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Abstract: Introduction: MAPT locus is associated with Parkinson’s disease (PD), which is located
within a large inversion region of high linkage disequilibrium (LD). We aimed to determine whether
the H2-haplotype protective effect and its effect size depends on the GBAT or LRRK?2 risk allele carrier
status, and to further characterize genetic alterations that might contribute to its effect. Methods: LD
analysis was performed using whole-genome sequencing data of 202 unrelated Ashkenazi Jewish (A])
PDs. A haplotype-divergent variant was genotyped in a cohort of 1200 consecutively recruited AJ-PDs.
The odd ratios were calculated using AJ-non-neuro cases from the gnomAD database as the controls
in an un-stratified and a stratified manner according to the mutation carrier status, and the effect on
the Age at Motor Symptom Onset (AMSO) was examined. Expression and splicing quantitative trait
locus (eQTL and sQTL) analyses were carried out using brain tissues from a database. Results: The
H2 haplotype exhibited significant association with PD protection, with a similar effect size in GBA1
carriers, LRRK2-G2019S carriers, and non-carriers (OR = 0.77, 0.69, and 0.82, respectively), and there
was no effect on AMSO. The LD interval was narrowed to approximately 1.2 Mb. The H2 haplotype
carried potential variants in candidate genes (MAPT and SPPL2C); structural deletions and segmental
duplication (KANSL1); and variants affecting gene expression and intron excision ratio in brain tissues
(LRRC37A/2). Conclusions: Our results demonstrate that H2 is associated with PD and its protective
effect is not influenced by the GBA1/LRRK?2 risk allele carrier status. This effect may be genetically
complex, resulting from different levels of variations such as missense mutations in relevant genes,
structural variations, epigenetic modifications, and RNA expression changes, which may operate
independently or in synergy.

Keywords: MAPT; Parkinson’s disease; GBAI; LRRK2; H2 haplotype; KANSL1

1. Introduction

Parkinson’s disease (PD) is a complex progressive neurodegenerative disease, and its
etiology is still largely unknown. There is clear evidence that genetic variability affects
disease risk and progression. To date, genome-wide association studies (GWASs) have
identified 90 independent risk-associated variants; however, the causal genes in most loci
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have yet to be elucidated [1]. One of these loci is a large region on chromosome 17q21, which
includes an inversion of about 900 Kb, resulting in two major haplotypes, H1 and H2 [2].
While the H1 haplotype is more prevalent, the frequency of the H2 haplotype is 0.22 in
European population (non-Finnish) and is exceedingly rare in African/African American
population (0.17) and Asian populations (East Asian population = 0.001, and South Asian
population = 0.074) [3]. Multiple lines of evidence indicate that the H1 haplotype is
associated with an increased risk for PD [4], progressive supranuclear palsy [5], and
Alzheimer’s disease (AD) [6], yet the precise genomic element underlying these associations
remains to be determined.

Approximately nine coding genes reside within the locus, among them is the microtu-
bule-associated protein tau (MAPT) gene. Tau protein, encoded by the MAPT gene, is
primarily localized in the axons of adult neurons. Within these axons, it binds to micro-
tubules and promotes their stability [7]. Furthermore, Tau protein undergoes phospho-
rylation, which, in abnormal cases, can lead to structural modifications and promote its
aggregation [8].

There have been many attempts to characterize the complex genetic structure of the
MAPT locus. Studies have shown that the inversion region exhibits a complex arrangement
of structural variations [2] and that the frequency of these variants varies significantly
among different populations [9]. Therefore, it is possible that using a population-based
approach will be beneficial to interrogate the haplotype’s complexity.

