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Abstract: (1) Background: Acute myeloid leukemia (AML) is a clonal malignancy with heterogeneity
in genomics and clinical outcome. Metabolism reprogramming has been increasingly recognized to
play an important role in the leukemogenesis and prognosis in AML. A comprehensive prognostic
model based on metabolism signatures has not yet been developed. (2) Methods: We applied Cox
regression analysis and the least absolute shrinkage and selection operator (LASSO) normalization to
establish a metabolism-related prognostic gene signature based on glycolysis, fatty acid metabolism,
and the tricarboxylic acid cycle gene signatures. The Cancer Genome Atlas-Acute Myeloid Leukemia-
like (TCGA-LAML) cohort was set as the training dataset for model construction. Three independent
AML cohorts (GSE37642, GSE10358, and GSE12417) combined from Gene Expression Omnibus
(GEO) datasets and the Beat-AML dataset were retrieved as two validation sets to test the robustness
of the model. The transcriptome data and clinic information of the cohorts were enrolled for the
analysis. (3) Results: Divided by the median value of the metabolism risk score, the five-year overall
survival (OS) of the high-risk and low-risk groups in the training set were 8.2% and 41.3% (p < 0.001),
respectively. The five-year OS of the high-risk and low-risk groups in the combined GEO cohort
were 25.5% and 37.3% (p = 0.002), respectively. In the Beat-AML cohort, the three-year OS of the
high-risk and low-risk groups were 16.2% and 40.2% (p = 0.0035), respectively. The metabolism risk
score showed a significantly negative association with the long-term survival of AML. Furthermore,
this metabolism risk score was an independent unfavorable factor for OS by univariate analysis and
multivariate analysis. (4) Conclusions: Our study constructed a comprehensive metabolism-related
signature with twelve metabolism-related genes for the risk stratification and outcome prediction of
AML. This novel signature might contribute to a better use of metabolism reprogramming factors as
prognostic markers and provide novel insights into potential metabolism targets for AML treatment.

Keywords: acute myeloid leukemia; metabolism-related gene; prognostic model; survival analysis;
RNA-seq analysis

1. Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease characterized by a
blockade in the differentiation of hematopoietic stem and progenitor cells, leading to the
abnormal proliferation of immature myeloblasts. Despite advancements in hematopoi-
etic stem cell transplantation (HSCT) and novel agents, the prognosis of AML patients
remains suboptimal, with approximately 70% of patients who achieve remission eventually
experiencing relapse. The 5-year overall survival (OS) rate is still unsatisfactory [1]. Risk
stratification based on cytogenetics and genomic signatures has been widely used in clinical
practice to identify favorable, intermediate, and unfavorable risk groups. However, due to
the genetic mutation diversity and high heterogeneity of AML, current risk stratification
methods have limitations in accurately predicting the outcome of all patients, particularly
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those with multiple mutations. Therefore, there is an urgent need to identify prognostic
features that can serve as novel therapeutic targets and be applied in risk stratification and
treatment guidance to improve clinical outcomes.

Metabolism reprogramming has gained increasing recognition for its significant role in
tumor cell proliferation, invasion, and survival. This recognition has opened up promising
avenues for the development of novel therapeutic targets. Previous studies have demon-
strated that cancer cells, unlike normal cells, preferentially utilize aerobic glycolysis and
enhance flux through the truncated tricarboxylic acid (TCA) cycle to support tumor growth.
In vitro results have shown that increased glycolysis contributes to AML cell resistance
to apoptosis induction by chemotherapeutics [2]. Conversely, the inhibition of glycoly-
sis suppresses leukemia cell proliferation and enhances the cytotoxicity of cytarabine [3].
Specific mutant isocitrate dehydrogenase 1 and 2 (IDH1/2) inhibitors reduce the catalyza-
tion of mutant IDH1/2, which converts α-ketoglutarate (α-KG) in the TCA cycle to the
oncometabolite 2-hydroxyglutarate (2-HG). This alteration competes with α-KG and affects
DNA and histone demethylases, ultimately promoting leukemogenesis [4,5]. Moreover,
disrupting the TCA cycle in primary AML blasts using BCL-2 inhibitors combined with
hypomethylating agents (HMAs) has been shown to eliminate leukemia stem cells (LSCs)
by suppressing oxidative phosphorylation (OXPHOS) [6]. Additionally, AML cells rely
more on fatty acid β-oxidation for energy production and membrane biogenesis, in con-
trast to the repressed de novo synthesis of fatty acids in differentiated cells [7]. Several
studies have demonstrated that different rate-limiting enzymes in fatty acid oxidation and
synthesis are overexpressed in certain AML cell lines and are associated with worse patient
survival [8]. A phase 2 clinical trial showed that the combination of statins and chemother-
apy improved the complete remission (CR) and CR with incomplete count recovery (CRi)
rates in relapsed/refractory (R/R) AML [9].

Based on the aforementioned studies, we conducted a study to establish a metabolism-
related prognostic model that mainly focuses on the combination of genes related to
glycolysis, fatty acid metabolism, and the TCA cycle for predicting long-term prognosis in
AML patients. We obtained gene expression profiles and corresponding clinical information
of patients from the Cancer Genome Atlas-Acute Myeloid Leukemia-like (TCGA-LAML)
project to perform Cox regression analysis and least absolute shrinkage and selection
operator (LASSO) normalization. Our findings revealed the prognostic value of metabolism
signatures and provided novel insights into potential metabolism-related therapeutic
targets for AML.

