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Abstract: Nutrients play important roles in the growth and development of most plant species. How-
ever, in perennial trees, the function of nutrients in different genotypes is poorly understood. Three
different nutrient levels (low, sufficient, and high nutrient levels) were applied to two contrasting
Eucalyptus urophylla cultivars (a high-growth cultivar ZQUA44 and a low-growth cultivar ZQUB15),
and growth and expression levels were analyzed. Although the growth traits of both genotypes
under nutrient starvation treatment were much lower than under abundant nutrients, tree height,
crown width, and biomass of different ZQUA44 tissues were much higher than those of ZQUB15 at
all three nutrient levels. Differentially expressed genes (DEGs) clustered into six subclusters based on
their expression patterns, and functional annotation showed that the DEGs involved in glutathione
metabolism and flavonoid biosynthesis may be responsible for nutrient starvation across different
genotypes, while the DEGs involved in carotenoid biosynthesis and starch and sucrose metabolism
may have a range of functions in different genotypes. The DEGs encoding the MYB-related family
may be responsible for nutrient deficiency in all genotypes, while B3 may have different functions in
different genotypes. Our results demonstrate that different genotypes may form different pathways
to coordinate plant survival when they face abiotic stresses.

Keywords: nutrient starvation; comparative transcriptome analysis; stress resistance; E. urophylla

1. Introduction

Water, mineral nutrients, and light are the main external inputs needed by plants
to grow. In southern China, which has an abundance of rainfall and sunlight, mineral
nutrients are the essential limiting factor for plant growth and production. For example, the
macroelement nitrogen (N) is one of the most widely distributed nutrients in plants and is
an essential nutrient for plant growth. N is the most fundamental elemental constituent of
proteins [1], and its deficiency causes a decrease in amino acids, resulting in reduced plant
growth. Long-term N deficiency leads to a decreased leaf area, resulting in yellowing of the
leaves and a lower photosynthesis rate, reducing crop yield [2]. Furthermore, phosphorus
(P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) are fundamental elements
in plant cells and are incorporated into proteins, genetic materials, and membranes [1]. The
macroelements P, Mg, and Ca also play important roles in energy metabolism, enzyme
activity regulation, and phytohormone signal transduction [1]. Therefore, the absorption
of sufficient mineral nutrients is essential for plant growth. However, in many areas of
the world, agricultural, horticultural, forest, and herb plantations are deficient in elements
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that support healthy and productive plant growth. Therefore, fertilizers are applied to
maximize yields. However, different genotypes have different growth traits due to vari-
ations in mineral nutrient use efficiency (NUE), even when the same level of nutrient is
applied. Trees with a high growth performance tend to be more efficient at absorbing and
utilizing nutrients than low-growth individuals under the same cultivation conditions;
this difference may be due to variations in genetic signature [3,4]. Consequently, the de-
velopment of tree species with a higher NUE will greatly increase the input-output (i.e.,
fertilizer application–wood production) of plantations and prevent nutrients from being
released into ecosystems. Thus, to develop effective breeding programs, it is vital to fully
understand the underlying genetic basis of the high- and low-growth traits of trees in
response to nutrient supply.

In recent years, there has been substantial progress in next-generation sequencing
accompanying bioinformatics analysis, which has allowed the identification of key genes
and critical pathways underlying the responses of various plant species to variable levels of
nutrients [5]. In Arabidopsis, the response to nutrient deficiency involves various complex
networks, including the rearrangement of gene expression, hormone signal transduction,
and physiological and morphological modifications [6]. Tao et al. (2013) studied the
effects of nutrient starvation on starch accumulation in Landoltia punctata and found that it
inhibited universal metabolism. Furthermore, the expression of genes encoding the key
enzymes involved in starch biosynthesis was increased, while that of those that play an
important role in starch consumption was inhibited [7]. However, few nutrient-starvation
studies have been conducted on perennial plant species, which have much larger genomes
than herbaceous plants. In one such study, the genetic mechanism controlling the “stay-
green” phenomenon in Litchi chinesis pericarp under foliar Mg treatment was investigated
via de novo transcriptome sequencing [8]. The authors reported that DEGs were enriched
in flavonoid biosynthesis, anthocyanin biosynthesis, and the abscisic acid (ABA) signal
pathway, indicating the role of Mg in many metabolic pathways in litchi. Still, the molecular
basis underlying differences between high- and low-growth genotypes of lignocellulose
tree species in response to nutrient stress is unclear. It is necessary to identify nutrient-
responsive genes and to clarify the regulatory and metabolic mechanisms that allow tree
species to adapt during periods of nutrient deficiency.

Eucalyptus is one of the most important commercial tree species in the world and is
widely grown for pulp production [9]. By 2017, about 4.6 million hectares of Eucalyptus
had been planted in southern China, accounting for 6.5% of all forestry plantations and
producing 30 million m3 of wood products (26.9% of the country’s annual wood production).
E. urophylla is one of the most widely planted E. urophylla species in southern China due to
its high growth rate. A high growth rate requires high nutrient availability, and therefore,
the availability of essential nutrients is a crucial factor determining the wood production
of tree species worldwide. The seedling stage is a critical period for the survival and
establishment of trees [10]. Previously, we conducted an 18-month precision fertilizer
control experiment on 100 E. urophylla clones and found that the biomass of some clones
was significantly higher than that of other clones under the same nutrient level. Which
genes lead to the differences between clones? What are the functions of these genes? These
are the questions we aim to unravel.