An advantage of PD genetic studies in the Ashkenazi Jewish population (A]) is the
higher frequency of common founder mutations in the two PD-risk genes, Leucine-Rich
Repeat Kinase 2 (LRRK2) and Glucosylceramidase 3 1 (GBA1) (34% of AJ-PDs compared
to up to 10% of PD patients in the general population), which allows the performance of
targeted and specific analyses of the mutations” dependent stratified manner [10]. Such
an analysis in PD is important, as it has been demonstrated that PD patients with LRRK2
mutations display distinct pathology and clinical manifestations in comparison to those
with GBAI mutations or non-carrier PD patients (NC-PDs) [11]. Furthermore, the risk
alleles previously identified using GWAS by us and others [1,12] can have a different effect
size in subgroups of PD. For example, we demonstrated that the PARK16 locus, in which
rs823114 had a significant association with PD protection among LRRK2-G2019S carriers,
with a large effect size, was not protective among GBA1 carriers, suggesting a stratified
effect based on mutation carrier status [13].

Here, we aim to characterize the MAPT locus in the AJ population, determine whether
its association with PD and its effect size depends on a patient’s carrier state (patients
carrying either GBA1 mutations or LRRK2-G2019S mutation, and non-carriers of these
mutations), and explore potential mechanisms responsible for this effect.

2. Materials and Methods
2.1. Population

Our PD cohort included 1200 patients of AJ origin, who were consecutively recruited
between 2005 and 2016 (Age at Motor Symptom Onset was 60.56 £10.96). All patients
were examined at the Movement Disorder Center at the Tel-Aviv Sourasky Medical Center
and underwent an interview to ascertain AJ ancestry on both parental sides, as previously
described [10,14]. In total, 235 (19.6%) were carriers of mutations in GBA1 (GBA1-PD)
(severe: p.L444P, c.84insG, IVS2+1G>A, and p.V394L; mild: p.R496H, p.N370S, and 370Rec;
and risk alleles: p.E326K and p.T369M. GBA1-p.R44C was also genotyped); 145 (12.1%)
were LRRK2-G2019S PD patients (LRRK2-PD); 8 (0.6%) were carriers of the SMPD1-L302P
mutation; 25 (2.1%) were carriers of mutations in more than one gene (24 GBA1 and
LRRK2-G2019S carriers, and 1 GBAI and SMPD1-L302P carrier); and 787 (65.6%) did not
carry any of the GBA1, LRRK2, or SMPD1 mutations (non-carriers, NC-PDs). To confirm
ethnicity and the absence of hidden relatedness, principal component analysis (PCA)
and identity-by-descent analysis were performed on 591 out of 1200 AJ-PDs using the
Affymetrix Genome-Wide Human SNP Array 6.0 data (the Tel-Aviv PD SNP6.0 array data



Genes 2024, 15, 46

30f12

were described in Vacic et al., 2014 [12]). Additional information on the 1200 AJ-PD patient
cohort, divided into subgroups, is detailed in Table 1.

Table 1. The cohort of 1200 AJ-PDs divided into genetic subgroups.

Genotype Number of PD Patients (%) Number of Females (%)  Average Age at Onset (+SD)

Carriers of GBAI mutations 2 235 (20%) 94 (40%) 58.7 (10.5)

Carriers of LRRK2-G20195 145 (12.1%) 65 (44.8%) 58.5 (10.5)
mutation

Carriers of dual mutations 25 (2.1%) 17 (68%) 58.5 (9.9)

Carriers of SMPD1-L.302P 8 (0.7%) 3 (37.5%) 55.5 (12.7)
mutation

Non-Carriers (NC) 787 (65.6%) 297 (37.7%) 61.5(11.4)

Total 1200 476 (39.6%) 60.5 (11.2)

Note: # 10 GBA1 mutations (severe GBAI mutations = ¢.84insG, IVS2+1G>A, p.V394L, and p.L444P; mild
GBA1 mutations = p.R496H, p.N370S, and 370 Rec; and risk alleles = p.E326 K, p.T369 M; and GBA1-p.R44 C).
SD = standard deviation.

2.2. Standard Protocol Approvals, Registrations, and Patient Consents

All participants provided informed consent before their involvement in the study.
The DNA samples underwent coding and analysis in an anonymous manner. The study
protocol and informed consent received approval from the Institutional and National
Supreme Helsinki (IRB) Committees for Genetics Studies.