2. Materials and Methods
2.1. Data Sources and Patient Characteristics

The RNA-seq data of bone marrow (BM) samples and clinical information of 131 adult
AML patients in the TCGA-LAML project [10] were extracted from the GDC Data Portal site
(https://portal.gdc.cancer.gov/, accessed on 1 October 2022) as a training set, after filtering
out patients without treatment or diagnosed as AML-M3. The TCGA-LAML database
was described in detail in https://gdc.cancer.gov/about-data/publications/laml_2012
(accessed on 1 October 2022). Due to the distinct molecular mechanisms, unique treatment
approaches, and generally more favorable prognosis associated with AML-M3 compared
to other AML subtypes, patients with AML-M3 were excluded from this study. Three
independent AML cohorts (GSE37642 [11], GSE10358 [12], and GSE12417 [13]) in combina-
tion with Gene Expression Omnibus (GEO) datasets and the Beat-AML dataset [14] from
the VIZOME website (http://www.vizome.org/aml/, accessed on 1 October 2022) were
retrieved as two validation sets. GSE37642, GSE10358, and GSE12417 were described in
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37642 (accessed on 1 Octo-
ber 2022), https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10358 (accessed on
1 October 2022) and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12417
(accessed on 1 October 2022), respectively. The Beat-AML database was described in
https://www.cancer.gov/ccg/blog/2019/beataml (accessed on 1 October 2022). After
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excluding patients without RNA-seq data or without survival information and removing
batch effects by sva packages (version 3.48.0) in R [15], ultimately, 300 and 252 AML patients
were included for validation analysis, respectively. The overall features of cases in each
database enrolled in our study are demonstrated in Table S1.

The biological and clinical data referring to patients of the three cohorts are sum-
marized in Table 1. The follow-up duration of Beat-AML was significantly shorter than
the other two cohorts (p < 0.001). Differences in general clinical information including
median age, gender, WBC count at diagnosis, and BM blast of training and validation
sets are not statistically significant. There were significantly fewer AML-M1 and AML-M2
patients in the Beat-AML cohort than the other two cohorts (p < 0.001), and more favorable
risk cases in the Beat-AML than in the TCGA-LAML cohort (p < 0.001). Most patients
in the TCGA and Beat-AML cohorts were treated with “7 + 3” standard chemotherapy.
Patients in the GEO datasets were treated according to the AMLCG-1999 (NCT00266136)
protocol, including daunorubicin and high-dose cytarabine in induction, and the CALGB
(NCT00002925) protocol, including cytarabine, daunorubicin, and etoposide.

Table 1. Overview of biological and clinical data referring to patients in the TCGA-LAML, Beat-AML,
and GEO datasets.

TCGA-LAML Beat-AML GEO (GSE37642, GSE10358
and GSE12417) p-Value

Number 131 252 300
Age (years), median (IQR) 57.0 (43.0, 66.5) 61.0 (44.0, 71.0) 59.0 (45.0,67.0) 0.197
Gender (%) 0.880

Male 72 (55.0) 135 (53.6) NA
Female 59 (45.0) 117 (46.4) NA

WBC count at diagnosis, ×109/L, median (IQR) 19.6 (5.5, 47.8) 23.0 (8.1, 56.8) 19.9 (5.1,62.7) 0.316
BM blast, %, median (IQR) 71.0 (52.0, 83.0) 72.0 (43.5, 89.0) 70.0 (53.5, 86.0) 0.959
FAB, n (%) <0.001

M0 15 (11.5) 4 (5.2) 17 (5.7)
M1 36 (27.5) 7 (9.1) 73 (24.4)
M2 35 (26.7) 6 (7.8) 103 (34.4)
M4 28 (21.4) 23 (29.9) 44 (14.7)
M5 14 (10.7) 27 (35.1) 37 (12.4)
M6 2 (1.5) 0 (0.0) 10 (3.3)
M7 1 (0.8) 2 (2.6) 2 (0.7)

Cytogenetics, n (%) 0.213
Normal 63 (48.5) 121 (50.4) NA
+8 6 (4.6) 10 (4.2) NA
del(5) 1 (0.8) 4 (1.7) NA
del(7) 4 (3.1) 8 (3.3) NA
MLL rearrangement 8 (6.2) 18 (7.5) NA
inv(16) 10 (7.7) 17 (7.1) NA
t(8;21) 7 (5.4) 9 (3.8) NA
complex 21 (16.2) 22 (9.2) NA

Cytogenetic risk, n (%) <0.001
Adverse 34 (26.4) 88 (34.9) NA
Favorable 17 (13.2) 85 (33.7) NA
Intermediate 78 (60.5) 79 (31.3)

Follow-up duration, months, median (IQR) 18.1 (6.8, 35.7) 8.6 (4.3, 15.3) 14.4 (5.7, 37.4) <0.001
OS events, n (%) 0.001
Dead 88 (67.2) 122 (48.4) 185 (61.7)
Alive 43 (32.8) 130 (51.6) 115 (38.3)

IQR, interquartile range; NA, not available; WBC, white blood cell; BM, bone marrow; OS, overall survival.

