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Abstract: Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird
widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the
Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing.
Combined with other published mitogenomes, we conducted the first comprehensive comparative
mitogenome analysis of Muscicapidae birds and reconstructed the phylogenetic relationships between
Muscicapidae and related groups. The T. indicus mitogenome was 16,723 bp in size, and it possessed
the typical avian mitogenome structure and organization. Most PCGs of T. indicus were initiated
strictly with the typical start codon ATG, while COX1 and ND2 were started with GTG. RSCU statistics
showed that CUA, CGA, and GCC were relatively high frequency in the T. indicus mitogenome.
T. cyanurus and T. indicus shared very similar mitogenomic features. All 13 PCGs of Muscicapidae
mitogenomes had experienced purifying selection. Specifically, ATP8 had the highest rate of evolution
(0.13296), whereas COX1 had the lowest (0.01373). The monophylies of Muscicapidae, Turdidae, and
Paradoxornithidae were strongly supported. The clade of ((Muscicapidae + Turdidae) + Sturnidae)
in Passeriformes was supported by both Bayesian Inference and Maximum likelihood analyses.
The latest taxonomic status of many passerine birds with complex taxonomic histories were also
supported. For example, Monticola gularis, T. indicus, and T. cyanurus were allocated to Turdidae in
other literature; our phylogenetic topologies clearly supported their membership in Muscicapidae;
Paradoxornis heudei, Suthora webbiana, S. nipalensis, and S. fulvifrons were formerly classified into
Muscicapidae; we supported their membership in Paradoxornithidae; Culicicapa ceylonensis was
originally classified as a member of Muscicapidae; our results are consistent with a position in
Stenostiridae. Our study enriches the genetic data of T. indicus and provides new insights into the
molecular phylogeny and evolution of passerine birds.

Keywords: Muscicapidae; Tarsiger indicus; comparative mitogenome; mitogenomic phylogeny

1. Introduction

Passerines (Aves: Passeriformes) include a large number of species and are adapted
to various ecological environments. The latest data show that the group has 145 families
and 6695 species, accounting for 60% of all bird species; moreover, Muscicapidae is the
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third-largest family after Tyrannidae and Thraupidae, with 351 species from 53 genera [1].
Tarsiger indicus (Vieillot, 1817) (Figure 1), the White-browed Bush Robin, is a small Muscicap-
idae bird widely distributed in Asian countries, including India, Nepal, Bhutan, Myanmar,
Vietnam, and China [2]. In China, T. indicus is found in Sichuan, Gansu, Shanxi, Hubei,
Yunnan, Tibet, and Taiwan [3–5]. It generally inhabits the coniferous forests and the mixed
broadleaf–conifer forests between alpine rock valleys at altitudes of 2440–4270 m above sea
level in western China; in addition, it also inhabits the bottom shrubland of dense forests at
altitudes of 2300–3200 m above sea level in Taiwan Island of China. In the past, the White-
browed Bush Robin has been divided into three subspecies, including T. indicus indicus,
T. i. yunnanensis, and T. i. formosanus [3]. Recently, an integrative taxonomic investigation
found the Taiwan endemic T. i. formosanus to be distinctive in genetics, song, and morphol-
ogy from T. i. indicus and T. i. yunnanensis of the Sino-Himalayan mountains [6]. In view
of this, the T. i. formosanus subspecies has been suggested to be upgraded to the species
T. formosanus, named the Taiwan Bush Robin [6,7]. In addition, T. indicus has been included
in the updated List of Terrestrial Wild Animals of Important Ecological, Scientific, and
Social Value in China [8]. Due to its wide geographical distribution and large population
size, the conservation status of T. indicus is Least Concern in both the IUCN Red List of
Threatened Species [2] and the Red List of China’s Vertebrates [9].
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Figure 1. Reference image of adult T. indicus. The photo was taken by Taihu Hu on 20 February 2022
in Yingjing County, Ya’an City, Sichuan Province, China.