2.3. Whole-Genome Sequencing and Quality Filters

Whole-genome sequencing (WGS) was carried out on 202 unrelated AJ-PD patients
(104 GBA1-PDs, 32 LRRK2-PDs, one dual-mutation carrier (GBA1/LRRK2), and 65 NC-PDs);
of them, 173 were included in the cohort of 1200 PDs. Sequencing was conducted using the
DNBseq technology and paired-end reads were aligned to the human reference genome
GRCh38/hg38 built using the BWA tool, as previously described [15]. Variant calling
was performed on the alignment data of each sample using the Genome Analysis Toolkit
(GATK) [16]. Variants were extracted from the MAPT locus (~1.4 Mb; hg38: chr17:45,394,449-
46,808,970) using the SNP & Variation Suite V.8.9.0 (Golden Helix, Inc, Bozeman, MT, USA),
and those with a read depth (RD) lower than 10 or genotype quality (GQ) lower than 30
were filtered out. For linkage disequilibrium (LD) analysis, variants with a call rate < 1.0
and indels were also excluded.

2.4. Variant Annotations

Variants were annotated using RefSeq, and evaluated for their deleteriousness using
the in silico prediction scores generated by combined annotation-dependent depletion
(CADD; v1.6) [17]. Additional variant characterizations were conducted using The En-
cyclopedia of DNA Elements (ENCODE) to annotate candidate cis-regulatory elements
(cCREs) [18] and Aminode to identify evolutionarily constrained regions (ECRs) [19].

2.5. Genotyping

rs17651549 in MAPT was genotyped using the complete cohort of 1200 AJ-PD pa-
tients (Thermo Fisher Scientific fluorescent TaqMan® assay: p.Arg370Trp, C__25609347_10;
StepOnePlus RT-PCR system, Applied Biosystems, Beverly, MA, USA).

2.6. Statistical Analysis

To identify variants unique to the H2 haplotype, LD (r?) was calculated between
the H2-tagged single-nucleotide variation (SNV) rs8070723 and each SNV in a window
of 1200 kb using PLINK1.9 (https://www.cog-genomics.org/plink/1.9/, accessed on
22 May 2023) [20]. The odds ratios (ORs) and 95% confidence intervals (Cls) were calcu-
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lated using ‘MedCalc’ (https://www.medcalc.org, accessed on 22 May 2023) for allelic,
dominant, and recessive models for H2. The gnomAD data set of AJ-non-neuro cases
(version V2.1.1; ethnicity confirmed by both self-report and PCA analysis [21]) was used as
the controls [3]. Importantly, it exclusively consists of samples from individuals who were
not ascertained for having a neurological condition in a neurological case/control study.
The SPSS statistics software v.25 was used to conduct a stratified linear regression analysis
under a dominant model of rs17651549 with Age at Motor Symptom Onset (AMSO). We
previously demonstrated that the AMSO of GBA1-PDs was affected by both the type of
GBA1 mutations (severe or mild) and mutation dosage [10]. To avoid a confounding effect,
we excluded severe GBAI mutation carriers, compound heterozygotes, and N370S homozy-
gotes from this analysis (n = 67). The regression coefficients and 95% Cls were estimated,
and the analysis was adjusted for sex.

The expression quantitative trait loci (eQTLs) and splicing quantitative trait loci
(sQTLs) for variants within the MAPT locus were obtained from the GTEx Portal (https:
/ /gtexportal.org/, accessed on 20 August 2023). As GTEx measures the effect of each SNV
on eQTL/sQTL within a 2 Mb interval (1 Mb upstream and 1 Mb downstream), we used
three SNVs in the LD region to assess the effect of the complete 1.2 Mb H2 haplotype:
rs4528616 at the proximal end, rs62071573 at the distal end, and rs17651549 located at the
center of the LD region. The total region of analysis was hg38: chr17:44,606,231-47,265,628,
2.67 Mb. We determined the significance threshold for the eQTLs based on m-value > 0.9
and p < 0.0005 and for the sQTLs based on p < 0.0001.

3. Results
3.1. Linkage Disequilibrium Analysis

A total of 13,449 variants were extracted from 202 PDs at the position hg38- chr17:45,
394,449-46,808,970 (~1.4 Mb). After filtering (see methods), 7503 variants remained.

