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Abstract: Machine learning, including deep learning, reinforcement learning, and generative artificial
intelligence are revolutionising every area of our lives when data are made available. With the help
of these methods, we can decipher information from larger datasets while addressing the complex
nature of biological systems in a more efficient way. Although machine learning methods have been
introduced to human genetic epidemiological research as early as 2004, those were never used to
their full capacity. In this review, we outline some of the main applications of machine learning
to assigning human genetic loci to health outcomes. We summarise widely used methods and
discuss their advantages and challenges. We also identify several tools, such as Combi, GenNet, and
GMSTool, specifically designed to integrate these methods for hypothesis-free analysis of genetic
variation data. We elaborate on the additional value and limitations of these tools from a geneticist’s
perspective. Finally, we discuss the fast-moving field of foundation models and large multi-modal
omics biobank initiatives.

Keywords: genome-wide association; human genetics; machine learning

1. Introduction

Genome-wide association study (GWAS) is a hypothesis-free statistical approach
for assessing associations between genetic variants and phenotypes in a sample popula-
tion [1]. To date, more than 60,000 genetic associations have been reported in more than
6000 GWASs [2] with their summary statistics being publicly available in repositories, such
as the GWAS Catalog [3], GWAS Atlas [2], and Roslin gene atlas [4], among others. Al-
though the most popular area of GWAS application has been human genetics, this approach
has also been successfully applied in genetic research for fungi [5], bacteria [6], plants [7],
and animals, including wild and companion animals [8], as well as livestock populations [9],
proving its widespread use across agricultural, veterinary, and medical sciences. GWAS
not only have been instrumental in discovering genetic variants as potential causal factors
for human diseases but also encouraged the development of genotyping platforms and
new statistical methods, as well as investment into huge DNA biobanks with petabytes of
phenotype and genotype data from various ethnic groups [10].

The main ambition and outcomes anticipated when designing GWASs has been two-
fold. First is to understand the biological pathogenesis of human diseases or variation in
quantitative traits, such as height or endophenotypes. Such knowledge can be used for the
development of disease therapeutic options by blocking the downstream path of a culprit

Genes 2024, 15, 34. https://doi.org/10.3390/genes15010034 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15010034
https://doi.org/10.3390/genes15010034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-7576-5791
https://orcid.org/0000-0002-5870-4030
https://orcid.org/0000-0003-1624-7457
https://orcid.org/0000-0002-7546-0867
https://doi.org/10.3390/genes15010034
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15010034?type=check_update&version=2


Genes 2024, 15, 34 2 of 18

molecule, or by replacing the missing molecules. Second, identify the individuals at risk of a
certain disease, often case of quantitative traits, the quantitative preby calculating polygenic
risk scores (PRS). In thediction is translated into a liability threshold, (e.g., BMI > 30) to
predict obesity.

1.1. The Road from GWAS Findings to Drug Discovery

GWAS for several diseases have led to the identification of a large number of associated
variants in functionally plausible genes as in the case of FTO for obesity [11], SLC30A8
for type 2 diabetes [12], and APOE for Alzheimer’s disease [13]. In a more recent GWAS
meta-analysis, missense variants in the GLP1R locus with significant effects on random
glucose were functionally followed up [14]. It was shown that some of these variants
responded differently to GLP-1R agonist drugs, commonly used in managing diabetes,
indicating the importance of tailored treatments based on genetic variability.

Several examples of therapeutically actionable GWAS variants, which map to genes
modulated by currently used drugs for diseases, have been described [15]. Causal evidence
from human genetic studies prioritizing genes encoding approved drug targets or their
interacting proteins correlates with higher success rates in clinical trials [16]. The transla-
tion of GWAS signals into therapeutic targets requires the integration of multiple omics
layers, as well as clinical knowledge of the pathophysiology of the disease. Open-source
informatic solutions can assist in the identification and prioritisation of targets. For ex-
ample, Open Targets Platform aggregates evidence scores from 22 different data sources
capturing information from genetic associations, somatic mutations, known drugs, affected
pathways, literature mining, differential expression, and animal models [17]. Among these
data sources, Open Targets Genetics aims to overcome the challenges of identifying the
most likely causal variant and the actual causal genes at each GWAS locus for common,
complex traits/diseases by integrating genetic and functional genomics features [18]. The
application of complex statistical models on larger studies with broader phenotyping and
better knowledge of disease pathophysiology offer opportunities not only for de novo drug
development but also drug repurposing. However, most GWAS signals do not present large
enough effect sizes to be translated into drug targets, apart from some notable exceptions,
such as APOE for Alzheimer’s disease [19].