Therefore, in this study, we analyzed the phenotypic responses of E. urophylla seedlings
subjected to nutrient stress. Transcriptomic analyses were performed to study gene ex-
pression patterns under different nutrient stress conditions using RNA extracted from
the leaves of 18-month-old seedlings. The main objective was to identify genes that were
differentially expressed under control and stress conditions and to provide information
regarding the molecular mechanism involved in nutrition treatment that can be used in
future studies.
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2. Materials and Methods
2.1. Plant Materials and Nutrient Treatments

The plants used in this study were grown from seeds obtained commercially from the
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. All
plants were cloned by tissue culture. Based on field studies, two E. urophylla genotypes were
identified for use in the study: a high-growth cultivar (ZQUA44) and a low-growth cultivar
(ZQUB15) (Yang et al., unpublished). Healthy seedlings of similar size were selected for
each genotype and cultured in cylindrical containers with black-and-white film for moisture
control. These were exposed to three nutrient treatments (low, sufficient, and high nutrient
levels) under natural conditions in March. The low treatment entailed only one application
of base fertilizer (250 g calcium-magnesium phosphate fertilizer (Norsterra, Norway))
per tree. The sufficient treatment included the application of base fertilizer and an after
fertilizer (250 and 100 g compound fertilizer in August and the next March, respectively) per
tree. The high treatment involved the base fertilizer (250 g calcium-magnesium phosphate
fertilizer and 100 g compound fertilizer) and an after fertilizer (100 g urea in May and 150
and 100 g compound fertilizer in August and the next March, respectively) per one tree.
Each treatment was replicated three times. After 18 months of culture, the leaves of all
treatments were sampled and stored in liquid nitrogen.

2.2. Determination of Growth Characteristics

In total, three features were quantified in 18-month-old E. urophylla seedlings, with
three biological replicates used for each treatment. Height was measured as the distance
from the rhizome on the ground to the shoot apex and was measured using a height
gauge. The ground diameter was determined at the base of a tree shoot using calipers.
Crown width was the width of the north-south or east-west direction of trees and was
determined by a scaled measuring stick. The biomass of the different treatments referred to
the dry weight of different tissues, including leaves, stems, and branches. All tissues were
sampled and dried in a drying oven. Each sample was measured until a constant weight
was achieved.

2.3. RNA Isolation, Sequencing, and Assembly

Total RNA was isolated from the leaves of the three replicate plants in each treatment
using the Qiagen RNAeasy kit (Qiagen China, Shanghai, China) and purified using an
RNAclean Kit (Tiangen Biotech (Beijing) CO. LTD., China) following the manufacturer’s
instructions. The integrity of the RNA was monitored on 1% agarose gels, and the purity
was checked using a NanoPhotometer® spectrophotometer (Implen, Westlake Village, CA,
USA). The RNA concentration was determined using a Qubit® RNA assay kit with the
Qubit® 2.0 fluorometer (Life Technologies, San Francisco, CA, USA). A total amount of
3 µg high-quality RNA per sample was used for subsequent RNA sequencing. The cDNA
library was constructed for each of the nine RNA samples and sequenced on the Illumina
HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA). Before assembly, the adapter
sequences, poly N, and low-quality reads were removed from the raw data. An index
of the reference genome (directly downloaded from https://phytozome.jgi.doe.gov/pz/
portal.html#!bulk?org=org_egrandis, accessed on 19 August 2020) was built using Bowtie
v2.0.6 and the paired-end clean reads were aligned to the reference genome using TopHat
v2.0.9 [11]. Then, the mapped reads of each sample were assembled using both Scripture
(beta2) [12] and Cufflinks (v2.1.1) [13].

2.4. Normalization of Gene Expression Levels and Identification of DEGs

To evaluate gene expression levels, the paired-end clean reads that were mapped to the
reference genome were used for the FPKM calculation of each sample using Cuffdiff [13].
The FPKM was calculated based on the length of the fragments and the reads count mapped
to the fragment.

https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=org_egrandis
https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=org_egrandis
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To distinguish the transcriptional changes under the different treatments in the two
genotypes, the DEGs under the different treatments were identified by comparing the
expression levels under the sufficient and low treatments to those under the high and
sufficient treatments in ZQUA44 and ZQUB15, respectively, using the DESeq2 R package
(1.16.1). To eliminate false positives, the false discovery rate (FDR) was calculated to
adjust the threshold of the p-value. Transcripts with a minimal two-fold difference in
expression (|log2Fold change| ≥ 1) and an FDR ≤ 0.01 were considered to be differentially
expressed between the three treatments. For convenience, DEGs with higher expression
levels under the sufficient treatment than under the low treatment, as well as those with
higher expression levels under the high treatment than under the sufficient treatment, were
considered upregulated, whereas those in opposition were considered downregulated.

To assess the gene expression patterns under different nutrient conditions within
each genotype, expression pattern analysis was performed, which assigned all DEGs of
ZQUA44 and ZQUB15 across the two treatment levels to nine expression profiles, using
Short Timeseries Expression Miner (STEM) version 1.3.8 (Ernst and Bar-Josepheight, 2006).
The DEGs belonging to the same cluster were proposed to have a similar expression pattern.
For each genotype, the clustered profiles of DEGs with p < 0.05 were considered to be
significantly different from the reference set.

2.4.1. Functional Annotation and GO and KEGG Classification

The identified genes were annotated by referring to E. grandis in the Phytozome
plant genomics resource (https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=org_
egrandis, accessed on 19 August 2020) and The Arabidopsis Information Resource (TAIR)
(https://www.arabidopsis.org/, accessed on 19 August 2020). Then, GO terms were
determined by AgriGO (http://bioinfo.cau.edu.cn/agriGO/index.php, accessed on 25
August 2020) with Arabidopsis as the background and an FDR < 0.05 was set as the
threshold. The KEGG Orthology-Based Annotation System (KOBAS) 3.0 tool (http://kobas.
cbi.pku.edu.cn/index.php, accessed on 26 August 2020) was used to analyze the potential
functions of the target genes in the pathways under the three different nutrition treatments
(p < 0.01).

2.4.2. Validation of the Expression Level

Ten genes with different expression patterns revealed by RNA sequencing were ran-
domly selected for validation by reverse transcription quantitative real-time PCR (qRT-PCR).
RNA extracted from leaves from all samples was used for qRT-PCR validation. cDNA was
synthesized using a Tiangen FastKing RTKit (Tiangen Biotech). Gene-specific primers for
qRT-PCR were designed based on the corresponding sequence on the NCBI Primer-BLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC, accessed on 27
August 2020) and are listed in Table S1. Actin (EF145577) was used as an internal control.
The qRT-PCR was performed using the FastKing RT Kit and determined using an Applied
Biosystems 7500 fast real-rime PCR system following the manufacturer’s instructions. Three
technical replicates were performed for each gene. A regression analysis was performed
between qRT-PCR and RNA sequencing, including all of the genes of the two genotypes at
the three different treatments using the r package (version 3.1.3, http://cran.r-project.org/,
accessed on 15 September 2020).