Using the tagging SNV rs8070723, 10 homozygous individuals were identified as
H2/H2. The LD analysis comparing these 10 individuals revealed two haplotype breaking
points that define a 1.2 Mb minimal LD interval (hg38:chr17:45,494,449-46,708,970; Figure 1):
one H2/H2-PD carried a recombinant allele at the proximal end (PD-8, Figure 1), and
two H2/H2-PDs carried a recombinant allele at the distal end (PD-9 and PD-10, Figure 1).
An interrogation of the WGS reads based on a visualization of the BAM files revealed
two low-coverage regions. The first region, spanning a 78.6 Kb interval (chr17:45,494,872-
45,573,510, Figure 1, left shaded box), is located adjacent to the proximal end of the identified
1.2 Mb minimal LD interval. This region includes two pseudogenes, LRRC37A4P and
RDM1P1, as well as two copy number variants (CNVs). The second region, spanning
409.8 Kb (chr17:46,297,396-46,707,168, Figure 1, right shaded box), is located adjacent to the
distal end and encompasses four genes, LRRC37A and ARL17A, with a high homology to
LRRC37A2 and ARL17B.

3.2. H2 Haplotype Analysis

Out of the 7503 variants, 6665 were in the minimal LD interval of 1.2 Mb. The LD
analysis of these variants revealed 2160 haplotype-divergent redundant SNVs (r? ~ = 1)
(Supplementary Table S1).

We conducted a comprehensive characterization of the haplotype-divergent SNVs
predicted to be pathogenic using in silico analysis tools. Out of 2160 haplotype-divergent
SNVs, 78 SNVs had a CADD Phred score of 12.37 or higher (Supplementary Table S2),
placing them at the top 2% of scores among all possible changes in the human genome. This
specific threshold is associated with the detection of potentially pathogenic variants [22].
Among these, five SNVs had a CADD Phred score of 20 or higher, thus positioning them
within the top 1% of deleterious variants (Table 2). Three of these are missense variants,
one resides within MAPT and two reside in Signal Peptide Peptidase-Like 2C (SPPL2C). All
missense variants were predicted to reside within evolutionarily constrained regions (ECRs)
by Aminode [19]. In addition to the missense variants, one intronic variant, which was
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annotated to both intron 4 of Corticotropin-Releasing Hormone Receptor 1 (CRHR1) and
intron 6 within LINC02210-CRHR1, was predicted to reside within a distal enhancer-like
signature, as indicated by the ENCODE Registry of candidate cis-regulatory elements [23].
Lastly, there is one variant located about 2 Kb upstream to the KAT8 Regulatory NSL
Complex Subunit 1 (KANSLI), which resides within a promoter-like signature [23].
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Figure 1. Schematic representation of the MAPT locus and the linkage disequilibrium (LD) region in
Ashkenazi Jews (AJs). The upper panel presents the genes in chr17:45,306,351-46,866,206 from the
hg38 UCSC genome browser GENCODE V43 annotation track. Variants are represented by black
lines, while boxes filled with transparent grey diagonal lines indicate regions with low WGS coverage.
Black-colored genes represent coding genes, and grey-colored genes indicate pseudogenes. In the
lower panel, the specific genotypes of 10 H2/H2 AJ-PD carriers and 47 AJ-PD H1/H1 carriers are
depicted schematically and not drawn to scale. Three H2/H2 individuals (PD8, PD9, and PD10) carry
recombinant alleles marked as R1, R2, and R3. These three reduce the LD region to a 1.2 Mb interval.