Vertebrate mitochondrial genomes (mitogenomes) are circular, typically 14,000–20,000 bp,
and contain 13 protein-coding genes (PCGs), two ribosomal RNA (rRNAs), 22 transfer RNA
genes (tRNAs), and one large non-coding D-loop region [10,11]. The mitogenome has been
extensively used in population genetics, population dynamics, and adaptive evolution
studies of various animal groups [12–16], particularly in phylogenetic reconstruction among
animal species [14,16–19]. It is worth emphasizing that mitochondrial genomes are more
reliable in phylogenetic reconstruction than a single mitochondrial gene [20–22]. However,
the mitogenomes of the Muscicapidae family, a complex lineage of passerines, has been
studied very little. So far, complete mitochondrial genomes of only 24 species (ca. 7% of the
overall clade) from 15 genera (ca. 28%) within Muscicapidae family have published in the
GenBank database (Table 1), mainly focusing on simple mitogenomic descriptions [23–29].
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Table 1. List of 41 species used for the comparative mitogenomic analyses and the mitogenomic
phylogenetic analyses in this study.

Family Species GenBank No. Mitogenome Size (bp) References

Muscicapidae Oenanthe isabellina KU097327 NC_040290 16,812 [30]
Oenanthe oenanthe MN356231 NC_051036 16,826 [31]
Copsychus saularis KU058637 NC_030603 16,827 [32]

Copsychus sechellarum MN356447 16,839 [31]
Muscicapa sibirica MK770601 NC_045374 17,879 [27]
Muscicapa sibirica MK390479 NC_045181 17,897 [15,28]

Muscicapa dauurica MK770602 NC_045375 18,026 [29]
Ficedula hyperythra MW795347 NC_058320 16,819 [23]
Ficedula albicollis KF293721 NC_021621 16,787 [33]

Ficedula zanthopygia JN018411 NC_015802 16,794 Unpublished
Phoenicurus auroreus KF997863 NC_026066 16,772 [34]
Phoenicurus frontalis MT360379 NC_053917 16,776 [24]

Calliope calliope HQ690246 NC_015074 16,841 Unpublished
Larvivora komadori LC541462 16,812 Unpublished
Larvivora akahige LC541457 16,824 Unpublished

Myophonus caeruleus MN564936 16,815 Unpublished
Enicurus schistaceus OP998296 NC_072120 17,112 Unpublished
Cyornis umbratilis ON746672 NC_068694 16,805 Unpublished

Cyornis magnirostris ON746663 NC_068687 16,816 Unpublished
Cyornis

hainanus/rubeculoides HQ896033 NC_015232 16,802 [15]

Niltava davidi KY024217 NC_039538 16,770 [35]
Melaenornis chocolatinus MT017899 NC_052841 16,582 Unpublished

Cossypha semirufa MT017889 NC_052839 16,564 Unpublished
Tarsiger indicus OR459825 This study

Tarsiger cyanurus KF997864 NC_026067 16,803 [34]
Monticola gularis KX506858 NC_033536 16,801 [36]

Turdidae Turdus ruficollis MT712159 NC_057250 16,737 [37]
Turdus obscurus MZ337397 16,739 [38]

Turdus cardis MN865118 NC_046948 16,761 [39]
Zoothera aurea MT527192 NC_054298 16,712 [40]

Geokichla sibirica MK377247 16,766 [41]
Myadestes myadestinus KU158194 NC_031352 16,641 [42]

Catharus fuscescens MN356183 NC_051013 16,766 [31]
Sturnidae Sturnus vulgaris KT946691 NC_029360 16,793 [43]

Paradoxornithidae Suthora fulvifrons KT598466 NC_028436 17,059 [44]
Suthora nipalensis KT598467 NC_028437 16,996 Unpublished
Suthora webbiana KF725775 NC_024539 16,960 [45]

Paradoxornis heudei EU376027 16,928 Unpublished
Psittiparus gularis KX397391 NC_039536 17,109 [35]