1.2. GWAS Applications beyond Gene Discovery: Cumulative Genetic Profiles and
Causal Relationships

GWAS findings demonstrated that most common non-communicable diseases show
high polygenicity with each individual associated variant, accounting for a small propor-
tion of phenotypic variance. It set the floor for more efficient identification of individuals
at high/low disease risk by calculating PRS and summing the weighted effect size of
each associated variant [20]. PRS have been first introduced for highly polygenic mental
disorders for which initial GWAS underachieved [21,22]. Later, they were constructed for
various diseases, such as coronary artery disease, hypercholesterolemia, and T2D [23]. Al-
though it improved disease prognosis compared to conventional risk factors, their value in
clinical practice is still questionable highlighting the existing challenges [24]. For example,
PRS studies can face ancestry biases with limited transferability across populations due
to differences in risk allele frequencies, heritability, linkage disequilibrium, and clinical
heterogeneity [25]. The majority of existing PRS have been constructed based on variants
identified in European populations. These Eurocentric PRS might be less predictive for
other ethnic groups with substantially lower allele frequencies for these variants. Fur-
thermore, certain modifiable factors, such as diet, alcohol consumption, smoking, and
physical activity, correlate with genetic ancestry influencing phenotypic variance and PRS
accuracy [26]. Even within populations of the same ethnicity genetic differences are present
leading to bias when PRS are trained and tested on different subpopulations [27]. Overall,
more advanced methods are necessary to improve risk prediction models, making PRS
implementation into clinical practice a reality.
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Additionally, GWAS results fuelled the development of novel approaches enabling
discoveries of the complex relationships between human traits, exosomal, and intrinsic
factors. Among the most popular approaches is Mendelian Randomisation, a method
powered by a plethora of GWAS data to estimate the causal effect of exposure on an outcome
dissecting the causal relationships between phenotypes [28]. Mendelian Randomisation
relies on effect estimates and standard errors obtained from individual SNPs in either
single GWAS or through meta-analysis of GWAS. Finally, the genetic correlation between
two different phenotypes is not necessarily measured on the same individuals and can be
calculated by using GWAS outputs [29].

In GWAS, a separate statistical test is performed for each SNP and the identified
individual variants only account for a small proportion of the heritability of complex
diseases and traits. This is partially due to a lack of robust methodology for studying
SNP-SNP interactions. Typically, GWAS analysis requires a large sample size for statistical
power, which is achieved by meta-analysis of hundreds of GWAS [30] conducted on distinct
populations [31]. Unfortunately, GWAS findings often lack direct biological interpretation
and post-GWAS methods are necessary for drug development.

2. Machine Learning Solutions for GWAS

Machine learning, a subfield of artificial intelligence, deals with the development
of algorithms capable of learning from the data. Recently, the application and develop-
ment of machine learning methods for genomics have undergone rapid growth. It proved
valuable for analysing complex, high-dimensional genomics data and extracting previ-
ously unknown information. Examples of machine learning applications in the wider
omics field range from the identification of DNA sequences (splice sites [32], promot-
ers [33], enhancers [34]), nucleosome positioning [35], taxonomic annotation [36], microbial
enterotyping [37], sequence errors learning [38], microbial host body site and subject classi-
fication [39], viral escape prediction [40], protein 3D structure estimation [41], evolutionary
population genetics inference [42], and genomic selection [43].

2.1. Machine Learning Methods Frequently Adapted for GWAS

PubMed and Google Scholar were searched for journal articles that included the
keywords “machine learning” and “genome-wide association study”. We focused on papers
written in English and published from 1 January 2004 to 6 November 2023. An initial set of
147 articles was selected and then reviewed based on their title, keywords and abstracts
for inclusion. Papers that did not match the inclusion criteria were eliminated, resulting in
109 articles. We then assessed the full text of those papers, which were further categorised
based on their context and relevance including research articles that applied machine
learning algorithms to GWAS, PRS, and review papers. We also included benchmarking
research which used real data excluding the ones that used only synthetic data. From this
set of articles, duplicate papers were also deleted. This resulted in 79 relevant papers, of
which 60 were research articles and 19 review articles. The methodology in each research
article was analysed to identify the specific machine learning tools and their unique features.
The most common methods included Support Vector Machines (SVMs), random forests,
and neural networks. We provide a short background for these methods below.