3. Results
3.1. Effect of Different Nutrient Treatments on Tree Growth Characteristics

To examine the effects of different long-term nutrient treatments on the high- and
low-growth genotypes of E. urophylla, we measured growth traits, including tree height,
ground diameter, and crown width, as well as the biomass of different tissues (e.g., the
biomass of branches, leaves, roots, and stems) 18 months after nutrient treatment. There
were significant differences (p < 0.05 unless otherwise stated) in all growth traits between
the different treatments (Figure 1). For example, tree heights of the high- and low-growth

https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=org_egrandis
https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=org_egrandis
https://www.arabidopsis.org/
http://bioinfo.cau.edu.cn/agriGO/index.php
http://kobas.cbi.pku.edu.cn/index.php
http://kobas.cbi.pku.edu.cn/index.php
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC
http://cran.r-project.org/
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genotypes under ‘sufficient’ (see Methods) nutrient levels (281.00 and 194.67 cm, respec-
tively) and ‘high’ nutrient levels (289.00 and 229.00 cm, respectively) were significantly
greater than under low nutrient levels (178.00 and 150.00 cm, respectively) (Figure 1).
Moreover, the leaves under low nutrient levels were much smaller (and showed signs of
disease) compared to those under sufficient and high treatments (Figure S1). No significant
differences in height were found between the high and sufficient treatments for ZQUA44,
while a significant difference was observed for ZQUB15. The same was found in regard to
increases in ground diameter and crown width. To further evaluate the effects of nutrients
on plant growth, the biomass of different tissues was assessed. Stems, branches, roots, and
leaves (and overall biomass) were much lower under low nutrient levels than in the other
treatments for both genotypes, indicating that nutrient availability was the most important
factor that restricted plant growth.
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Figure 1. The growth traits at low nutrient application levels (T1), sufficient nutrient level (T2), and
high nutrient level (CK) in genotypes ZQUA44 and ZQUB15. (a) tree height; (b) ground diameter;
(c) crown width; (d) biomass of different treatments in different genotypes. The lowercase letter ab
and the capital letter AB represent the significant difference between the treatments of ZQUA44 and
ZQUB15, respectively. The “*” indicates the significant difference between ZQUA44 and ZQUB15 at
the same treatments. The “ns” indicates the no significant difference were found between ZQUA44
and ZQUB15.

However, the growth traits of the different genotypes varied at the same level of
nutrient treatment. For example, ZQUA44 plants were much taller than ZQUB15 plants at
all three nutrient levels. The same was observed for ground diameter. Interestingly, the
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crown width was similar under the low and sufficient treatments, while a much larger
crown was observed under high nutrients. All biomass values were greater for ZQUA44
than for ZQUB15 under low nutrient levels, indicating that the genetic basis of the different
genotypes was another important factor causing variation in phenotypic performance. The
differences in plant growth traits between the high and low nutrient applications were
much larger in ZQUA44 than in ZQUB15. In addition, no significant differences were
observed in height between the sufficient and high treatments in ZQUA44, indicating a
higher NUE in ZQUA44.

3.2. An RNA Sequencing Approach for the Assembly, Quantification, Identification, and
Clustering of DEGs in Response to Nutrient Treatments

To evaluate the genetic variation in the two genotypes under different treatments,
transcriptome profiling of 18 samples of the two genotypes was conducted on an Illumina
Hiseq 2500 platform. In total, 8.42–11.11 million 125 bp pair-end reads were generated
(Table 1). After removing adapter, ploy-N, and low-quality reads using in-house perl
scripts, 8.15–10.72 million clean reads were obtained. Then, clean data with a high Q20
(94.43–98.41%) and Q30 (85.65–95.71) and low error rate (<0.03%) were used for alignment
to the reference genome using TopHat v2.0.9. A range of 3.21–5.72 million reads were
mapped to the reference genome, and more than 96% of them were uniquely mapped.
The expression levels of protein-coding genes were represented by fragments per kilo-
base of exon per million fragments mapped (FPKMs). The genes with FPKMs < 0.1 in
all samples were filtered out, and the remaining genes were used for further analysis. To
detect genes that were specifically expressed under different treatments, the DESeq2 R
package (1.16.1) was used to analyze samples of the two genotypes under the different
treatments. In total, 973 DEGs were detected in ZQUA44 and ZQUB15 under the low and
sufficient nutrient treatments compared to high treatment using a threshold of a 2-fold
change in gene expression, as previously applied when using the degR package (p < 0.01,
and Q < 0.10, Figure 2). Of these DEGs, 470 were found in both ZQUA44 and ZQUB15,
while 275 and 228 DEGs were found in only ZQUA44 and ZQUB15, respectively.

Table 1. Sequencing and assembly statistics for the nine transcriptome data of two E. urophylla
genotypes of nutrient treatment.