The “cytogenetic risk” referred to 2022 ELN (European Leukemia Net) risk classifi-
cation by genetics at initial diagnosis [16]. Common favorable cytogenetic abnormalities
included t(8;21), inv(16), and NPM1 mutations without FLT3-internal tandem duplications
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(ITD) mutations. Intermediate cytogenetic abnormalities included FLT3-ITD mutations,
t(9;11), and cytogenetic features that do not belong to favorable or high-risk groups. High-
risk cytogenetic abnormalities mainly include t(v;11) complex karyotypes and TP53 mu-
tations. Notably, there is necessary information for determining cytogenetic risk in the
TCGA-LAML and Beat-AML cohorts to stratify these cases, while there is not enough
information for stratification in GEO cohorts.

2.2. Differentiation of Metabolic Status of the Patients in the TCGA-LAML Dataset

The upregulation of metabolism-related pathways is known to be associated with
increased metabolic activity, and the key enzymes involved in metabolism play a critical
role in determining the rate of metabolic processes. Rate-limiting enzymes can affect
the overall speed of the entire metabolic pathway. Table 2 shows the key rate-limiting
enzymes in glycolysis, the TCA cycle, and fatty acid metabolism, and their corresponding
gene symbols.

Table 2. The key rate-limiting enzymes in glycolysis, the TCA cycle, and fatty acid metabolism, and
their corresponding gene symbols.

Metabolic Pathways Key Rate-Limiting Enzymes Gene Symbols

Glycolysis Hexokinase HK1, HK2, HK3
Phosphofructokinase-1 PFKL, PFKM, PFKP
Pyruvate kinase PKLR, PKM

TCA cycle Citrate synthase CS
Isocitrate dehydrogenase IDH1, IDH2, IDH3A, IDH3B, IDH3G
Oxoglutarate dehydrogenase complex OGDH, DLST, DLD

Fatty acid metabolism Carnitine palmitoyltransferase I CPT1A, CPT1B, CPT1C

While the relationship between enzyme activity and metabolic flux is complex, several
studies have demonstrated that gene expression levels can partially reflect metabolic
activity [17,18]. The expression value of each enzyme was the average of the sum expression
value of all gene types encoding this enzyme. Firstly, we used the average of the sum of
HK1, HK2, and HK3 expression values to represent the expression value of hexokinase. This
way, the expression value of phosphofructokinase-1 and pyruvate kinase were calculated.
Secondly, the sum of the expression values of these three rate-limiting enzymes in glycolysis
was calculated to represent the glycolysis pathway activity. Similarly, we calculated the sum
of the expression values of corresponding rate-limiting enzymes of the TCA cycle pathway
and fatty acid metabolism pathway. Finally, we add them together to distinguish the
metabolic status of patients. By the median value of the total expression value of seven key
rate-limiting enzymes of the three metabolism pathways, we separated the TCGA-LAML
training cohort into metabolism high and metabolism low groups.

2.3. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) is a bioinformatics method for analyzing large-
scale gene expression data, which was accomplished through the GSEA software v4.3.2
(Broad Institute) [19]. It aims to investigate the relationship between gene sets and specific
biological conditions. To access annotated gene sets for GSEA, we utilized the Molecular
Signature Database (MSigDB), which is a comprehensive resource of annotated gene sets for
use in GSEA software, available at https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
(accessed on 1 October 2022). We obtained the c2.all.v2023.2.Hs.symbols.gmt[Curated] (c2
gene set) from MSigDB to serve as the reference gene set for subsequent analysis, which
included 66 gene sets associated with the TCA cycle, glycolysis, and fatty acid metabolism.

Based on overall survival, 131 TCGA-LAML patients were grouped into long-term
survival group (OS ≥ 12 months) and short-term survival group (OS < 12 months). Firstly,
GSEA was performed on long-term and short-term survival groups in the TCGA cohort

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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based on the c2 gene set to investigate the distinct features of metabolic processes associated
with survival. Secondly, we derived all 66 gene sets related to the TCA cycle, glycolysis,
and fatty acid metabolism pathways from MSigDB, and performed GSEA on metabolism
high and metabolism low groups based on these 66 metabolic-related gene sets. Thirdly, we
conducted leading-edge analysis in GSEA software, aiming to identify the leading-edge
genes. The leading-edge genes are the main drivers of the enrichment signal in enriched
gene sets with FDR < 0.1 and normalized enriched score (|NES|) > 1.5 after GSEA on
metabolism high and metabolism low groups.

2.4. Establishment and Validation of Prognostic Model

Firstly, univariate Cox regression analysis was applied on all leading-edge genes from
GSEA to assess the impact of the expression level of each leading-edge gene on OS, which
was accomplished by survival package in R [20]. Genes with p-values less than 0.05 were
selected as prognosis-related genes. The LASSO regression is a statistical technique for
linear regression that selects important features and prevents overfitting by shrinking some
coefficients to zero. Ten-fold cross-validation is a technique used to evaluate and compare
models. The LASSO regression was performed on prognosis-related genes, through glmnet
packages (version 4.1.8) [21] in R, and the lambda value was selected with the smallest
likelihood bias as the optimal lambda value by ten-fold cross-validation. Finally, we identify
the optimal set of genes and the corresponding regression coefficients of these genes. The
prognosis risk score was established with the following formula:

Riskscore = ∑n
i=1 βiEi

where βi represented the coefficient of genei from regression results and Ei represented the
expression level of genei.