Random forest [44] is an ensemble learning method commonly used in GWAS. In a
random forest, several weak classifiers (e.g., trees) are constructed, each using a random
subset of the training data and a random subset of the features. This randomness in data
and feature selection is a key element of the method, which mitigates the risk of overfitting
and helps ensure the model’s generalisation to new, unseen data. Each tree in the forest
independently makes predictions based on its specific subset of the data. When a new data
point is presented to the model, it passes through each decision tree and their individual
predictions are aggregated. In classification tasks, the final prediction is often determined
by a majority vote among the trees, while in regression tasks, it is the average of the
predictions. Random forests are particularly strong at handling high-dimensional genomic
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data commonly encountered in GWAS, providing insights into the importance of individual
genetic features and interactions among them [45]. Random forests can also be used to
perform feature importance rankings, helping researchers to identify key genetic variables
contributing to complex traits, as discussed below.

SVMs [46] are a class of machine learning algorithms designed to classify data by iden-
tifying the optimal hyperplane that best separates different classes in a high-dimensional
feature space. In the context of GWAS, SVMs map genetic data that is often represented
as high-dimensional feature vectors in multi-dimensional space. The goal is to identify
the hyperplane (decision boundary) that maximises the margin between different genetic
variations associated with a particular trait or disease. SVMs work by selecting support
vectors, which are the data points closest to the decision boundary. These vectors play
a key role in determining the orientation and position of the hyperplane. The choice of
the optimal hyperplane is critical because it minimises the risk of overfitting and aims to
generalise well to unseen data. SVMs can also handle non-linear relationships through
kernel functions, transforming the input data into a higher-dimensional space, where a
linear separator becomes feasible.

Neural networks [47] rapidly gained significance in GWAS, mainly due to their ability
to uncover complex genetic patterns within high-dimensional genomic datasets. The basic
building block of a neural network is the artificial neuron (also referred to as a node).
Each neuron transforms input data through a weighted sum, which is followed by the
application of an activation function. By connecting neurons in layers, neural networks
can model increasingly abstract and complex relationships. In the context of GWAS, these
networks are often designed as deep neural networks [48,49] with multiple hidden layers,
to extract hierarchical features from genetic data. Neural networks are especially suited at
capturing non-linear relationships among genetic variants [49]. During the training process,
they adjust their internal parameters to minimise prediction errors. This training process
involves feeding the network with genetic data and adjusting its parameters until it can
make more accurate predictions. Once the model has been trained, neural networks can be
used for a variety of tasks, including classification, regression, and feature selection.

2.2. Machine Learning Application Areas in GWAS

In this section, we present the methods, benchmarking efforts, and specifically de-
signed tools which integrate machine learning approaches working with high-dimensional
genetic data, the results of which are promising in identifying novel disease-associated
susceptibility loci. These studies suggest that machine learning could be used instead of
traditional statistical GWAS methods, potentially aiding in the better understanding of
complex multifactorial genetic diseases and the prediction of individuals at risk. Bench-
marking efforts of using machine learning in the field of GWAS are mainly focused on four
methods: gradient boosting, random forest, SVM, and neural networks. Here, we simplify
the classification of applications by prioritising top GWAS SNPs and genes, detecting epis-
tasis among selected loci, search space reduction, predicting traits, identifying variant/loci,
and supporting PRS.