Sample ID No. of Raw
Reads (107)

No. of Clean
Reads (107)

No. of Clean
Basepairs (106)

No. of Mapped
Reads (107)

Uniquely
Mapped (107)

Mapped
Percentage (%)

ZQUA44 T1_1 9.49 9.18 13.55 5.13 5.00 54.48
ZQUA44 T1_2 9.06 8.78 13.11 4.77 4.63 52.76
ZQUA44 T1_3 9.73 9.49 14.24 4.09 3.94 41.53
ZQUA44 T2_1 9.60 9.28 13.67 4.91 4.79 51.58
ZQUA44 T2_2 9.35 9.08 13.57 3.79 3.62 39.82
ZQUA44 T2_3 10.47 10.11 15.17 5.46 5.32 52.66
ZQUA44 CK_1 10.28 9.89 14.85 5.72 5.57 56.27
ZQUA44 CK_2 9.18 8.84 13.07 4.51 4.33 48.91
ZQUA44 CK_3 8.81 8.58 12.82 3.63 3.50 40.75
ZQUB15 T1_1 9.83 9.51 14.05 4.09 3.93 41.35
ZQUB15 T1_2 9.70 9.34 13.95 4.70 4.56 48.81
ZQUB15 T1_3 8.42 8.15 12.21 3.37 3.26 40.01
ZQUB15 T2_1 9.58 9.22 13.59 4.99 4.87 52.75
ZQUB15 T2_2 8.76 8.52 12.73 3.36 3.24 37.98
ZQUB15 T2_3 10.58 10.30 15.37 4.30 4.15 40.34
ZQUB15 CK_1 8.47 8.22 12.27 3.21 3.07 37.37
ZQUB15 CK_2 8.97 8.68 12.96 4.29 4.19 48.24
ZQUB15 CK_3 11.11 10.72 16.04 5.11 4.99 46.64
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Figure 2. Venn analysis of different genotypes at different treatments. A: ZQUA44; B: ZQUB15.
T1: treatment of low nutrient level; T2: treatment of sufficient nutrient level; CK: treatment of high
nutrient level. AT1 indicates the treatment of low nutrient levels in genotype ZQUA44; AT2 indicates
the treatment of sufficient nutrient levels in genotype ZQUA44; ACK indicates the treatment of high
nutrient levels in genotype ZQUA44; BT1 indicates the treatment of low nutrient levels in genotype
ZQUB15; BT2 indicates the treatment of sufficient nutrient level on genotype ZQUB15; BCK indicates
the treatment of high nutrient level on genotype ZQUB15. The labels are the same as below.

To further determine the possible mechanisms through which the different genotypes
respond to different nutrient levels, the expression trends of common DEGs between the
two genotypes were analyzed using ggplot2 package implemented in R (Version 3.0.3).
The DEGs clustered into six subclusters, which were divided into three groups: Group 1
(G1) consisting of subclusters 1 (153 DEGs), 2 (116 DEGs), and 4 (21 DEGs); Group 2
(G2) consisting of subcluster 3 (30 DEGs); and Group 3 (G3) consisting of subclusters 5
(101 DEGs) and 6 (49 DEGs) (Figure 3). The DEGs in G1 were all activated under nutrient
deficiency in genotype ZQUB15, while they were inhibited in genotype ZQUA44. The
DEGs in G2 were all inhibited under nutrient deficiency, while they were activated under
high nutrient levels in both genotypes. The opposite situation was observed in G3, in
which the DEGs were all activated under nutrient deficiency, while they were inhibited
under high nutrient levels in both genotypes. Because the same DEGs in the different
genotypes had different expression patterns in G1, we propose that the DEGs in this group
may be responsible for the genotype/nutrient interaction. In Groups 2 and 3, the DEGs
were activated or inhibited in both genotypes. We therefore propose that the DEGs of
these groups may be responsible for the nutrient responses across clones. The DEGs found
only in either ZQUA44 or ZQUB15 may be genotype-specific genes between low- and
high-performing clones.
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Figure 3. Cluster analysis of the common differentially expressed genes in ZQUA44 and ZQUB15.
The ordinate is the value of the expression value after logarithmic centralization correction and the
red lines indicate the value is zero. The blue lines represent the relative corrected gene expression
levels of all genes in this cluster under different experimental conditions.

3.3. Functional Enrichment of the DEGs of Different Genotypes in Response to Nutrient Treatments

Gene ontology (GO) classifications were determined to analyze the possible functions
of DEGs that were differentially expressed in the ZQUA44 and ZQUB15 genotypes and the
common DEGs that were found in both genotypes (Figure 4). A total of 35 GO terms in
biological processes were identified in four groups of DEGs, including AS for DEGs that
were differentially expressed in ZQUA44, BS for DEGs that were differentially expressed
in ZQUB15, and G1 and G3 for the common DEGs (p < 0.0001, Q < 0.01). Overall, 12 of
the significant GO terms identified in G1 were involved in responses to stress or stimulus.
The most significant processes were the response to a stimulus and the response to a
chemical stimulus. In G3, 57.1% of the 14 identified GO terms were involved in biosynthetic
or metabolic processes, and only two GO terms were involved in responses to stress or
stimulus. The most significant processes in this group were the flavonoid metabolic process,
secondary metabolic process, and flavonoid biosynthetic process. In total, 27 GO terms were
identified in the DEGs identified in ZQUA44, and 15 of them were involved in responses to
stimulus or stress. The most significant terms were response to stimulus and response to
abiotic stimulus in ZQUA44. In ZQUB15, 20 GO terms were identified, and 10 of them were
involved in metabolic or synthesis processes. The most significant terms were response
to stimulus and secondary metabolic process. Furthermore, the DEGs of all groups were
involved in the cellular amino acid derivative biosynthetic process, phenylpropanoid
biosynthetic process, response to chemical stimulus, and response to stimulus. Overall,
18 GO terms for molecular functions were found in the five groups of DEGs (Table 2). DEGs
with oxidoreductase activity and catalytic activity were significantly enriched in all five
groups. Those involved in transcription activator activity were significantly enriched in G1,
those involved in transporter activity were significantly enriched in AS, and those involved
in transferase activity were significantly enriched in BS.
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Figure 4. Gene Ontology analysis of differentially expressed genes (DEGs) from different expression
groups. G1 indicates the DEGs inhibited at low nutrient treatment in ZQUA44 and activated in
ZQUB15; G3 implicates the DEGs activated at low nutrient treatment in both genotypes; AS represents
DEGs identified in ZQUA44; BS indicates DEGs identified in ZQUB15. The p-values were used for
the heatmap after the calculation by −lgP. Red indicates the higher significance of the GO term, and
blue indicates the lower significance of the GO term.

Table 2. Annotation of molecular function of differentially expressed genes at different groups.