The risk scores were calculated for each case in the TCGA-LAML (n = 131), Beat-AML
(n = 252), and GEO cohorts (n = 300), based on the normalized expression data in each case.
Patients were subsequently divided into high-risk and low-risk groups according to the
median cutoff of the prognosis risk score. The prognostic performance was evaluated by
using time-dependent receiver operating characteristic (ROC) curve analysis within three
years and five years to evaluate the predictive accuracy and sensitivity of our prognostic
model. The overall survival probability of AML patients in low- and high-risk groups
was estimated by the Kaplan–Meier method and compared through the log rank test.
A nomogram was created by rms (Regression Modeling Strategies)1 packages (version
6.3-0) [22] and survival2 packages in R (version 3.4-0).

In addition, we performed univariate and multivariate Cox regression analysis on the
patients in the TCGA training cohort and the Beat-AML validation cohort to assess the
validity of the metabolism-related risk score incorporated with several widely used clinical
factors in predicting prognosis, which included gender, age, WBC count, bone marrow
blast percentage, and cytogenetic risk.

2.5. Statistical Analysis

Continuous variables are presented as median and interquartile range (IQR) and
compared using the Mann–Whitney U-test. Categorical variables were analyzed using
Fisher’s exact test. A two-tailed p < 0.05 was considered statistically significant. All
statistical analyses were performed using the R software 4.0.2 (The CRAN project, www.r-
project.org, accessed on 1 October 2022).

2.6. Summary of the Methods

The methods and the sequential steps performed to construct and validate the metabolism-
related gene prognostic signature are presented in Figure 1.

www.r-project.org
www.r-project.org
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Figure 1. Flow chart summarizing the methods and the sequential steps performed to construct
and validate the metabolism-related gene prognostic signature. TCGA-LAML, Cancer Genome
Atlas-Acute Myeloid Leukemia-like; TCA cycle, tricarboxylic acid cycle; GSEA, gene set enrichment
analysis; LASSO, least absolute shrinkage and selection operator.

3. Results
3.1. Comparison of the Metabolic Pathways between Long-Term and Short-Term Survival Groups
in AML Patients from the TCGA-LAML Dataset

Table S2 shows the metabolic pathways that were significantly enriched (FDR < 0.25)
in the gene expression data of the group with short-term survival (OS < 12 months) com-
pared with the group with long-term survival (OS > 12 months) in the TCGA-LAML
database. Among all pathways in the c2 gene set from MSigDB, the most significantly
enriched metabolic pathways are associated with the TCA cycle, glycolysis, and fatty acid
metabolism, which suggested these three metabolic pathways contributed the most to the
impact on the survival of AML patients. Thus, we then focused on these three metabolic
pathways to further explore the relationship between the metabolic signatures and survival
of AML patients. By integrating the expression level of the rate-limiting enzymes in glycol-
ysis, the TCA cycle, and fatty acid metabolism pathways, we differentiated the metabolic
status of AML patients in the training cohort for the sequential study.

3.2. Identification of Leading-Edge Gene

After performing GSEA on the metabolism high (n = 65) and metabolism low (n = 66)
group in the TCGA-LAML training cohort, we selected seven gene sets with FDR < 0.1
and |NES| > 1.5, which included the glycolysis pathway, glycolysis gluconeogenesis,
citrate cycle TCA cycle, and oxidative phosphorylation pathways, glucose import, fatty
acid β-oxidation, and fatty acid β-oxidation using acyl CoA oxidase pathways. Then, we
identified 153 leading-edge genes with core enrichment by leading-edge analysis on the
seven enriched gene sets. Table S3 shows the metabolic pathways significantly enriched in
the gene expression data of the metabolism high compared with metabolism low group and
the description of genes in the correspondent gene sets.
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3.3. Establishment of Metabolism-Related Gene Prognostic Signature from Metabolism-Related
Genes Associated with OS in the TCGA-LAML Dataset

Firstly, among all 153 leading-edge genes, a total of 33 leading-edge genes (ACOXL,
CRAT, SESN2, ABCD1, HSD17B10, ECH1, ECHS1, ETFB, ABCB11, SORT1, C1QTNF12,
PEA15, SLC27A4, INSR, PC, IDH3G, IDH3B, SDHB, ACO2, SUCLG1, PGM1, HK1, ALDOC,
ALDH2, PFKL, ENO1, PFKP, AKR1A1, CYC1, SDHA, NUP210, PPP2R1A, and HK2) were
significantly associated with the OS of AML patients (p < 0.05) by univariate Cox regression
analysis. The full names of the 33 leading-edge genes and the metabolic pathways they
belong to are summarized in Table S4.

Secondly, to further screen the most predictive genes in these 33 genes, the statistical
method LASSO and ten-fold internal cross-validation were utilized. Ultimately, we de-
termined the best lambda value (0.0625) and used the β coefficients of 12 genes (SESN2,
ABCB11, SORT1, SLC27A4, INSR, PC, SDHB, ALDH2, ENO1, SDHA, NUP210, and HK2)
selected by the LASSO model.