3.3. H2 Is Associated with All Subgroups of PD

Since rs17651549 had the highest CADD Phred score (24.9, Table 2, Supplementary
Table S1), we genotyped it in the larger cohort of 1200 AJ-PDs. This variant showed an
association with PD (allelic odds ratio (OR) = 0.793, CI = 0.705-0.891, p = 0.0001, Table 3),
confirming previous reports. Furthermore, in a dominant genetic model for the H2 al-
lele, rs17651549 was found to be significantly associated with PD (dominant OR = 0.748,
CI = 0.650-0.862, p = 0.0001). However, no significant association was observed under
the H2/H?2 recessive model (recessive OR = 0.772, CI = 0.564-1.056, p = 0.106), suggesting
a dominant effect of the H2 allele in PD protection. Similar associations and effect sizes
were observed in the subgroups of PD patients, GBA1-PD, LRRK2-PD, and NC-PD (allelic
OR =0.774, CI = 0.615-0.975, p = 0.030; allelic OR = 0.694, CI = 0.515-0.936, p = 0.017; and
allelic OR = 0.815, CI = 0.712-0.933, p = 0.003, respectively, Table 3), suggesting a unified
protection effect regardless of the carrier status of GBAI and LRRK2 mutations. This protec-
tive effect was observed in these PD subgroups under the dominant mode of inheritance as
well (GBA1-PD: dominant OR = 0.700, CI = 0.530-0.923, p = 0.012; LRRK2-PD: dominant
OR =0.678, CI = 0.478-0.961, p = 0.029; and NC-PD: dominant OR = 0.771, CI = 0.655-0.909,
p =0.002).
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Characterization of five haplotype-divergent SNVs with CADD Phred score higher or equal to 20.

. In Evolutionarily
Chrqmosome. Reference > Alternates Identifier CADD Phred Score Gene Names Sequence Ontology Amino Acid Change Gene Region Constrained Region ENCOD.E (ENCODE
Position (hg38) (Aminode) Accession- cCREs)
17:46225515 C>T 1$2532404 20.70 KANSLI Upstream variant N.A Upstream N.A EH38E 1866648 —promoter-
like signature
17:45983912 C>T 1517651549 24.90 MAPT Missense variant NP_001364194.1: Exon 5 Yes None
p-Arg445Trp
17:45846707 >C rs12373123 24.80 SPPL2C Missense variant NP_787078.2: Exon 1 Yes None
p-Ser601Pro
17:45846288 G>C rs12185233 23.50 SPPL2C Missense variant NP_787078.2: Exon 1 Yes None
p-Arg461Pro
. CRHRI, Intron variant, Intron EH38E1866300—distal
17:45825139 C>T rs4341787 21.70 LINC02210-CRHR1 variant N.A Intron 4, Intron 6 N.A enhancer-like signature
Abbreviations: CADD = combined annotation-dependent depletion, cCREs = candidate cis-regulatory elements; N.A = not applicable.
Table 3. Risk analysis of rs17651549 in Ashkenazi Jews.
Number of Alternate Alleles/Total Allelic Odds Ratio P

Number of Alternate Alleles (AFs)

Alleles in AJ Controls (AF) 2

(95% Confidential Interval, p-Value)

AJ-PD patients (n = 1200)

Stratified analysis

515 (0.214)
GBA1-PD (n = 235) 99 (0.211)
LRRK2-PD (n = 145) 56 (0.193)
NC-PD (n = 787) 345 (0.219)

1259/4912 (0.256)

0.793 (0.705-0.891, 0.0001)

0.774 (0.615-0.975, 0.030)

0.694 (0.515-0.936, 0.017)

0.815 (0.712-0.933, 0.003)

