clinical trials with mGlu receptor 2 agonist showed
high efficacy in providing a therapeutic effect on SZ [112], potentially via normalization of
thalamo-cortical glutamatergic neurotransmission in PFC. A decrease in histone acetylation
at the mGlu2 promoter due to upregulation of HDAC 2 leads to alteration of the chromatin
state at the mGlu2 promoter and consequently limits the effects of atypical antipsychotic
drugs [111]. Consequently, use of HDAC 2 inhibitors may be a new avenue of therapy
for SZ, particularly for patients resistant to common antipsychotic medications. Valproate
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administration (which acts as a nonspecific HDAC inhibitor) has been reported to improve
the clinical efficacy of atypical antipsychotic drugs (such as clozapine, risperidone, and
olanzapine) [113–116], confirming the potential of HDAC inhibitors as new targets for
SZ treatment. In the last few years, HDAC inhibitors have been extensively tested for
different types of cancer therapy [117–119] and as cognitive enhancers [120], which may
potentially help neurodegenerative diseases such as Alzheimer’s disease [121]. The use
of HDAC inhibitors seems to have limited side effects and act as a permissive chromatin,
making it accessible to all genes implicated in learning and memory. The role of HDAC 2
in cognition has been extensively reported and may be a target of preference for cognitive
disorders [122]. Further work including appropriate controlled populations (potentially
in a drug-naïve cohort) will be required to fully assess the role of epigenetic regulation in
SZ therapy.

This review has focused on two main epigenetic regulation processes (DNA methy-
lation and histone PTMs and enzymes) in the context of SZ, with results demonstrating
variability according to tested tissues and/or techniques. A better understanding of the
relationship between clinical heterogeneity and epigenetic profiling is necessary. Although
several factors such as gender, age of onset and course of the disease, comorbidity with
other disease (for example, depression), lifestyle, and use of medication can affect the
epigenome in SZ, further studies are needed. To further understand the potential involve-
ment of the epigenome in SZ development and/or pathophysiology, studies should control
for these confounding factors, which can explain the variation in findings. It is essential to
determine when epigenetically induced disease occurs (e.g., before SZ symptoms can be
seen) and whether it could be a secondary effect of SZ pathophysiology and/or medication
when treated [123,124]. Combining longitudinal epigenetic studies with genome-wide asso-
ciation (such as array-based platforms or next-generation sequencing) and SZ twin studies
will allow us to gain a better understanding of both genetic and environmental effects on
the epigenome in the context of SZ [125]. Bisulfite-modified whole-genome sequencing
approaches have demonstrated DNA methylation analysis of base pair resolution [126]. In
addition, differences between human sample types, tissues, and cell heterogeneity along
with diverse techniques used to determine epigenetic marks and patterns should also be
taken into account and controlled for when possible [69]. Discrimination between various
cytosine modifications on a genome-wide scale and cell sorting-based analyses will help
with identification of epigenetic profiling in diverse SZ tissues [127–129]. To further con-
sider epigenetic markers as potential biomarkers for SZ, studies with specific cell types and
defined tissues should be compared in both brain tissues and peripheral tissues (blood and
saliva), with the common epigenetic pattern in both brain and peripheral tissues being a
promising biomarker for SZ [12,29]. This review also highlights the promising but so far
limited clinical application of pharmaco-epigenetics (regulating both DNA methylation
and HDAC activity) to SZ due to the heterogeneity of findings across different cells, tissues,
and populations. However, there is hope that epigenetic regulation will be considered
when determining clinical therapeutic decisions for SZ sufferers, similar to what is seen
in cancer therapy [130]. A future tailor-made therapy may be developed in relation to
a patient’s epigenetic profile in order to provide the most effective way of treating SZ.
Current preclinical studies investigating HDAC inhibitors look promising. Regulation of hi-
stone acetylation via pharmacological action on histone acetylation readers (bromodomain
and extra-terminal (or BET)) at an early stage of the disease may offer early therapeutic
intervention for the disease [125].

In summary, since epigenetic modification may be associated with treatments for
disease, they may also act as predictors pf treatment response [131] and/or targets for
future therapy. Acting on epigenetic regulation may reinstate gene expression activation
due to chromatin status loss during neurodevelopment in SZ pathogenesis and restore
previously constrained or dormant neurotransmission, which is affected by epigenetic
factors and/or environmental stress. Future studies including drugs targeting epigenetic
regulators will help to establish future avenues of therapy for SZ.
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