The metabolism-related risk score model was established as follows:
Risk Score = [0.0975 × log (expression level of SESN2)] + [0.0105 × log (expression

level of ABCB11)] + [0.0178 × log (expression level of SORT1)] + [0.1655 × log (expression
level of SLC27A4)] − [0.5768×log (expression level of INSR)] + [0.0089 × log (expression
level of PC)] + [0.1712 × log (expression level of SDHB)] + [0.1514 × log (expression level
of ALDH2)] + [0.3138 × log (expression level of ENO1)] + [0.4829 × log (expression level of
SDHA)] + [0.2410 × log (expression level of NUP210)] − [0.3275 × log (expression level
of HK2)]

Finally, with the median metabolism-related risk score as the cutoff value, the training
set (TCGA-LAML) was separated into two groups (high-risk, n = 65 vs. low-risk, n = 66).
The five-year OS of the high-risk and low-risk groups were 8.2% (95% CI, 2.6–25.7%) and
41.3% (95 CI, 29.2–58.3%, p <0.001, Figure 2A), respectively, and the results witnessed a
survival advantage in the low-risk group. The AUC value of the metabolism-related risk
for five-year OS for AML patients in the training set was 0.703 (Figure 2B), indicating that
the metabolism-related gene signature had an accurate predictive capacity for prognosis
in AML.
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3.4. External Validation of Metabolism-Related Gene Prognostic Signature in GEO AML
(GSE37642, GSE10358, and GSE12417) and the Beat-AML Datasets

Both validation datasets were split into high-risk (Beat-AML, n = 126; GEO, n = 150)
and low-risk groups (Beat-AML, n = 126; GEO, n = 150) by the median of the metabolism-
related risk score. Figure 3A and 3B demonstrate the Kaplan–Meier curves for overall
survival based on the prognostic signature in the Beat-AML and combined GEO cohort.
The survival analysis indicated that, of the two validation cohorts, the samples in the
high-risk groups both had significantly poorer outcomes than those in the low-risk groups
(p = 0.0035, p = 0.002, respectively).
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Figure 3. Validation of the metabolism-related gene prognostic signature in the validation datasets.
Kaplan–Meier curves for overall survival based on the prognostic signature in the Beat-AML (A)
and combined GEO cohort (B), ROC analysis and AUC for three-year survival of the metabolism-
related risk model in the Beat-AML cohort (C). ROC analysis and AUC for five-year survival of the
metabolism-related risk model in the combined GEO cohort (D). The blue lines show the ROC curves.

The AUC value of the metabolism-related risk model for three-year OS for AML
patients in the Beat-AML cohort was 0.694 (Figure 3C), and for five-year OS in the combined
GEO validation cohort was 0.600 (Figure 3D), indicating that the metabolism-related risk
model was a reliable prognostic signature.

3.5. Metabolism-Related Gene Prognostic Signature Is an Independent Prognostic Factor

Table 3 shows the results of univariate and multivariate Cox regression analysis based
on the OS in the TCGA-LAML and Beat-AML cohorts.
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Table 3. Univariate and multivariate Cox regression analysis based on OS in the TCGA-LAML and
Beat-AML cohorts.

Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value

TCGA-LAML (Training cohort)
Gender (female vs. male) 1.03 (0.68–1.58) 0.874 \ \
Age (≥60 vs. <60) 2.38 (1.56–3.64) <0.001 2.23 (1.42–3.52) 0.001
WBC count (≥100 vs. <100 × 109/L) 2.08 (1.04–4.16) 0.039 1.75 (0.82–3.75) 0.149
Bone marrow blast (≥70% vs. <70%) 1.36 (0.89–2.07) 0.157 \ \
Cytogenetic risk * 2.88 (1.24–6.69) 0.014 1.28 (0.51–3.18) 0.600
Metabolism risk score (high vs. low) 3.39 (2.18–5.29) <0.001 2.69 (1.66–4.35) <0.001

Beat-AML (Validation cohort 1)
Gender (female vs. male) 1.41 (0.98–2.03) 0.065 \ \
Age (≥60 vs. <60) 2.47 (1.36–3.62) <0.001 2.13 (1.45–3.14) 0.001
WBC count (≥100 vs. <100 ×109/L) 1.76 (0.94–3.32) 0.080 \ \
Bone marrow blast (≥70% vs. <70%) 1.15 (0.76–1.76) 0.508 \ \
Cytogenetic risk 2.71 (1.63–4.53) <0.001 1.78 (1.02–3.10) 0.041
Metabolism risk score (high vs. low) 1.72 (1.19–2.49) 0.004 1.74 (1.13–2.68) 0.032

HR, hazard ratio; Cytogenetic risk *, referred to 2022 ELN risk classification by genetics.

The univariate analysis indicated that age, WBC count, cytogenetic risk, and the
metabolism-related risk score were the significant unfavorable factors associated with OS.
Then, the above four factors were further included in the multivariate analysis and the
metabolism-related risk score, presenting an independent prognostic factor after adjusting
for other clinical variables.