Note: # in gnomAD V2.1.1 AJ-non-neuro cases; b compared to gnomAD V2.1.1 A]-non-neuro cases. AF = allele frequency; AJ] = Ashkenazi Jews; PD = Parkinson’s disease; GBA1-PD = PD
patients who carry one or more of the ten AJ]-GBAI mutations and do not carry LRRK2-G2019S or SMPD1-L302P; LRRK2-PD = PD LRRK2-G2019S carriers who do not carry GBA1
mutations or SMPD1-L302P; NC-PD = PD non-carriers of any of the ten GBAI mutations, the LRRK2-G2019S mutation, or the SMPD1-L302P mutation; significant p-values are in bold.
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To further support the stratified association, and as the number of AJ controls who
carried the GBA1 mutations or the LRRK2-G2019S mutation was low, we conducted a
simulation using gnomAD allele frequency reports. Among the 235 GBA1-PDs (who did
not carry the LRRK2-G2019S mutation or the SMPD1-L302P mutation), 86 also carried the
H2 haplotype (36.6%), and this was significantly lower than the predicted dual-carrier rate
of both GBAT mutations and H2 haplotype (44.7%) based on genetically matched gnomAD
frequencies (OR = 0.714, CI = 0.546-0.935, p = 0.014 when simulating with 100,000 AJs).
Among the 145 LRRK2-G2019S-PDs (who did not carry the GBA1 mutations or the SMPD1-
L302P mutation), 52 also carried the H2 haplotype (35.9%), and this was significantly lower
than the predicted dual-carrier rate of both LRRK2-G2019S and H2 haplotype (44.7%) based
on genetically matched gnomAD frequencies (OR = 0.692, CI = 0.487-0.984, p = 0.040 when
simulating with 100,000 AJs).

3.4. H2 Is Not Associated with Age at Motor Symptom Onset

The stratified linear regression analysis under a dominant model of H2 revealed that
rs17651549 is not associated with AMSO in GBA1-PDs (f3: 0.770, p = 0.615), LRRK2-PDs
(B: 0.028, p = 0.944), and NC-PDs (p3: 0.056, p = 0.291).

3.5. Structural Variations in H2 Haplotype

The WGS interrogation revealed structural variations located on the H2 haplotype:
(i) a duplication of about 150 Kb, which covers the 5 coding exons of the KANSLI gene
(Supplementary Figure S1), and this duplication has been previously reported to generate
anovel KANSLI transcript [9]; (i) a CNV with a deletion of approximately 250 bp within
intron 6 of MAPT (chr17:46,009,350-46,009,598); (iii) A CNV with a deletion of approxi-
mately 315 bp within intron 2 of KANSL1 (chr17:46,099,041-46,099,354); and (iv) a CNV
with a deletion of approximately 315 bp within intron 2 of KANSLI (chr17:46,146,545-
46,146,859). A subsequent analysis of the methylation and expression data within these
CNV regions was performed using the UCSC GRCh37 /hg19—UCSF Brain DNA Methy-
lation track’ [24]. Methylated DNA immunoprecipitation (MeDIP) signals were detected
in all three CNVs. The CNV within MAPT displayed methylation at five CpG sites, while
the CNVs within KANSL1 (iii and iv) exhibited 23 and 24 methylated CpG sites, respec-
tively (Supplementary Figure S2). All four structural variants, including the segmental
duplication and CNVs, were present in all H2 carriers in our WGS cohort.

3.6. The Effect of H2 Haplotype on RNA Expression and Splice Variant Expression

eQTL and sQTL analyses were performed using data from all 13 available brain tissues
in the GTEx Portal (amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere,
cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, puta-
men, spinal cord (cervical c-1), and substantia nigra). The eQTL analysis revealed a
significant association between H2 (represented by the three haplotype-divergent SNVs)
and altered gene expression in the 13 brain tissues. Specifically, H2 exhibited consistent
correlation across all 13 brain regions, resulting in increased expression of two protein-
coding genes, Leucine-Rich Repeat-Containing 37 Member A (LRRC37A) and LRRC37A2,
and one antisense KANSLI-AS1. Several pseudogenes also showed a significant increase in
expression (RP11-259G18.3, MAPK8IP1P2, MAPKS8IP1P1, DND1P1, and RP11-259G18.1),
while one showed a decreased expression (LRRC37A4P; Supplementary Table S3).