Phylloscopidae Phylloscopus proregulus MG189603 NC_037189 16,880 [46]
Stenostiridae Culicicapa ceylonensis MH880820 NC_042191 16,851 [47]

Pittidae Pitta sordida MN356273 NC_051463 17,733 [31]

Genetic data on T. indicus are currently rare. In the GenBank database, only 39 nucleotide
sequences have been uploaded as of August 2023, including 16 sequences of mitochondrial
Cytb and ND2 genes. An accurate understanding of phylogeny is an important prerequisite
for many studies of ecology and evolution [6,48]. However, in terms of phylogenetic status,
T. indicus was previously placed into the genus Luscinia [49] and is now still placed into the
Turdidae family in some publications [50].

In order to better understand the mitogenome characteristics and the phylogenetic
relationship of T. indicus, we sequenced its mitochondrial genome through high-throughput
sequencing technology here. Combined with other published data, we conduct the first
comprehensive comparative mitogenome analysis of Muscicapidae birds and reconstruct
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the phylogenetic relationships between Muscicapidae and related groups using a mitoge-
nomic approach.

2. Materials and Methods
2.1. Materials

A subadult window victim, which was found dead, was collected from Yingjing Area
of the Giant Panda National Park, Scihuan Province, China (29◦33′39.50′′ N, 102◦51′4.10′′ E,
2428 m above sea level) on 30 July 2022, and it was identified as T. indicus by morphological
characters and mitochondrial Cytb blast. The extraction of genomic DNA from a pectoral
muscle was carried out using the Rapid Animal Genomic DNA Isolation Kit (Sangon
Biotech Co., Ltd., Shanghai, China), according to the manufacturer’s protocol. The specimen
and its DNA were deposited at the Chengdu Research Base of Giant Panda Breeding
(Dr. Jiabin Liu, jiabin_liu2013@126.com) with the voucher number PB2022027.

2.2. Mitogenome Sequencing, Assembly, and Annotation

With the assistance of Sangon Biotech Co., Ltd. (Shanghai, China), we sequenced
the mitochondrial genome through a high-throughput sequencing technique. Library
preparation, mitogenome sequencing, and mitogenome assembly were performed as pre-
viously described [51]. Mitogenome annotations were implemented using MITOS Web-
Server (http://mitos2.bioinf.uni-leipzig.de/index.py, accessed on 15 August 2023) [52]
and MitoAnnotator (http://mitofish.aori.u-tokyo.ac.jp/annotation/input/, accessed on
15 August 2023) [53]. Based on their proposed cloverleaf secondary structures and anti-
codon sequences, the tRNAs were rechecked using ARWEN online services (http://130.23
5.244.92/ARWEN/, accessed on 15 August 2023) [54]. The mitogenome visualization map
was generated using Chloroplot (https://irscope.shinyapps.io/Chloroplot/, accessed on
18 August 2023) [55].

2.3. Comparative Mitogenomic Analyses

The complete mitogenome of T. indicus and 24 other Muscicapidae birds belonging
to 15 genera were used for comparative mitogenomic analyses (Table 1). The 13 PCGs,
two rRNAs, and whole mitogenomes were aligned in batches with MAFFT v7.505 [56].
Nucleotide composition and relative synonymous codon usage (RSCU) were calculated
using MEGA v11.0.9 [57]. Nucleotide composition biases were determined from the
formulas AT-skew = (A − T)/(A + T) and GC-skew = (G − C)/(G + C). The nucleotide
diversity (Pi), the non-synonymous substitution rate (Ka), and the synonymous substitution
rate (Ks) were calculated using DnaSP v6.12.03 [58].

Data visualization was performed using OmicStudio tools (https://www.omicstudio.
cn/tool, accessed on 25 August 2023) [59].