The construction of the OS-predictive nomogram for clinical application is demon-
strated in Figure 4. After multivariate Cox proportional hazard regression, age, cytogenetic
risk, and the metabolism risk score were integrated to construct a prognostic nomogram for
better evaluating an individual’s risk in the clinical setting. The AUC values of the prognos-
tic nomogram for 1-year, 2-year, and 3-year OS were 0.820, 0.813, and 0.760, respectively,
indicating the favorable capability of the nomogram to estimate survival for AML patients
(Figure 4B).
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Figure 4. Construction of the OS-predictive nomogram for clinical application. Each line of the
prognostic nomogram consists of the name of each predictive factor, including metabolism risk, age,
and cytogenetic risk, on the left, and the corresponding scales lines on the right. The scales on the
lines represent the factor’s range of values, and the length of the line reflects the contribution of the
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factor to the clinical outcome events. The scores in the nomogram, including the individual score
(Points), correspond to each variable at different values. The total score (Total Points) is obtained by
adding the individual scores of all variable values. According to the total score, the corresponding
1-year, 2-year, and 3-year survival probability of an individual patient could be obtained (A). ROC
analysis and AUC for 1-year, 2-year, and 3-year survival of the nomogram in the Beat-AML cohort
(B). For example, a 60-year-old patient with AML having an intermediate cytogenetic risk has
a high metabolism risk. The individual score of cytogenetic risk, age, and metabolism risk is
shown successively in the “Points” line (the red point on the line). The total score of the patient by
adding three individual scores is marked in the “Total Points” line (the red point on the line). The
corresponding 1-year, 2-year, and 3-year survival probability of the patient could be obtained by the
corresponding straight line (the red straight line).

In addition, among 12 involved metabolism-related genes, Kaplan–Meier curves
showed that a high expression of ALHD2 was significantly associated with poorer outcomes
in AML patients in two validation cohorts (p = 0.0017, p = 0.035, respectively), which might
be an independent biomarker of poor prognosis (Figure 5A,B). Kaplan–Meier curves for
the overall survival of AML patients with high and low expression of ABCB11, ENO1, HK2,
INSR, NUP210, PC, SDHA, SDHB, SESN2, SLC27A4, and SORT1 in the Beat-AML and
combined GEO cohorts are presented in Figure S1.
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4. Discussion

AML has been studied thoroughly in the aspects of epigenomic and genomic sequenc-
ing, gene transcription, and protein expression. ELN risk stratification, the widely used
prognostic system based on cytogenetics and genomics, failed to predict the accurate sur-
vival situation between heterogeneous intermediate-risk groups in AML. Previous studies
demonstrated that metabolism reprogramming, including glycolysis, fatty acid metabolism,
and the TCA cycle, was associated with leukemogenesis, therapeutic resistance, and poorer
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outcomes in AML [8,23]. Hence, we constructed a comprehensive prognostic model based
on glycolysis, fatty acid metabolism, and the TCA cycle, which was an independent prog-
nostic factor and showed a robust predictive ability in the long-term survival of AML in the
training and validation sets. We separated the TCGA-LAML cohort into the high-risk and
low-risk group with the median metabolism-related risk score. The results of the survival
analysis witnessed a survival advantage in the low-risk group. As for the validation co-
horts, a survival advantage was also demonstrated in the low-risk group in the Beat-AML
and combined GEO cohort. The AUCs calculated for the two validation cohorts further
verified the robustness of the metabolism-related risk signature. Our study suggested that
the metabolism-related risk score could be a supplemental tool for the risk stratification
of AML.

Several groups have demonstrated different metabolism signatures, focused on a
specific metabolism pathway analysis, with a predictive performance of AML survival and
treatment guidance. Table 4 shows a comparison of four previous studies that created a
metabolism-related prognostic signature, including the study design and methods, the train-
ing and validation cohorts, the main results, the metabolism-related signatures generated
by these studies, and the prognostic significance of these signatures with our study. A Chi-
nese group generated a prognosis risk score with a panel of six serum glucose metabolism
markers, which displayed an independent prognostic value in cytogenetically normal
AML patients [3]. Moreover, the consistency and accuracy of a carbohydrate-metabolism-
related gene prognostic signature on the predictive performance of AML survival was
validated using GEO cohorts and the authors’ own cohort [24]. Another group recently de-
veloped a distinct six-lipid-metabolism-related-gene prognostic risk signature for AML [25].
Wei et al. proposed a metabolism-related prognostic signature index consisting of three
metabolism-related gene pairs [26]. The combination of MRPSI and age as a composite
metabolism–clinical prognostic model index demonstrated better prognostic accuracy.

As shown in Table 4, each study has a different focus, and several single metabolomic
pathway-based signatures have been reported to be capable of aiding in improving the
prediction accuracy of AML. However, a comprehensive metabolic signature for AML is
still lacking. After performing GSEA on the short-term and long-term survivors, diverse
metabolic pathways mainly including the TCA cycle, glycolysis, and fatty acid metabolism
pathway were significantly enriched in the short-term survival group. Thus, our study
constructed a comprehensive metabolic signature mainly focused on a combination of the
TCA cycle, glycolysis, and fatty acid metabolism pathway for AML. We integrated the rates
of these three metabolic pathways to differentiate the metabolism high/low group in the
training cohorts and identified the leading-edge genes between the two groups to further
establish the metabolism-related risk signature.

Our study created a risk model consisting of 12 metabolism-related genes, many of
which have been previously implicated in the pathogenesis, progression, and prognosis of
leukemia. The functions and effects of these twelve genes are shown in Table 5.
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Table 4. Comparison of all prior metabolism-related prognostic signatures for AML with our study.