Groups
of DEGs GO Term Description

Number of
Enriched

DEGs
p-Value FDR

G1 GO:0016701
oxidoreductase activity, acting on
single donors with incorporation of
molecular oxygen

5 4.00 × 10−6 0.001

G1 GO:0003824 catalytic activity 80 0.0003 0.039

G1 GO:0016757 transferase activity, transferring
glycosyl groups 11 0.00045 0.039

G1 GO:0016563 transcription activator activity 6 0.00074 0.048
G2 GO:0016491 oxidoreductase activity 7 1.90 × 10−5 0.0001
G2 GO:0003824 catalytic activity 13 0.0015 0.0042
G3 GO:0003824 catalytic activity 66 7.00 × 10−12 1.20 × 10−9

G3 GO:0016787 hydrolase activity 27 1.10 × 10−5 0.00094
G3 GO:0016491 oxidoreductase activity 16 1.80 × 10−5 0.0011
G3 GO:0004091 carboxylesterase activity 8 3.40 × 10−5 0.0015
AT GO:0003824 catalytic activity 96 8.50 × 10−8 2.40 × 10−5

AT GO:0016491 oxidoreductase activity 25 4.90 × 10−6 0.00069
AT GO:0005215 transporter activity 22 0.00014 0.013
AT GO:0046527 glucosyltransferase activity 6 0.00024 0.017
AT GO:0022892 substrate- transporter activity 17 0.00035 0.018



Genes 2024, 15, 60 10 of 19

Table 2. Cont.

Groups
of DEGs GO Term Description

Number of
Enriched

DEGs
p-Value FDR

AT GO:0016706

oxidoreductase activity, acting on
paired donors, with incorporation or
reduction of molecular oxygen,
2-oxoglutarate as one donor, and
incorporation of one atom each of
oxygen into both donors

5 0.00037 0.018

AT GO:0022857 transmembrane transporter activity 17 0.0007 0.028

AT GO:0016705
oxidoreductase activity, acting on
paired donors, with incorporation or
reduction of molecular oxygen

6 0.0016 0.047

AT GO:0022891 substrate- transmembrane
transporter activity 14 0.0017 0.047

AT GO:0016758 transferase activity, transferring
hexosyl groups 8 0.0014 0.047

BT GO:0003824 catalytic activity 84 2.00 × 10−8 4.00 × 10−6

BT GO:0016491 oxidoreductase activity 22 5.90 × 10−6 0.0006
BT GO:0008194 UDP-glycosyltransferase activity 8 2.10 × 10−5 0.0014

BT GO:0016758 transferase activity, transferring
hexosyl groups 9 7.20 × 10−5 0.0037

BT GO:0016757 transferase activity, transferring
glycosyl groups 10 0.00052 0.021

BT GO:0046527 glucosyltransferase activity 5 0.00074 0.025
BT GO:0016209 antioxidant activity 5 0.0011 0.033

BT GO:0016765 transferase activity, transferring alkyl
or aryl (other than methyl) groups 5 0.0014 0.036

A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs
involved in metabolic pathways were significantly enriched in G1, G3, and AS (Table 3,
Q < 0.2). The DEGs in G1 were involved in amino acid metabolism, including ascorbate
and aldarate metabolism, arginine and proline metabolism, tyrosine metabolism, galactose
metabolism, and alanine, aspartate, and glutamate metabolism. Those involved in plant
hormone signal transduction, galactose metabolism, protein processing in endoplasmic
reticulum, nitrogen metabolism, cysteine and methionine metabolism, and glycerolipid
metabolism were significantly enriched in AS. Those in BS were involved in biosyntheses,
such as cutin, suberine, wax biosynthesis, and zeatin biosynthesis. The most significant
processes were phenylpropanoid biosynthesis and sulfur metabolism in G2, while glu-
tathione metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and stilbenoid,
diarylheptanoid, and gingerol biosynthesis were most significantly enriched in G3.

Table 3. Significant KEGG pathways enriched at different groups.

Groups KEGG Pathway ID DEGs
Number p-Value Q-Value

G1 Ascorbate and aldarate metabolism ath00053 4 0.0002 0.0085
G1 Arginine and proline metabolism ath00330 3 0.0024 0.0547
G1 Tyrosine metabolism ath00350 2 0.0164 0.2424
G1 Galactose metabolism ath00052 2 0.0260 0.2424
G1 Alanine, aspartate and glutamate metabolism ath00250 2 0.0298 0.2424
G1 Limonene and pinene degradation ath00903 1 0.0346 0.2424
G1 Monoterpenoid biosynthesis ath00902 1 0.0377 0.2424
G1 Metabolic pathways ath01100 17 0.0439 0.2471
G2 Phenylpropanoid biosynthesis ath00940 2 0.0040 0.0202
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Table 3. Cont.

Groups KEGG Pathway ID DEGs
Number p-Value Q-Value

G2 Sulfur metabolism ath00920 1 0.0249 0.0623
G3 Phenylalanine, tyrosine and tryptophan biosynthesis ath00400 2 0.0111 0.1867
G3 Stilbenoid, diarylheptanoid and gingerol biosynthesis ath00945 1 0.0243 0.1867
G3 Metabolic pathways ath01100 12 0.02515 0.1867
G3 Glutathione metabolism ath00480 2 0.0325 0.1867
AS Galactose metabolism ath00052 3 0.0030 0.0938
AS Plant hormone signal transduction ath04075 6 0.0063 0.0938
AS Protein processing in endoplasmic reticulum ath04141 5 0.0072 0.0938
AS Metabolic pathways ath01100 21 0.0112 0.1088
AS Nitrogen metabolism ath00910 2 0.0288 0.1991
AS Cysteine and methionine metabolism ath00270 3 0.0306 0.1991
AS Glycerolipid metabolism ath00561 2 0.0414 0.2308
BS Cutin, suberine and wax biosynthesis ath00073 2 0.0076 0.1249
BS Zeatin biosynthesis ath00908 2 0.0109 0.1249