2.4. Mitogenomic Phylogenetic Analyses

Two rRNAs and 13 PCGs of T. indicus and 40 other Passeriformes birds belonging to
26 genera and seven families were used for mitogenomic phylogenetic analyses (Table 1).
The taxonomy of all birds is based on the IOC World Bird List v13.2 [1]. Pitta sordida
(Passeriformes: Pittidae) was used as an outgroup based on its well-documented distant
phylogenetic position from the ingroup [60–62]. Two rRNA sequences were aligned in
batches with MAFFT v7.505 [56] using ‘–auto’ strategy and normal alignment mode, and
13 PCGs sequences were aligned in batches using the codon-aware program MACSE
v2.06 [63], which preserves reading frame and allows incorporation of sequencing errors
or sequences with frameshifts. Ambiguously aligned fragments of these 15 alignments
were removed in batches using Gblocks v0.91b [64] with the following parameter settings:
minimum number of sequences for a conserved/flank position (22/22), maximum number
of contiguous non-conserved positions (8), minimum length of a block (10), allowed gap
positions (with half). The 15 alignments were eventually concatenated into one multi-gene
dataset consisting of a 13,893 bp sequence using PhyloSuite v1.2.3 [65]. The concatenated

http://mitos2.bioinf.uni-leipzig.de/index.py
http://mitofish.aori.u-tokyo.ac.jp/annotation/input/
http://130.235.244.92/ARWEN/
http://130.235.244.92/ARWEN/
https://irscope.shinyapps.io/Chloroplot/
https://www.omicstudio.cn/tool
https://www.omicstudio.cn/tool
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multi-gene dataset was used to clarify the phylogeny using Bayesian Inference (BI) and
Maximum Likelihood (ML) methods. A best-fit partition model (edge-linked) was selected
by ModelFinder v2.2.0 [66] using a BIC criterion, and the results are shown in Table S1. BI
phylogenies were inferred using MrBayes v3.2.6 [67] under a partition model (2 parallel
runs, ten million generations, sampling every one thousand generations), in which the
initial 25% of sampled data were discarded as burn-in. ML phylogenies were inferred
using IQ-TREE v2.2.0 [68] under an edge-linked partition model for one hundred thousand
ultrafast [69] bootstraps.

High-quality figures of phylogenetic trees were produced using FigTree v.1.4.4 (http:
//tree.bio.ed.ac.uk/software/figtree/, accessed on 31 August 2023).

3. Results and Discussion
3.1. Structure and Organization of the T. indicus Mitogenome

Herein, the complete mitogenome of T. indicus (GenBank accession number: OR459825)
was successfully sequenced and annotated. It was a circular and double-stranded DNA
molecule, consisting of a typical structure with 13 PCGs, 2 rRNAs, 22 tRNAs, and a major
non-coding D-loop region (Table 2; Figure 2). Among these 37 genes, 28 were located on
the heavy strand, while the remaining nine genes, including eight tRNAs (trnQ, trnA, trnN,
trnC, trnY, trnS2, trnE and trnP) and one PCG (ND6), were located on the light strand
(Table 2; Figure 2). T. indicus showed the typical avian mitogenome order [21,70], which
was also the ancestral avian arrangement found in many lineages of Passeriformes [21].
The mitogenome structure and organization of T. indicus was consistent with those of
T. cyanurus, but the T. indicus mitogenome (16,723 bp) was smaller in size than the T.
cyanurus mitogenome (16,803 bp), and the interspecific difference was mainly caused by
the size difference in the D-loop region located between trnE and trnF (Table 2).

Table 2. The mitochondrial genome comparison between T. indicus and T. cyanurus.

Gene Location Gene Length (bp) Start/Stop Codon

T. indicus
OR459825

T. cyanurus
KF997864

T. indicus
OR459825

T. cyanurus
KF997864

T. indicus
OR459825

T. cyanurus
KF997864

trnF (gaa) 1–68: + 1–68: + 68 68
rrnS 69–1050: + 69–1051: + 982 983

trnV (uac) 1051–1120: + 1052–1121: + 70 70
rrnL 1121–2719: + 1122–2723: + 1599 1602

trnL2 (uaa) 2720–2794: + 2724–2798: + 75 75
ND1 2800–3777: + 2804–3781: + 978 978 ATG/AGA ATG/AGA

trnI (gau) 3787–3858: + 3794–3865: + 72 72
trnQ (uug) 3866–3936: − 3873–3943: − 71 71
trnM (cau) 3936–4004: + 3943–4011: + 69 69