Prioritization of top GWAS SNPs and genes. In GWAS, the multitude of input features
(SNPs) often exhibit correlation due to linkage disequilibrium. This correlation leads to
many SNPs having closely related p-values of statistical significance. Initially, the common
approach was to prioritize the top trait-associated SNP and link it to the nearest gene.
However, solely relying on physical proximity can be misleading as SNPs can affect gene
expression across extensive genomic distances. This necessitates a more nuanced under-
standing and exploration of how genetic variations impact gene expression and function
beyond just physical proximity [11]. Expression quantitative trait loci studies suggest that
two-thirds of the causal genes at GWAS loci are not the closest [50,51]. Thus, identifying the
most likely causal SNP is a challenge in GWAS. Paired with functional validation, machine
learning shows important promise for clinical translation, providing a strong evidence-
based approach to direct post-GWAS research. Machine learning applications developed
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for post-GWAS prioritisation (up until 2020) were summarised by Nicholls et al. [52] who
pointed out that 7 out of 19 post-GWAS prioritisation methods were ensemble methods,
namely gradient boosting and random forest.

An example of how neural networks can be used to prioritise disease-associated
genetic variants can be found in Liu et al. (2018) [53]. They developed DEOPEN, a model
which integrates a deep convolutional neural network and a three-layer feed-forward
neural network. This model can predict chromatin accessibility and consider interactions
between sequence patterns. The authors also demonstrated how their framework can be
used to evaluate genetic variants of interest, including functional variants. The authors
applied their framework to a GWAS breast cancer GWAS data which identified 29 SNPs
associated with this condition from 1057 SNPs that co-occurred with them, through their
involvement with a cancer-related transcription factor, FOXA1.

The remaining methods focus on prioritisation of genes, rather than SNPs. Open
Targets recently introduced new techniques for prioritising GWAS results [54]. Their
“locus-to-gene” model derives features to prioritise likely causal genes at each GWAS
locus, incorporating genetic and functional genomics features such as distance, molecular
QTL colocalization, chromatin interaction, and variant pathogenicity. The locus-to-gene
method uses a machine learning model to determine the weights of each evidence source,
referencing on a gold standard of previously identified causal genes and relying on fine-
mapping and colocalisation data.

A random forest-based classifier, GCDPipe [55], uses gene-level results derived from
GWAS analysis. It expands the list of potential disease gene candidates through the
estimation of probability to influence disease risks. GCDPipe identifies gene expression
profiles across cell types and tissues with the highest importance for putative disease gene
identification. Additionally, it prioritises drugs based on affinity to the putative disease
genes using drug-gene interaction databases.

One remarkable benchmarking effort for prioritisation of causal genes was done by
Vitsios and Petrovski (2020) [56] and compared seven different machine learning methods
to prioritise genes for amyotrophic lateral sclerosis, chronic kidney disease, and epilepsy.
They implemented a diverse pool of gene-annotation sources: generic resources (disease
and/or tissue agnostic) and resources filtered by tissue and disease-specific features. They
also developed “mantis-ml” as an automated machine learning framework to enable
learning from sets of gene-associated features. Random forest was reported as the top-
performing classifier.

Epistasis detection among selected loci. Random forest was initially suggested as
an alternative to model genetic interactions in 2004 [45]. The rationale behind employing
random forest is that in situations involving genuine interactions, SNPs exhibit modest
individual effects but considerable interaction effects within a population. However, such
effects are less likely to be detected at the genome-wide multiple testing thresholds used
in GWAS screenings. Moreover, model-based screens that assess the interaction of each
SNP with every other SNP in the dataset, aiming to pre-specify interacting SNPs, are
impractical for datasets exceeding a thousand SNPs. Given that a typical GWAS dataset
usually comprises more than 50,000 SNPs, such an approach becomes unfeasible.

Random forest analysis of interacting genetic models, up to 32 independent SNPs
showed that random forest performed better than Fisher’s exact test as a screening tool
when genetic heterogeneity as well as random noise is accounted for. In this study, the
authors recommended that thousands of trees must be used in order to get stable estimates
of the variable importance [45]. An advantage of random forest is that the investigator
does not need to propose a model, making it well-suited for hypothesis-free screens such as
GWAS or candidate gene studies. It also captures interactions and reflects them in variable
importance scores. Drawbacks of the method include lack or concordance between variable
importance and predictive index value [57] and the high chance of detecting false, spurious
associations when the study design is sub-optimal [58].
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In 2015 Nguyen et al. [59] developed ts-RF which is a two-stage method for selecting
informative SNPs, i.e., a small portion of the SNPs that have main effects on the disease. In
this method, first, a p-value assessment is performed to find a cut-off point that separates
the genome-wide SNP data into relevant and irrelevant SNPs. The informative SNPs group
is further divided into two sub-groups: highly informative and weak informative. Then,
these two groups are considered when sampling for building trees. So, the feature subspace
is encouraged to contain highly informative SNPs when used to split a node at a tree,
resulting in better performance in RF. They applied ts-RF to real genome-wide datasets
of Alzheimer’s and Parkinson’s disease and compared its performance of linear kernel
SVM from LibSVM [60]. ts-RF performed better at prediction and was able to point to
25 SNPs associated with Parkinson’s disease that are located within gene regions studied
by previous GWAS.