The sQTL analysis revealed a significant association between H2 and the intron
excision ratios of both KANSL1 and LINC02210 across all 13 brain tissues. Notably, while
the impact of H2 on the LINC02210 intron excision ratio varied across different brain
tissues, there was a consistent decrease in the intron excision ratio of KANSL1. However,
the differences in intron excision in KANSLI need to be interpreted cautiously due to the
presence of segmental duplication in this region. Other genes showed significant differences
in the intron excision ratio but not across all brain tissues (Supplementary Table 54).
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4. Discussion

In this study, we identified a 1.2 Mb MAPT-H2 haplotype in the A] population and
showed its dominant PD-protective effect in AJs. Studies in the AJ-PD cohort allowed us
to stratify them according to subgroups of GBAI and LRRK2-G2019S mutation carriers
and, importantly, to demonstrate that this protective effect of MAPT-H2 is independent
of GBA1 and LRRK2 mutation status. However, there was no association between the
MAPT-H2 haplotype and AMSO among these different PD subgroups. It is important to
note that other non-H2 divergent variants within the MAPT locus may have an effect on
the AMSO, as we previously showed an association between a MAPT-SNV and AMSO in
PD LRRK2-G2019S carriers [25], which was not an H2 divergent variant.

Determining the precise genetic alteration responsible for the H2 effect in PD has
been exceedingly challenging due to the structural complexity of the MAPT locus, which
encompasses a substantial number of variants and structural variations (duplication and
deletions). In an effort to further unravel this complexity, we conducted different bioin-
formatic analyses to identify candidate genes and variants that might contribute to the
H2 PD-protective effect. First, we used WGS data to characterize potentially pathogenic
haplotype-divergent SNVs, thereby revealing candidate variants and genes. One of these
candidate genes is SPPL2C, which consists of two missense variants out of the five in silico
potentially pathogenic variants described here. SPPL2C belongs to the intramembrane-
cleaving protease family, and its disruption has been demonstrated to impair vesicle
trafficking, resulting in a defective transport process within cells [26]. Impairments in
intracellular trafficking are key mechanisms underlying PD pathology [27] and involved
in PD risk, as we recently showed [28], thus raising the possibility that SPPL2C function
might be involved in PD.

Next, we conducted a fine-mapping analysis using our WGS data to further confirm the
presence of unique structural variants. One of them is the partial duplication of the 5’ end
of the KANSLI gene [9]. KANSLI, part of the NSL complex, acts as a scaffolding protein [29]
and interacts with the WD Repeat Domain 5 (WDR5) gene, which has been identified as
being associated with the immune function of PD [30]. Both KANSLI and lysine acetyl-
transferase 8 (KAT8) have been implicated in PINK1-dependent mitophagy [31], a cellular
process involved in the degradation of dysfunctional mitochondria, which is associated
with PD [32]. In a biological screening assay focused on PD candidate genes involved in
PINK1-dependent mitophagy, knockdown of both KANSLI and KATS resulted in reduced
accumulation of phospho-ubiquitin, an initiation marker of PINK1-dependent mitophagy,
suggesting KANSLI plays a role in mitophagy regulation and PD pathology [31,33]. Inter-
estingly, a recent study utilizing the PPMI database revealed that individuals who carry
the H2 haplotype have higher levels of KANSLI transcript compared to those who carry
H1, with H2 acting in a dose-dependent manner [34], highlighting the association between
the H2 haplotype and increased transcript levels of KANSL1. As the H2 haplotype has a
protective effect on PD, it is plausible to suggest that the presence of this additional novel
KANSLI transcript in H2 carriers may contribute to the observed protective effect in PD.

Additionally, we observed on the H2 haplotype two CNVs with deletions within
intron 2 of KANSLI in regions that include multiple methylated CpG sites. Intragenic DNA
methylation has a well-established role in regulating the usage of alternative promoters
and influencing gene expression [24]. Given that only H2 carriers display these deletions,
our data suggest that different DNA methylation patterns between the H1 and H2 haplo-
types could potentially modulate KANSLI expression. In line with this hypothesis, it has
been demonstrated that individuals with neurodegenerative diseases who carry the H1
haplotype exhibit decreased KANSL1 expression [35]. As we demonstrated a dominant
protective effect of H2 in AJ-PDs, it is tempting to suggest a hypothetical state, where
an additional transcript of KANSLI in the H2 haplotype may contribute to a dominant
gain-of-function effect, which is not affected by the presence of the H1 haplotype, and
results in higher levels of KANSLI among PDs. Altogether, these structural variants within
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KANSL1 present potential factors that could impact its expression and affect PD pathology,
as previously suggested [31,33].