ND2 4005–5044: + 4012–5051: + 1040 1040 GTG/TA GTG/TA
trnW (uca) 5045–5115: + 5052–5122: + 71 71
trnA (ugc) 5117–5185: − 5124–5192: − 69 69
trnN (guu) 5190–5262: − 5197–5269: − 73 73
trnC (gca) 5263–5329: − 5270–5336: − 67 67
trnY (gua) 5329–5399: − 5336–5406: − 71 71

COX1 5401–6951: + 5408–6958: + 1551 1551 GTG/AGG GTG/AGG
trnS2 (uga) 6943–7017: − 6950–7024: − 75 75
trnD (guc) 7021–7089: + 7028–7096: + 69 69

COX2 7098–7781: + 7104–7787: + 684 684 ATG/TAA ATG/TAA
trnK (uuu) 7783–7850: + 7789–7856: + 68 68

ATP8 7852–8019: + 7858–8025: + 168 168 ATG/TAA ATG/TAA
ATP6 8010–8693: + 8016–8699: + 684 684 ATG/TAA ATG/TAA
COX3 8699–9482: + 8705–9488: + 784 784 ATG/T ATG/T

trnG (ucc) 9483–9551: + 9489–9557: + 69 69
ND3 9552–9902: + 9558–9908: + 351 351 ATG/TAA ATG/TAA

trnR (ucg) 9904–9973: + 9910–9979: + 70 70

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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Table 2. Cont.

Gene Location Gene Length (bp) Start/Stop Codon

T. indicus
OR459825

T. cyanurus
KF997864

T. indicus
OR459825

T. cyanurus
KF997864

T. indicus
OR459825

T. cyanurus
KF997864

ND4L 9975–10,271: + 9981–10,277: + 297 297 ATG/TAA ATG/TAA
ND4 10,265–11,642: + 10,271–11,648: + 1378 1378 ATG/T ATG/T

trnH (gug) 11,643–11,713: + 11,649–11,719: + 71 71
trnS1 (gcu) 11,714–11,780: + 11,722–11,786: + 67 65
trnL1 (uag) 11,780–11,850: + 11,786–11,856: + 71 71

ND5 11,851–13,668: + 11,857–13,674: + 1818 1818 ATG/AGA ATG/AGA
Cytb 13,677–14,819: + 13,683–14,825: + 1143 1143 ATG/TAA ATG/TAA

trnT (ugu) 14,823–14,891: + 14,829–14,897: + 69 69
trnP (ugg) 14,899–14,968: − 14,904–14,973: − 70 70

ND6 14,982–15,500: − 14,990–15,508: − 519 519 ATG/TAG ATG/AGG
trnE (uuc) 15,502–15,573: − 15,510–15,581: − 72 72

D-loop 15,574–16,723: + 15,582–16,803: + 1150 1222

+ represents heavy strand, and – represents light strand.
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colored circle are located on the light strand counterclockwise, and those inside the outer circle are
located on the heavy strand clockwise. Different colors indicate different types of genes and regions.
The inner blue circle represents the local GC content.
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3.2. Codon Usage