A recent report described by Leem et al. [61] suggested a three-step approach allowing
authors to define up to 5-locus interactions in real WTCCC datasets and synthetic datasets
without marginal effects. In the same study, they also proposed and tested the use of “mutual
information value” as the measure of association between genotypes and susceptibilities
of diseases, for extracting the SNPs which engage in interaction. Also, there have been
multiple attempts to find interacting genetic loci by other machine learning methods, such
as decision trees (DF-SNPs) [62], Deep Mixed Model [63], and grammatical evolution
optimised neural networks (GENN) [64].

Search space reduction One important area of machine learning for GWAS has been
to reduce the search space for following analyses or by prioritising loci to be included in
GWAS subsequently by increasing the p-value threshold and power in detecting significant
loci. To this end, stand-alone but also combinatory tools have been developed for search
space reduction.

Silva et al. [65] showed that dimensionality reduction techniques based on random
forest could effectively reduce dataset dimensions before conducting a cluster analysis of
augmented GWAS data using a two-step machine learning approach. In the first step of
dimension reduction, SNPs were ranked based on their relevance, and those with higher rel-
evance underwent the second stage of analysis, which involved clustering. They tested the
method on seroclearance GWAS in chronic hepatitis B while including the most significant
SNPs in the clustering. The results included over 100 SNP sets which were associated with
the phenotype of interest. SNPs were further detected and linked to HBsAg seroclearance
with statistical significance based on Hamming distance-based association tests [66] in
which a p-value for each predetermined causal SNP set was calculated. Knowing that
statistically significant variants tend to cluster, the authors also investigated the functional
relevance of SNPs found in the same SNP-set, as well as in individual SNPs followed by
random forest and identified possible susceptible loci that could be otherwise ignored
when only performing GWAS. The resulting SNP-sets from the cluster analyses were subse-
quently tested for trait association and identified three susceptibility loci possibly associated
with HBsAg seroclearance one of which was reported in the literature to be significantly
associated with HBsAg seroclearance in patients who had received antiviral treatment.

Random forest was further combined with SVMs and k-nearest neighbour (kNN)
clustering methods [67] by Gaudillo et al. and used for asthma genetic risk prediction. In
their study, they applied random forest to identify the SNPs highly implicated in asthma.
Following that, they trained kNN and SVM algorithms to classify the identified SNPs for
their association to asthma.

New frameworks using SVMs continue to be developed, while their performance is
also shown to be heavily influenced by the heritability of the disease [68].

Recent research in Alzheimer’s disease [69] used a hybrid feature selection approach
based on association test, principal component analysis and the Boruta algorithm, to
identify the most promising predictors. The selected features are then forwarded to wide
and deep neural network models to classify the Alzheimer’s disease cases and healthy
controls. In the first step, they conducted an association test to select the most signification
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SNPs influencing the disease, followed by a hybrid feature selection approach to reduce
the number of features substantially. They subsequently used a selection process for
neighbouring SNPs to generate a final set of SNPs. This set was then used to train wide
and deep learning classification models for both cognitively normal individuals and those
with Alzheimer’s disease.

Another method is DeepGWAS which uses a 14-layer deep neural network to enhance
power in GWAS signals without increasing the sample size, by assigning unequal a priori
probability for each SNP involvement in disease leveraging linkage disequilibrium informa-
tion and brain-related functional annotations. DeepGWAS was developed particularly for
psychiatric diseases, starting with schizophrenia and outperformed XGBoost and logistic
regression methods [70]. COMBI [71] and DeepCOMBI [72] also have built-in ML-based
variant prioritisation functions which are discussed in more detail below. The range of
applications using combinatory approaches continues to expand (Table 1).

Table 1. An overview of machine learning tools classified by application categories and machine
learning approaches.