Metabolism
Signature Enrolled Markers Training Dataset Validation Datasets What Was Studied Methods Significance Results Related to

the Signature Reference

A panel of serum
glucose metabolism
markers

Lactate,
2-oxoglutarate,
pyruvate, 2-HG,
glycerol-3-
phosphate, and
citrate

229 de novo AML
patients enrolled in
2007 to 2010 from
Rui Jin Hospital
in Shanghai

171 newly diagnosed
AML patients enrolled
in 2011 to 2012 from
6 hematology centers

Metabolomic profiles
of all serum samples,
focused on the
glucose metabolism

A predictive
principal component
analysis model

Provided strong
evidence for the use
of serum metabolites
and metabolic
pathways as novel
prognostic markers
and potential
therapeutic targets
for AML

-- Chen et al., 2014 [3]

A carbohydrate-
metabolism-related
gene signature

PFKL, IDH3G, G6PD,
DCXR, CYB5R3,
CYB5R4, ACADS,
MLYCD, PIK3CA,
and CDIPT

117 AML samples
from the TCGA
cohort

GSE37642 (n = 140),
GSE37642 (n = 422),
and 106 de novo
AML patients in
Affiliated Hospital of
Southwest Medical
University from
January 2019 to June
2022

355 carbohydrate-
metabolism-related
genes were derived
from the Kyoto
Encyclopedia of
Genes and Genomes
pathway database

LASSO analysis and
a multivariate Cox
regression

The carbohydrate
metabolism related
signature was
reliable and may
provide theoretical
support for AML
prognostic judgment
and treatment

RUNX1, IDH2, WT1,
and KRAS mutations
were more
frequently in the
low-risk group, and
TP53, KIT, and TTN
mutations were
more common in the
high-risk group

Yang et al., 2022 [24]

A lipid-metabolism-
related gene signature

LDLRAP1, PNPLA6,
DGKA, PLA2G4A,
CBR1, and EBP

144 AML patients
are extracted from
UCSC Xena Browser

GSE71014, GSE12417,
and GSE37642

26 lipid-metabolism-
related pathways
including 1045 genes
extracted from the
MSigDB

Survival analysis
and then LASSO
analysis

Contributed to better
understanding of the
use of metabolites
and metabolic
pathways as the
potential prognostic
biomarkers and
therapeutic targets
for AML

The common
immune checkpoints
were significantly
upregulated in the
high-risk group,
indicating an
immunosuppressive
TME of bone marrow
in the high-risk group

Li et al., 2022 [25]

A metabolism-related
prognostic signature
index consisting of
gene pairs

FADS1| NEU1,
SLC2A5| TBXAS1,
FADS1| PDE4B

151 AML patients
from the TCGA
cohort

162 AML patients
from the GSE12417
cohort and 417 AML
patients from the
GSE37642 cohort

Metabolism-related
genes that are
differentially
expressed between
TCGA cohort and
normal bone marrow

A pairwise
comparison, a
univariate Cox
regression, and
LASSO analysis

Provided a
composite
metabolism and
clinical model as a
novel prognostic
stratification method
and identified
several potential
therapeutic drugs for
AML

-- Wei et al., 2022 [26]
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Table 4. Cont.

Metabolism
Signature Enrolled Markers Training Dataset Validation Datasets What Was Studied Methods Significance Results Related to

the Signature Reference

A metabolism-related
prognostic model

12 genes shown in
Table 5

131 AML patients
from the TCGA-
LAML cohort

252 patients from the
Beat-AML cohort
and 300 from GEO
cohort (GSE37642,
GSE10358, and
GSE12417)

Genes related to
glycolysis, fatty acid
metabolism, and the
TCA cycle pathways

A univariate Cox
regression, and then
LASSO analysis

Contributed to better
use of metabolism
reprogramming
factors as prognostic
marker and provide
novel insights into
potential metabolism
target for AML
treatment

-- Our study

TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator; TME, tumor microenvironment; UCSC, University of California, Santa Cruz; MSigDB,
Molecular Signatures Database.

Table 5. The 12 metabolism-related genes included in the gene prognostic signature.

Genes Full Name Function Effects References

ENO1 α-Enolase 1 Glycolytic enzyme Overexpressed in several types of AML [27–29]

PC Pyruvate carboxylase Catalyzing the ATP-dependent carboxylation of
pyruvate to oxaloacetate Highly expressed in AML K562 cell line [30,31]

NUP210 Nucleoporin 210 Involved in nucleocytoplasmic transport Overexpressed in LSCs of pediatric AML [32–34]

SLC27A4 Solute carrier family 27 member 4 Fatty acid transporter protein High expression associated with poorer clinical
outcomes in several cancer types [35]

SORT1 Sortilin 1 Regulating lipoprotein metabolism
Significantly associated with relapse and/or
B-ALL-related death and upregulated in
chemo-resistant AML samples

[36–38]

INSR Insulin receptor Binding of insulin to activate the insulin signaling
pathway

Downregulated as a predictive gene for relapse among
AML [39]

SDHB Succinate dehydrogenase complex iron sulfur
subunit B

Encoding the iron–sulfur protein subunit of the
succinate dehydrogenase enzyme complex, a complex
of the mitochondrial respiratory chain

Decreased in imatinib-resistant BCR-ABL1 cells. SDHB
mutations in leukemic T cells involved in cellular
pre-adaptation to hypoxia.