Among the 13 PCGs, the smallest one was ATP8, and the largest one was ND5,
ranging from 168 bp to 1818 bp (Table 2). Most PCGs of T. indicus were initiated with
the typical start codon ATG, while COX1 and ND2 were started with GTG (Table 2).
The unusual start codon GTG was also observed in COX1 from other bird groups, such
as Sittidae [71,72], Accipitridae [73,74], Phasianidae [75], Columbidae [76], and other
Passeriformes species [24,25,30,36,45]. The stop codons of 13 PCGs were quite varied
in T. indicus. ATP6, ATP8, COX2, Cytb, ND3, ND4L, and ND6 were terminated with
the representative stop codon TAA or TAG, COX1, ND1, and ND5 ended with AGA or
AGG, while COX3, ND2, and ND4 were occasionally terminated with the truncated stop
codon TA or T (Table 2). The incomplete stop codons TA and T are common in metazoan
mitogenomes [19,20,51,72], and they can be converted to TAA by post-transcriptional
modifications during the mRNA maturation process [77]. The start and stop codons of the
13 PCGs were very similar in the mitogenomes of T. indicus and T. cyanurus, and the only
difference was the stop codon of the ND6 gene: the former was TAG, while the latter was
AGG (Table 2).

The T. indicus mitogenome contained a total of 3797 codons in its protein-coding regions
(Table S2). The three most frequently used codons were CUA (Leu1), AUC (Ile), and UUC
(Phe), which were used 347, 217, and 181 times, respectively, and the five least-used codons
were UGU (Cys), AGU (Ser1), ACG (Thr), CGG (Arg), and AAG (Lys), which were used 6, 6,
6, 4, and 4 times, respectively (Table S2). As in other birds [76,78,79], amino acids with high
frequency encoded by PCGs were Leu (664), Thr (327), and Ala (323) (Table S2).

In addition, RSCU is a reference value to evaluate the frequency of codons encoding
the same amino acid [80]. When the RSCU ratio was greater than 1, it indicated that the
codon occurred many times [80]. Statistics on the RSCU showed that CUA (3.14), CGA
(2.34), and GCC (2.18) were relatively high-frequency in T. indicus mitogenome (Figure 3;
Table S2). RSCU values of T. cyanurus mitogenome was also summarized and compared
with T. indicus, and these two mitogenomes had very similar characteristics of utilization
rate of synonymous codon of single amino acids (Figure 3; Table S2).
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3.3. Nucleotide Composition, Diversity, and Evolution

The overall nucleotide composition of the T. indicus mitogenome was 32.88% C, 29.63%
A, 22.75% T, and 14.73% G, indicating that the mitogenomes were biased towards C
and A bases, which had also been the case in previous studies of avian mitochondrial
genomes [18,81]. Its overall G + C content was 47.62%, which was similar to the 47.03%
of the T. cyanurus mitogenome (Figure 4). Similar to most other birds [18,37,72], overall
G + C content of the whole mitogenomes of all 25 Muscicapidae birds was slightly lower
than their overall A + T content (Table S3). In terms of a single mitochondrial gene of
Muscicapidae species including T. indicus, the individual G + C contents were very close to
50% (Table S3; Figures 4 and 5). Although T. indicus and T. cyanurus were closely related
species, their individual G + C content had an inconsistent trend among all genes (Figure 4).

We also calculated the nucleotide skew of mitochondrial gene in 25 Muscicapidae
species. The AT-skew values of the entire genome, concatenated rRNAs, concatenated
PCGs, and single rRNA and PCG (except ND6) were positive, while the GC-skew values
were negative (Figure 5), as was common in mitogenomes of Strigiformes [18] and Accipitri-
formes [74], indicating that Cs were more abundant than Gs, and As were more abundant
than Ts. AT-skew and GC-skew were due to the different distribution of nucleotides be-
tween the two DNA strands, which further led to an asymmetry in the DNA strands [51,80].
We also analyzed the correlation between nucleotide content and corresponding skew of
all mitogenomes of Muscicapidae (Figure 5), but the correlation was weak and further
confirmation was needed with more data.

The nucleotides varied greatly among different genes (Figure 6). The average nucleotide
diversity values for individual genes ranged from 0.04264 (rrnS) to 0.16538 (ND2), and the
percentage of nucleotide variable sites ranged from 18.05% (rrnL) to 52.93% (ND2) (Figure 6A),
indicating that rrnL and rrnS were slow-evolving genes, ND2 was a fast-evolving gene.