3.4. DEGs Involved in Plant Hormone Signal Transduction

In total, 11 DEGs were identified as being involved in plant hormone signal trans-
duction, including the signal transduction pathway of cytokinine, abscisic acid (ABA),
brassinosteroid, and salicylic acid (Table 4, Figure 5). Half of them were enriched in
the ABA signal transduction pathway, including two DEGs encoding PYR/PYL (ABA
receptor), three encoding P2C (protein phosphatase 2C), and one encoding ABF (ABA-
responsive element binding factor). The DEGs involved in plant hormone signal transduc-
tion had different expression patterns. For example, those encoding NPR1 (nonexpresser
of pathogenesis-related genes), BKI1 (A leucine-rich repeat receptor serine/threonine ki-
nase that could perceive brassinosteroids at the plasma membrane called BRI1, and the
BRI1-interacting protein called BKI1), and PYR/PYL were all activated under nutrient defi-
ciency in both genotypes, while those encoding AHP (histidine-containing phosphotransfer
peotein, Eucgr.J00169.1, and Eucgr.G03093.1) and PP2C (Eucgr.J02003.1, Eucgr.C03732.1, and
Eucgr.A02858.1) were activated under high nutrient levels in the high-growth ZQUA44
genotype but were inhibited under low nutrient levels in the low-growth ZQUB15 genotype.
The DEGs encoding A-ARR (Eucgr.B03374.1) and ABF (Eucgr.F02337.3) were activated
under high nutrient levels in ZQUA44, while there were no significant differences observed
in ZQUB15.

Table 4. Differentially expressed genes involved in plant hormone signal transduction pathways.

Gene ID AT1
(FPKM)

AT2
(FPKM)

ACK
(FPKM)

BT1
(FPKM)

BT2
(FPKM)

BCK
(FPKM) Uniprot Symbol Subcluster

Eucgr.A01486 0.64 0.87 6.35 4.08 2.92 4.94 Q5SN75 P2C08 sub4
Eucgr.A02858 0.24 0.30 9.65 10.76 1.75 3.41 Q9FLI3 P2C75 sub4
Eucgr.C03732 21.00 24.44 76.28 46.38 23.80 40.61 P49597 P2C56 sub1
Eucgr.F00253 0.55 0.51 0.00 0.70 0.00 0.00 Q9FX08 P2C12 sub6
Eucgr.H04087 16.26 226.00 35.9 19.74 15.81 14.61 Q3EAF9 P2C49 sub1
Eucgr.J02003 8.73 181.00 83.02 56.76 26.57 60.24 Q9ZW21 P2C24 sub4
Eucgr.C03337 1222.61 1033.70 638.04 37.29 57.41 105.58 Q9ZRA4 AB19A sub3
Eucgr.C03536 1079.85 930.58 667.89 227.95 439.95 6177.00 Q9ZRA4 AB19A sub3
Eucgr.D00606 58.97 124.94 334.92 267.52 238.79 182.00 Q05349 12KD sub4
Eucgr.I01276 3.24 3.83 1.87 7.70 10.80 26.74 Q6NMM0 SAU61 sub4
Eucgr.F03208 38.00 1.29 0.67 2.78 0.74 0.95 Q9SQ80 G2OX1 sub6
Eucgr.F04125 22.90 32.45 8.65 10.03 4.30 3.94 P46687 GASA3 sub3
Eucgr.K02472 20.46 20.90 18.74 117.00 41.92 58.02 Q6NMQ7 GASA6 sub5
Eucgr.F00192 13.57 17.63 27.34 38.65 23.74 14.97 Q8LC30 RAP21 sub1
Eucgr.F02317 1.08 0.47 1.55 58.00 1.66 0.87 O22174 ERF08 sub1
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Table 4. Cont.

Gene ID AT1
(FPKM)

AT2
(FPKM)

ACK
(FPKM)

BT1
(FPKM)

BT2
(FPKM)

BCK
(FPKM) Uniprot Symbol Subcluster

Eucgr.F02691 0.04 0.36 23.00 34.00 0.00 0.19 Q70II3 EF110 sub1
Eucgr.H01659 0.02 0.05 0.53 1.38 0.00 0.00 Q9SZ06 EF109 sub1
Eucgr.K00128 19.27 9.67 16.3 75.95 18.5 13.04 Q9LY05 EF106 sub1
Eucgr.F04203 0.13 0.20 8.69 4.30 0.27 0.15 Q9FGF8 ABR1 sub4
Eucgr.G01970 0.15 0.37 3.51 6.09 1.74 0.32 Q9LYU3 EF113 sub4
Eucgr.H03965 5.20 12.24 20.35 18.47 21.78 6.23 P42736 RAP23 sub4
Eucgr.C04221 30.5 24.82 14.00 22.97 11.44 29.80 Q9XI33 WIN1 sub6
Eucgr.F02319 7.73 5.56 7.53 12.26 6.01 2.54 Q8LC30 RAP21 sub6
Eucgr.I00422 12.92 11.51 3.99 14.41 20.31 13.61 O65665 ERF60 sub6
Eucgr.K00126 69.17 62.26 47.43 89.37 59.17 42.78 Q8VY90 EF105 sub6
Eucgr.A01146 18.41 11.39 6.04 13.68 12.62 5.29 Q8L8B8 LOG3 sub6
Eucgr.B02321 5.67 7.47 35.5 11.99 13.25 6.79 O81077 ABAH2 sub1
Eucgr.C01524 7.03 4.49 2.78 23.39 14.27 12.84 Q9SKK0 EBF1 sub1
Eucgr.C03157 33.47 38.36 13.15 25.79 30.28 12.39 Q9FUJ1 CKX7 sub6
Eucgr.E01149 13.82 13.43 23.66 19.39 9.18 6.47 Q949P1 ABAH1 sub1
Eucgr.G01437 0.04 0.29 1.74 6.04 1.81 1.43 Q9LJK2 ABAH4 sub1
Eucgr.G03093 3.61 1.72 1.54 3.81 0.47 0.53 Q8S8E3 PYL6 sub6
Eucgr.I01127 15.24 21.06 9.75 27.58 26.97 8.78 Q8W3P8 AOG sub1
Eucgr.I01201 0.14 0.61 0.11 0.42 3.41 3.39 Q6RYA0 SABP2 sub4
Eucgr.J00169 6.76 4.55 2.08 5.09 1.23 0.54 O80920 PYL4 sub6
Eucgr.K02472 20.46 20.9 18.74 11.17 41.92 58.02 Q6NMQ7 GASA6 sub5
Eucgr.B03374 1.38 2.09 4.49 1.70 1.41 0.96 Q9ZWS9 ARR3 sub1
Eucgr.B02620 11.64 26.09 57.13 113.34 90.20 95.91 Q39182 DEF02 sub2
Eucgr.H05052 223.79 163.36 302.39 893.65 3003.64 3268.99 Q07502 DEF sub4
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Figure 5. Analysis of important plant hormone signal transduction pathways related to nutrient
treatment. The normalized expression levels were used for heatmap visualization. Red indicates the
higher expression levels of DEGs, and blue indicates the lower expression levels of DEGs.
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3.5. Transcription Factors (TFs) Responding to Nutrient Deficiency