Application Categories Applications and Tools Machine Learning Approach

Prioritization of top GWAS SNPs
and genes

• DEOPEN [53]
• GCDPipe [55]
• Mantis-ml [56]
• Open Targets [54]
• Methods developed prior to2021 [52]

Clustering
SVM
Random Forrest
Neural Network

Epistasis detection among
pre-selected SNPs

• DF-SNPs [62]
• random forest [45]
• DEOPEN [53]
• K-means [61]
• ts-RF [59]

Clustering
Random Forrest
Neural Network

Search space reduction

• clustering, random forest [65]
• random forest, SVM, kNN [67]
• Wide and Deep Learning [69]
• DeepGWAS [70]
• COMBI [71]
• DeepCOMBI [72]

SVM
Random Forrest
Neural Network

Hypothesis-free GWAS

• COMBI [71]
• DeepCOMBI [72]
• Deep Mixed Model [63]
• GenNet [73]
• GWANN [74]
• GMStool [75]
• MACLEAPS [68]
• iMEGES [76]

SVM
Neural Network

Polygenic Risk Score
• NNP [77]
• DNN [78]
• RF-GRS [79]

Random Forrest
Neural Network

2.3. Tools for SNP Discovery from Whole-Genome SNP Data

There is a growing number of efforts that use SVMs and neural networks to narrow
down the search space for GWAS. Additionally, there are tools designed to perform GWAS
with no prior hypothesis or feature selection. Below, we discuss algorithms and publicly
available tools which have undergone internal benchmarking but warrant further testing
in broader genetic epidemiological research (Table 3).
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Table 2. Currently available tools that are designed for outcome prediction or gene/SNP discovery
from genome-wide variation data.

Name Method Genotype Matrix
Generation

Explainability/Method
for SNP Relevance
Scores

Language

COMBI

Two-step method:

(1) SVM training and selection of
SNPs relevant for phenotype
classification

(2) Statistical testing

Not built-in. It requires
a phenotype vector and
a genotype matrix.

Yes/SVM for SNP
relevance scores

Matlab/Octave,
R and Java

DeepCOMBI

Three-step method:

(1) Training of a DNN for
classification of subjects into
their respective phenotypes

(2) Calculation of SNP relevance
scores (LRP) and SNP selection

(3) Statistical testing

Not built-in. It requires
a phenotype vector and
a genotype matrix.

Yes/relevance scores Python

Deep Mixed
Model

Two-component DL method:

(1) One-dimensional CNN
(confounding factor correction)

(2) A LSTM model for selecting
SNPs that contribute to residual
phenotype in an
epistatic manner

Not built-in. It requires
genotype and
phenotype matrices.

Not available Python

DeepWAS

Integration method:

(1) DL-based functional annotation
of single GWAS SNPs for their
regulatory effects on cell
type-specific chromatin features
(pre-trained DeepSEA network)

(2) Association of regulatory SNPs
with a disease/train into a
multivariate setting (regularized
regression models)

Not built-in. DeepSea
requires vcf format. Not available R

GenNet

Use of NN with connections defined
by prior biological knowledge to
create groups of nodes across different
layers to reduce the number of
learnable parameters

Built-in
Built in as SNP, gene and
pathway relevance scores
based on relative weights

Python

GMStool

Three-step method:

(1) Preparation of input files
(2) Marker selection (RRB and/

or BTS)
(3) Prediction modelling (RRB, RF,

DNN and/or CNN)

Not built-in. It requires
genotype, phenotype,
GWAS result and test
list files.

Not available R
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Table 3. Cont.

Name Method Genotype Matrix
Generation

Explainability/Method
for SNP Relevance
Scores

Language

GWANN

(1) SNP data is converted into a
learnable image (matrix)

(2) The constructed images, each
representing a SNP, are classified
as either associated or
not-associated with the trait
using a CNN.

Not built-in. It requires
a VCF file with
genotype data and a
csv file with
phenotype data.

Not available Python

iMEGES The Annovar input/bed format file

Not built-in. It requires
various predictors for
genotype data from
ANNOVAR, BED or
VCF files.