To further understand the role of selective pressure on the mitochondrial PCGs among
the Muscicapidae species, we calculated and compared the average Ka/Ks ratio for each
PCG (Figure 6B). Ka/Ks ratio = 1 denotes neutral mutations, Ka/Ks ratio < 1 denotes
negative selection, and Ka/Ks ratio > 1 denotes positive selection [82,83]. Here, the average
Ka/Ks ratio for all PCGs were consistently far lower than 1, indicating that all PCGs of
Muscicapidae mitogenomes had experienced purifying selection. Among the 13 PCGs,
ATP8 had the highest rate of evolution (0.13296), whereas COX1 had the lowest (0.01373)
(Figure 6B), which was congruent with the previous studies in Passeriformes [51,71],
Piciformes [79], Strigiformes [18], and penguins [84], as well as frogs [85]. Therefore, our
findings confirmed that COX1 experienced the strongest purifying selection and COX1
might play important roles in the evolution of avian mitogenomes.
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Figure 6. Evolutionary rates of mitochondrial genes of 25 species of Muscicapidae. (A) Nucleotide
diversity and percentage of variable sites; (B)The ratio of non-synonymous substitution rate and
synonymous substitution rate.

3.4. Mitochondrial Phylogenomics

The ML and BI trees of the 13PCGs + 2rRNAs dataset had similar topologies, and
most nodes were supported by high bootstrap percentages (BP) and Bayesian posterior
probabilities (BPP) (Figures 7 and S1).

Genes 2024, 15, x FOR PEER REVIEW 12 of 17 
 

 

3.4. Mitochondrial phylogenomics 
The ML and BI trees of the 13PCGs + 2rRNAs dataset had similar topologies, and 

most nodes were supported by high bootstrap percentages (BP) and Bayesian posterior 
probabilities (BPP) (Figures 7 and S1). 

 
Figure 7. The phylogenetic relationships of Passeriformes inferred by ML method based on the 
13PCGs + 2rRNAs dataset. Numbers on nodes are the bootstrap percentages. 

Our results showed that Muscicapidae, Turdidae, and Paradoxornithidae were 
clustered into two monophyletic groups, and species of the same genus were clustered 
together with a high degree of confidence. Muscicapidae and Turdidae were sister groups 
(BP = 85, BPP = 1.00), and they clustered together with Sturnidae (BP = 100, BPP = 1.00), 
which was consistent with a previous study [38]. T. indicus and T. cyanurus were clustered 
together with high confidence (BP = 100, BPP = 1.00). These two Tarsiger birds were 
previously placed in the genus Luscinia [49]. Although many species of Muscicapidae, 
such as M. gularis, T. indicus, and T. cyanurus were allocated to Turdidae in some older 
works [50,86] and the up-to-date NCBI taxonomy database; our phylogenetic topologies 
clearly supported their membership in the Muscicapidae family. It is important to note 
that the phylogenetic relationships between some genera within Muscicapidae are 
problematic between our study and a previous study [23]. The position of C. semirufa in 
our ML and BI trees was not consistent, and different from the ML tree based on a 13 PCGs 
dataset in a Yang et al. study [23], and the degree of confidence of related branches was 
not high (Figures 7 and S1). Our ML and BI trees showed consistent topology (Calliope + 
Larvivora) + Ficedula (Figures 7 and S1); however, the ML tree of the Yang et al. study 
showed the diametrical topology Calliope + (Ficedula + Larvivora) with low bootstrap 
percentages [23]. Complete mitogenomes may provide more accurate signals than gene 
fragments for phylogenetic reconstruction. Overall, the current 25 species represent only 
7% of the old-world flycatchers group, so, in order to better resolve the phylogenetic 
relationships within Muscicapidae, it is still necessary to obtain more mitochondrial 
genome sequences of old-world flycatchers. 

Figure 7. The phylogenetic relationships of Passeriformes inferred by ML method based on the
13PCGs + 2rRNAs dataset. Numbers on nodes are the bootstrap percentages.