To identify the important TFs responsible for nutrient deficiency, the DEGs from
different groups were annotated in the plant transcription factor database (Table 5). In total,
74 DEGs encoding 21 TF families were obtained in all groups in ZQUA44 and ZQUB15. Of
all groups, G1 had the most abundant DEGs encoding 10 TFs, followed by AS, which had
25 DEGs encoding 15 TFs. The most abundant TFs were ERF (10) and MYB (10), followed
by NAC (8) and WRKY (7). Seven DEGs encoding ERF and six encoding NAC were found
in G1, while five encoding WRKY were found in BS. Some TF families were only found in
one group; for example, the TF of MIKC_MADS was only found in G3, the TFs of CPP and
RAV were only found in BS, the TFs of LBD and SBP were only found in G1, and the TFs of
NF-YA, TCP, bZIP, Dof, and B3 were only found in AS.

Table 5. Differentially expressed genes encoding transcription factors in different groups.

Transcription Factors G1 G2 G3 AS BS

C2H2 1 1
CPP 1
ERF 7 1 2
MYB 4 3 1 2
NAC 6 1 1
RAV 1

WRKY 2 5
B3 3

bHLH 3 1 1
bZIP 2
C3H 3 2
Dof 2

G2-like 3
HD-ZIP 1 1

HSF 1 1 2
MYB_related 1 3 2

NF-YA 1
TCP 1

MIKC_MADS 1
LBD 1
SBP 1

Further analysis of WRKY encoding genes showed that two DEGs encoding WRKY23
(Eucgr.H00996) and WRKY75 (Eucgr.B03520) were inhibited at the low nutrient level, while
the other five DEGs encoding WRKY26 (Eucgr.B04010), WRKY33 (Eucgr.K02940), WRKY50
(Eucgr.C00675), WRKY6 (Eucgr.E04011), and WRKY75 (Eucgr.I01633) were all activated at
the low nutrient level (Table 6).

Table 6. Differentially expressed transcription factors in different groups.

Groups
of DEGs Gene ID Gene

Names T1 T2 CK log2FPKM
(T1/CK) p Value log2FPKM

(T2/CK) p Value

AT Eucgr.H00996 WRKY23 1.57 4.82 8.19 −2.38 0.00 −0.76 0.18
AT Eucgr.B03520 WRKY75 6.93 9.67 24.10 −1.80 0.00 −1.32 0.03
BT Eucgr.B04010 WRKY26 15.39 8.77 4.79 1.68 0.00 0.87 0.07
BT Eucgr.K02940 WRKY33 8.01 5.62 2.84 1.50 0.00 0.99 0.06
BT Eucgr.C00675 WRKY50 26.21 17.53 7.47 1.81 0.00 1.23 0.02
BT Eucgr.E04011 WRKY6 4.21 2.48 1.07 1.98 0.00 1.22 0.08
BT Eucgr.I01633 WRKY75 1.72 4.70 0.54 1.66 0.16 3.11 0.01
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3.6. Validation of RNA Sequencing Results via Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)

To validate the RNA sequencing results, 10 genes with different expression patterns
were randomly selected for qRT-PCR using an Applied Biosystems 7500 fast real-rime PCR
system (Applied Biosystems, Waltham, MA, USA). A similar expression pattern was found
for all three nutrient treatments for both genotypes when the qRT-PCR results and RNA
sequencing data were compared, indicating that the expression results generated by RNA
sequencing were reliable and could be used for further study (R2 = 0.6213, Figure 6).
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4. Discussion

Comparative transcriptome analyses are powerful for analyzing the genotypes of
plants that exhibit different phenotypes under various external treatments [14]. In this
study, we compared the transcriptomic differences between two E. urophylla cultivars that
show different phenotypes under different nutrient application levels. The phenotypic char-
acteristics exhibited a similar tendency in the two E. urophylla genotypes at low, sufficient,
and high nutrient levels. For example, tree height, ground diameter, crown width, and the
biomass of different tissues were much lower in both genotypes under low nutrient condi-
tions than under sufficient and high levels, indicating that nutrient availability was the most
important factor restricting plant growth, which agreed with previous studies that nutrient
limitation significantly restricted plant growth and physiological metabolisms [15,16].