Of note, the WGS fine-mapping analysis reduced the LD interval in the AJ cohort to a
minimal region of 1.2 Mb. However, this region might be even smaller as the proximal and
distal ends of this region, containing pseudogenes and CNVs, had a low coverage due to
the limitation of the WGS short-read technology (~100-150 bp in length). Re-sequencing
this region using other technologies that provide long reads may contribute to a more
accurate characterization of this region and may reduce the LD even more.

In addition, the results of our eQTL analysis indicate that the H2 haplotype increases
the RNA expression levels of LRRC37A and its paralog LRRC37A2 (LRRC37A/2) across
13 brain tissues, consistent with prior findings [36]. LRRC37A/2 has been linked to immune
and inflammatory responses, cellular migration, and synapse formation [37,38]. Notably,
recent research has demonstrated that increased expression of LRRC37A/2 leads to the
upregulation of pro-inflammatory genes, thereby mediating astroglial inflammation [39].
Additionally, it has been shown that in PD, LRRC37A/2 interacts with «-synuclein in
astrocytes of the substantia nigra [39]. As the H2 haplotype is associated with elevated
LRRC37A/2 RNA levels, this may suggest a potential role for LRRC37A/2 in PD pathology.

The minimal 1.2 Mb interval includes the MAPT gene, which encodes Tau protein,
known to be involved in Alzheimer’s disease (AD) and other Tauopathies. Emerging
evidence suggests that Tau is involved in PD pathophysiology [40]. Yet, the link between
the various differences we observed between the H2 haplotype and H1 haplotype and
Tau pathology (Tau aggregation and hyper-phosphorylation) is not known and should
be studied.

This study primarily focused on the AJ population, which provides an advantage in
our capability to examine the effect of genetic variants in stratified groups of PDs that carry
founder mutations. However, our study has a few limitations. We used data generated by
the short-read sequencing technique, which resulted in two low-coverage regions adjacent
to the inversion. This limitation stems from challenges posed by CNVs, pseudogenes,
and genes with high homology, preventing us from accurately assessing the minimum LD
region and understanding its impact on PD protection. Another limitation of this study is
that due to our small sample size, we did not address modification of disease penetrance
for the H1/H1 haplotype and the H2 haplotypes (H2/H2 and H1/H2) using stratified
GWAS as reported by Senkevich et al. [41]. An additional limitation of this study is the
absence of a fully characterized motor and cognitive clinical phenotype for all 1200 PD
patients, which results in a reduced power to identify any significant association between
MAPT-locus haplotypes and PD clinical characteristics.

Nevertheless, we demonstrated here a protective effect across all subgroups. Our
analyses suggest that the protective effect of H2 could be complex, resulting from different
levels of variations such as missense mutations in relevant genes, structural variations,
epigenetic modifications, and RNA expression alterations. These effects may operate
independently or may exhibit synergistic effects. Therefore, cellular models separating
these elements, as well as models combining them, are warranted to decipher the various
biological mechanisms underlying the protective effect of the MAPT locus in PD.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ genes15010046/s1, Figure S1: BAM file visualization depicting the
partial duplication, spanning approximately 150 Kb, of the 5’ coding exons within the KANSLI gene.
Figure S2: Three deletion CNVs within H2 haplotype. Table S1: List of 2160 haplotype-divergent
redundant SNVs (in full LD with rs8070723) (sorted by CADD Phred score). Table S2: List of
78 haplotype-divergent SNVs (in full LD with rs8070723) with CADD Phred score equal or higher
than 12.37 (sorted according to gene names). Genes with Phred CADD score higher than 20 are
highlighted in red. Table S3: Effect of the H2 haplotype on eQTLs within the 17q21.31 locus across
13 brain tissues. The table presents NES values reported by GTEx for the change in gene expression
(sorted by gene names). Table S4: Effect of the H2 haplotype on sQTLs within the 17q21.31 locus
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across 13 brain tissues. The table presents NES values reported by GTEXx for intron excision ratio
(sorted by gene names).
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