Genes 2024, 15, 90 11 of 15

Our results showed that Muscicapidae, Turdidae, and Paradoxornithidae were clus-
tered into two monophyletic groups, and species of the same genus were clustered together
with a high degree of confidence. Muscicapidae and Turdidae were sister groups (BP = 85,
BPP = 1.00), and they clustered together with Sturnidae (BP = 100, BPP = 1.00), which was
consistent with a previous study [38]. T. indicus and T. cyanurus were clustered together
with high confidence (BP = 100, BPP = 1.00). These two Tarsiger birds were previously
placed in the genus Luscinia [49]. Although many species of Muscicapidae, such as M. gu-
laris, T. indicus, and T. cyanurus were allocated to Turdidae in some older works [50,86] and
the up-to-date NCBI taxonomy database; our phylogenetic topologies clearly supported
their membership in the Muscicapidae family. It is important to note that the phylogenetic
relationships between some genera within Muscicapidae are problematic between our
study and a previous study [23]. The position of C. semirufa in our ML and BI trees was
not consistent, and different from the ML tree based on a 13 PCGs dataset in a Yang et al.
study [23], and the degree of confidence of related branches was not high (Figures 7 and S1).
Our ML and BI trees showed consistent topology (Calliope + Larvivora) + Ficedula (Figures 7
and S1); however, the ML tree of the Yang et al. study showed the diametrical topology Cal-
liope + (Ficedula + Larvivora) with low bootstrap percentages [23]. Complete mitogenomes
may provide more accurate signals than gene fragments for phylogenetic reconstruction.
Overall, the current 25 species represent only 7% of the old-world flycatchers group, so,
in order to better resolve the phylogenetic relationships within Muscicapidae, it is still
necessary to obtain more mitochondrial genome sequences of old-world flycatchers.

In addition, P. heudei, S. webbiana, S. nipalensis, and S. fulvifrons were classified into
Muscicapidae in previous studies [57,71] and the NCBI taxonomy database, but our results
showed that these species clustered into the Paradoxornithidae family [87]. The taxonomic
history of C. ceylonensis was also complex [72]. C. ceylonensis was originally classified into
the Muscicapidae family based on external morphology, reproductive habits, and nesting
characteristics [86]. Subsequently, it was classified into the family Rhipiduridae [88]. Lately,
the phylogenetic analyses based on multilocus sequence data revealed that C. ceylonensis
was in fact a member of the Stenostiridae family [62]. Here, we also clarified its taxonomic
validity based on mitochondrial genome approach.

4. Conclusions

In this study, we successfully sequenced the mitogenome of T. indicus using the
Illumina Novaseq 6000 platform with a paired-end read length of 150 bp. We also annotated
and summarized its mitogenomic characteristics in detail. Importantly, we conducted the
first comprehensive mitogenome analysis of Muscicapidae. The mitogenome of T. indicus
mitogenome contained the typical avian mitochondrial gene arrangement. T. cyanurus and
T. indicus shared very similar mitogenomic features. All 13 PCGs of the mitogenomes of
Muscicapidae had experienced purifying selection. The monophylies of Muscicapidae,
Turdidae, and Paradoxornithidae were strongly supported. The clade of ((Muscicapidae +
Turdidae) + Sturnidae) in Passeriformes was supported by both BI and ML analyses. The
current taxonomic status of many passerine birds with complex taxonomic histories were
also supported. Our study provides the first complete mitochondrial genome of T. indicus
to enrich its genetic data. A large number of studies on the mitochondrial genome of
Muscicapidae are still needed in the future to further solve some phylogenetic problems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15010090/s1, Table S1: The partition and best-fit partition
models used in this study; Table S2: The codon usage in the mitogenomes of T. indicus and T. cyanurus;
Table S3: The nucleotide composition and skew in the mitogenomes of 25 species of Muscicapidae;
Figure S1: The phylogenetic relationships of Passeriformes inferred by BI method based on the
13PCGs + 2rRNAs dataset. Numbers on nodes are the Bayesian posterior probabilities.
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