[40]

SDHA Succinate dehydrogenase complex flavoprotein
subunit A

Encoding a major catalytic subunit of dehydrogenase
enzyme complex, a complex of the mitochondrial
respiratory chain

Significantly associated with poor survival of leukemia
patients. Inhibition of SDHA with venetoclax and
azacitidine led to LSC death

[41]

ABCB11 ATP binding cassette subfamily B member 11 The major canalicular bile salt export pump Significantly associated with the achievement of major
molecular response with first-line imatinib treatment [42–44]
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Table 5. Cont.

Genes Full Name Function Effects References

HK2 Hexokinase 2 Phosphorylating glucose to produce
glucose-6-phosphate

Overexpression resulted in chemoresistance of LSCs to
DNA-damaging agents [45]

ALDH2 Aldehyde dehydrogenase 2 Oxidizing aldehydes Overexpression in leukemia cell lines resulted in
increased resistance to doxorubicin [46–48]

SESN2 Sestrin 2 Catalyzing the reduction of hyperoxidized
peroxiredoxins

Knockdown in T-ALL cells decreased the rate of
mitochondrial respiration [49]
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ENO1 [27–29] and PC [31] were found to be overexpressed in several types of AML.
A high expression of SDHA [41] and NUP210 [33,34] were positively associated with
the unfavorable prognosis of AML patients and an elevated expression of SLC27A4 was
linked to poorer clinical outcomes in several cancer types [35]. An upregulated level
of SORT1 [37,38] and downregulated INSR [39] were both reported in chemo-resistant
or relapsed AML samples. SDHB [40] and ABCB11 [43,44] were reported to play an
important role in imatinib resistance. HK2 overexpression was demonstrated to result in
the chemoresistance of LSCs to DNA-damaging agents [45].

ALDH2 is necessary for protecting hematopoietic stem and progenitor cells (HSPCs)
against acetaldehyde toxicity [46]. ALDH2 is also reported to play an important role in
the chemoresistance of AML cells. The overexpression of ALDH2 significantly increased
the proliferation rate and the ability to form colonies in leukemia cell lines, resulting in
increased resistance to doxorubicin [47]. The inhibition of ALDH2 with daidzin and CVT-
10216 significantly inhibited mesenchymal stromal cell (MSC)-induced ALDH activity in
AML cells and sensitized them to chemotherapy [48]. Moreover, the expression levels of
ALDH2 are increased in primary AML cells from elderly patients [50]. Consistent with
previous research, a high expression of ALDH2 was significantly associated with poorer
outcomes of AML patients in our study, which might be related to the chemoresistance
resulting from the high expression level.

There is still an urgent need for novel therapies in AML since many patients relapse.
And, notably, our study highlighted the potential importance of ALDH2 as an independent
therapeutic target. Moreover, metabolism-targeted therapy has been shown to overcome
chemotherapy resistance to a certain extent. The glycolytic inhibitor 2-DG combined with
Ara-C could enhance cytotoxic effects in primary blast cells [3]. Statins combined with
chemotherapy improved the complete remission and complete remission with incomplete
count recovery rates in R/R AML [9]. Thus, metabolism-related drugs could potentially
be added to chemotherapy in relapsed or refractory patients with a high-risk metabolism-
related gene prognostic signature to increase their sensitivity to chemotherapy. Our study
provided an effective metabolism-related prognostic signature for clinical application; high-
risk patients could attempt to add inhibitors that target glycolysis, fatty acid metabolism,
and the TCA cycle pathways, in addition to traditional chemotherapy.

In conclusion, we identified a novel 12-gene metabolism-related prognostic gene
signature for AML by Cox regression analysis and LASSO. This gene signature could be
a powerful supplemental tool for the risk stratification and outcome prediction of AML.
The gene signature might play an important role in the better understanding of metabolic
pathways as the potential prognostic biomarkers and therapeutic targets for AML. This
metabolism-related gene prognostic signature is primarily based on bioinformatics data
analysis extracted from the public database and needs to be verified in larger-scale clinical
cohorts. The metabolism risk score could be utilized together with the currently known
genetic alterations used for risk stratification to improve the prognostic value and develop
novel treatment options to improve final outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15010063/s1, Figure S1: Kaplan–Meier curves for overall
survival of AML patients with high and low expression of ABCB11, ENO1, HK2, INSR, NUP210,
PC, SDHA, SDHB, SESN2, SLC27A4 and SORT1 in the Beat-AML and GEO cohorts ; Table S1: The
overall features of the TCGA-LAML, Beat-AML, GSE37642, GSE10358, and GSE12417 databases;
Table S2: Metabolic pathways that were significantly enriched (FDR < 0.25) in the gene expression
data of the group with short-term survival (OS < 12 months) compared with the group with long-term
survival (OS > 12 months) in the TCGA-LAML database; Table S3: Metabolic pathways that were
significantly enriched (FDR < 0.2 and |NES| > 1.5) in the gene expression data of the metabolism
high compared with metabolism low group in the TCGA-LAML; Table S4: The metabolism pathways
of 33 prognosis-related genes identified by univariate Cox regression analysis.

https://www.mdpi.com/article/10.3390/genes15010063/s1
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