However, the growth traits were much higher for ZQUA44 than for ZQUB15 in all
three nutrient levels, indicating that trees with different genotypes may respond differently.
This result agrees with prior research on Oryza sativa, Vigna radiata, and Zea may that
different individuals have different production under the same nutrient levels [17–20]. To
address this further, we conducted comparative transcriptomic sequencing analyses. The
identified DEGs were clustered into different groups with different functions. The DEGs
had the same expression pattern in both genotypes and were significantly enriched in
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glutathione metabolism, flavonoid biosynthesis, and metabolic or biosynthetic processes,
indicating that these DEGs may have similar functions when there are underlying nutrient
deficiency stresses across clones [21]. The other DEGs had contrasting expression patterns
in the two genotypes and were significantly enriched in response to stimulus or stress,
indicating that they may be responsible for the nutrient/genotype interaction. Furthermore,
the DEGs that were differentially expressed in AS were significantly enriched in response to
stimulus or stress, while those in BS were significantly enriched in metabolic or biosynthetic
processes, which implies that different genotypes had different DEGs to respond to the
same abiotic stresses. DEGs associated with oxidoreductase activity and catalytic activity
were also abundant in all five groups. This indicates that different genotypes had similar
biological responses when exposed to abiotic stress, although different DEGs were involved.
Our results are consistent with the previous study that drought stress induces different key
genes and pathways in two wheat (Triticum aestivum L.) varieties [21].

Phytohormones are the key regulators of plant growth and development and are
mediators of environmental stress responses [6]. Abscisic acid (ABA) is an essential phy-
tohormone that controls many developmental stages, including seed dormancy, seedling
development, flowering, and fruit ripening. ABA levels increase to adapt to abiotic stresses,
such as drought, high temperature, chilling, and salinity. Plants can translate environ-
mental stress into a physiological response through ABA signal transduction. Five groups
of proteins have been identified in this pathway, including the ABA receptor PYL/PYR
protein, PP2C protein, and kinase family SnRK2. P2C, which is a negative regulator of ABA
signaling pathways, positively regulates the abiotic stress signaling pathway in herbaceous
plants [22]. In our study, three DEGs encoding the PP2C protein were inhibited under
nutrient deficiency in ZQUA44, whereas they were activated in ZQUB15. Furthermore,
two DEGs encoding the negative regulator of PYL/PYR protein were identified, and both
were activated at low nutrient levels in both genotypes. Because the PYL/PYR protein is a
negative regulator of PP2C protein, the expression level of PP2C agreed with the pattern in
ZQUA44, but this did not occur in ZQUB15, indicating that the genetic variation in the two
genotypes may be the reason for the phenotypic variation [21,23].

In addition to phytohormones, many TFs control signal transduction under biotic and
abiotic stresses, including the MYB (10), ERF (10), NAC (8), WRKY (7), MYB-related (6), and
bHLH (5) families, whose members promote or suppress abiotic stress responses [24–28].
For example, MYBs have been studied in various plant species and have been proven to
be related to growth and development and stress responses in plants [29–34]; these results
agreed with our study that MYB-encoding DEGs may be involved in resistance to nutrient
deficiencies. Ten DEGs encoding ERF were obtained in our study, and seven of them were
enriched in G1, indicating their role in the nutrient/genotype interaction. Our results are
consistent with previous studies that ERFs are one of the most important TF families, and
they are involved in various plant-specific processes, such as developmental processes,
regulation of metabolism, and the response to biotic and abiotic stresses [35,36]. Members of
the WRKY family are essential regulators of plant innate immunity, and they play key roles
in regulating biotic and abiotic stress reactions in various plant species [7,37]. Furthermore,
a gene encoding WRKY in Larrea tridentata was proven to activate ABA signaling, which
plays an essential role in stress resistance [38–46]. In poplar, 15 PtWRKYs in leaves were
identified as involved in the nitrogen response, and PtWRKY33 was down-regulated in
the nitrogen deficiency group [47]. In our study, a DEG encoding WRKY33 was activated
in the nutrient deficiency treatment, which was inconsistent with the result in poplar,
indicating that homologous genes in different plant species may have different functions.
A gene encoding TCP, which plays a key role in cell proliferation in developing tissues
and is predicted to be related to tree height growth, was inhibited at low nutrient levels in
ZQUA44, which may explain why the tree height of ZQUA44 was restricted to a greater
extent than that of ZQUB15 under low nutrient levels [48].

In addition to the phytohormone-related genes and TFs, other genes encoding F-box
protein, late embryogenesis abundant (LEA) protein, ammonium transporter 2, cytochrome
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P450, UDP-glycosyltransferase (UGT), and phenylalanine ammonia-lyase were also identi-
fied in this study. F-box protein is related to cell cycle regulation and signal transduction [49].
Several late embryogenesis proteins have been found to be related to resistance to water
deficiency; they function by protecting cytoplasmic components [50]. The identification of
this gene in our study provides new insight into its possible functions in resistance to nutri-
ent deficiency. Genes encoding ammonium transporter 2 were significantly activated under
high nutrient levels in ZQUA44, while no significant differences were observed in ZQUB15,
indicating that a higher nutrient level may promote the transport ability of mineral elements
in ZQUA44 to maintain their high growth ability [51–53]. UGTs can catalytically transfer
the glycosyl group from activated donor molecules to specific receptor molecules, and they
play important roles in various processes, such as hormone signal transduction and cell
wall polysaccharide synthesis [54]. UGTs, together with phytohormones, play a pivotal
role in stress resistance by changing the water solubility of the receptor molecule [55,56].
In our study, three DEGs were activated in ZQUA44 and ZQUB15; two were activated
under nutrient deficiency in ZQUA44, while six were activated in ZQUB15, indicating that
different members of this gene family may play different roles in different genotypes.

5. Conclusions

Our results clearly demonstrate that not only the environmental factors but also
the genetic differences play essential roles in tree performance. High-growth genotype
ZQUA44 and low-growth genotype ZQUB15 exhibited significant differences in their
responses to nutrient starvation in terms of tree height, crown width, and the biomass
of different tissues. Transcriptomic profiling indicated that the DEGs showed similar
expression trends that may be responsible for resistance to nutrient starvation across
genotypes. The different genotypes had different genes that responded to the treatment,
and the same genes had different expression patterns between the genotypes. The DEGs
showed opposite expression trends, which may be responsible for the nutrient/genotype
interaction. The DEGs in AS and BS may be genotype-specific; they were involved in
response to stimulus or stress in ZQUA44 and were involved in metabolic or synthesis
processes in ZQUB15. These findings provide a genetic basis for the breeding of E. urophylla
with tolerance to nutrient deficiency.
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