Built in. Python

List of specifically designed tools for gene discovery or outcome prediction using machine learning.
MACLEAPS [68] which is an SVM based tool from 2013 was not included as the links to the were not functional.
SVM: Support Vector Machine, DNN: Deep Neural Network, SNP: Single-nucleotide polymorphism, LRP: layer-
wise relevance propagation, CNN: convolutional neural network, LSTM: Long-short Term Memory, DL: Deep-
learning, VCF: Variant Call Format, NN: Neural Network. RRB: ridge regression best linear unbiased prediction, BTS:
bootstrap trees, RF: Random Forest, SNV: Single-nucleotide variant. All software are publicly available; COMBI: part
of the GWASpi toolbox 2.0 (https://bitbucket.org/gwas_combi/gwaspi/) (Accessed on the 23 September 2023), Deep-
Combi: https://github.com/AlexandreRozier/DeepCombi (Accessed on the 24 September 2023), Deep Mixed Model:
https://github.com/HaohanWang/DMM (Accessed on the 25 September 2023), DeepWAS: https://github.com/
cellmapslab/DeepWAS (Accessed on the 26 September 2023), GenNet: https://github.com/ArnovanHilten/GenNet
(Accessed on the 28 September 2023), GMSTool: https://github.com/JaeYoonKim72/GMStool (Accessed on the
2 October 2023), GWAAN: https://github.com/hubner-lab/GWANN (Accessed on the 3 October 2023), IMEGES:
https://github.com/WGLab/iMEGES (Accessed on the 4 September 2023).

COMBI [71]. A method by Mieth et al. (2021), COMBI [71], employs a linear SVM
which is trained and used as an indicator of importance and SNPs from each chromosome
separately. This first filtering step selects SNPs which contribute to phenotype classification
with either high individual effects or effects in combination with the rest of SNPs while
removing results due to the correlation structure. At the application level, a phenotype
vector and a genotype matrix which can be directly converted from a Plink [80] genotype
object are generated. From these two objects, the SVM weight vector is generated and used
as an importance measure. In the second step, SNPs with the higher scores selected undergo
a chi2-based hypothesis test performed together with Westfall-Young [81] type threshold
calibration for each SNP, based on the permutation distribution of the re-sampled p-values.
In this way, using a pre-selected list of SNPs and a relaxed p-value threshold the proportion
of true positives in the data is ultimately increased. In the simulated dataset COMBI
overperformed other SVM-based algorithms, including those previously mentioned by
Roshan et al. [82]. Following that, they used data from the 2007 WTCCC phase 1, consisting
of 14,000 cases of seven common diseases and 3000 shared controls. When compared to the
standard p-value thresholding approach, COMBI detected twelve additional SNP, ten of
which have already been replicated in later GWAS or meta-analyses of bipolar disorder,
coronary artery disease, Crohn’s disease, and for type 2 diabetes.

DeepCOMBI [72]. The authors of COMBI subsequently developed a “deep” extension
of COMBI, called DeepCOMBI [72]. This extension was designed to identify SNPs associ-
ated with a trait of interest, leveraging genotypic and phenotypic data from GWAS. The
methodology includes the construction of deep neural networks for phenotype prediction
of any genotype and SNPs selection according to a threshold, followed by layer-wise rele-
vance propagation application on the SNPs and the selection of the most relevant variants.
Lastly, a hypothesis test is performed for each variant. In addition, layer-wise relevance
propagation yields the relevant scores for each variant and the permutation test can guar-

https://bitbucket.org/gwas_combi/gwaspi/
https://github.com/AlexandreRozier/DeepCombi
https://github.com/HaohanWang/DMM
https://github.com/
https://github.com/ArnovanHilten/GenNet
https://github.com/JaeYoonKim72/GMStool
https://github.com/hubner-lab/GWANN
https://github.com/WGLab/iMEGES
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antee the selection of novel SNPs based on their p-values. In their report, DeepCOMBI
showed a better performance compared to other methods and identified a higher number
of significant SNPs with the lowest error rate.

GenNet [73]. Applying fully connected networks to millions of SNPs requires an ample
amount of computational time and memory. To overcome these limitations, developers of
GenNet provided a novel framework for predicting phenotype from genotype [73]. GenNet
uses neural network, as well as prior biological knowledge, to create groups of nodes that
are connected among the layers, reducing the sum of learnable parameters that a fully
connected neural network would need. Biological knowledge may include information on
gene annotation, local and global pathways, exon annotation, chromosome annotation, as
well as cell and tissue type expression. In this model, neurons represent biological entities,
and the weights signify the effects between neurons, resulting in a biologically interpretable
network. This method allows human biological input, via a straightforward framework
with help of two other pieces of software, HASE [83] and ANNOVAR [84], embedded in
for generating necessary files. The major drawback of the method is that any researcher
can perform differently layer annotation, making it difficult for standardisation.

GMStool [75]. The tool was developed and tested on soybean but can be easily applied
to human GWAS with no modification. Overall workflow consists of three phases: prepara-
tion, marker selection, and final modelling. The preparation phase includes preparation
of data which are genotype matrix, phenotype file, and a GWAS summary statistic file
as the training set. The marker selection phase applies the forward selection method of
regression analysis and sequentially selects SNP markers that increase the correlation rate
between observed and predicted phenotypes on the validation set. The ridge regression
best linear unbiased prediction and bootstrap trees methods are provided as learning
models. The final modelling phase performs prediction modelling using ridge regression,
random forest, deep neural network, and convolution neural network models, using either
only one of them, or all. Unfortunately, the current construction of the GMStool requires the
use individual level data in addition to GWAS summary statistics, limiting the application
areas of the method.

Deep Mixed Model [63]. GWAS on moderately or cryptically related individuals have
customised methods to correct for relatedness, usually either by genetic components or
mixed models. To account for relatedness in genome-wide deep learning applications
Wang et al. [63] proposed a Deep Mixed Model which consists of two components. The first
component (the corrector) acts as a confounding factor correction by using a convolutional
neural network and further calculates the residual phenotype after removing confounding
effects. The second component (selector) uses Long-short Term Memory for genetic variants
selection, to identify the SNPs that are associated with the residual phenotype in univariate,
polygenetic, or epistastic manners. Six out of twenty SNPs selected by the Deep Mixed
Model were annotated to genes associated with Alzheimer’s disease.

GWANN [74]. Ashkenazy et al. (2022) [74] tried to exploit the ability of convolutional
neural networks in image recognition by developing and training a method for the classifi-
cation of variants associated with a trait of interest, using genomic data converted to image
patterns. The model named GWANN, was trained using true positives and true negative
data corresponding to trait association and finally makes prediction in a tested population.
GWANN performance deteriorated when the simulated population did not accurately
represent the tested data. For example, a minor allele frequency of less than 5% affected
the pattern of SNP images, influencing the model’s sensitivity. Therefore, parameters such
as minor allele frequency, population structure, population size, and sampling rate in the
training populations need to be adjusted.

DeepWAS [85]. A multivariate functional unit-wide association study (DeepWAS) was
developed with the aim to only include SNPs that have been prioritised based on their
risk potential. Genome-wide SNPs are first analysed for their functional roles and their
association with specific cell lines and transcription factors using the deep learning model
DeepSEA [86]. DeepWAS was able to identify and validate novel disease-associated loci
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in multiple sclerosis, major depressive disorder and height that could not be identified
in smaller cohort GWAS studies. It was also able to identify associations of SNPs within
a functional unit relevant to a trait that is typically missed in traditional GWAS. This
methodology is ideal for any GWAS dataset if disease-associated genetic conditions (cell-
type effects, chromatin features) and its functional data are available. DeepWAS reduces
the multiple testing burden of classical GWAS and makes regulatory information on a
single SNP level readily available without requiring a second analysis step.

iMEGES [76]. Integrated Mental-disorder GEnome Score (iMEGES), this method was
developed as a deep learning tool for analysing whole genome/exome sequencing data,
primarily for mental disorders [76]. In the first step, iMEGES prioritises variants based on
non-coding and coding variants using tools EIGEN, CADD, DANN, GWAVA, FATHMM,
known brain eQTLs from CommonMind, and enhancer/promoters from PsychENCODE
and Roadmap Epigenomics projects. In the second step, genes are prioritised based on
annotations for each variant from the first step of iMEGES. Table 3 shows an overview of
practical properties of these tools which are only internally benchmarked, requiring parallel
assays for evaluating their analytical power over each other

2.4. Applications Supporting PRS

While standard PRS is built upon linear models, below we summarise three methods
which used nonlinear approaches to support disease prediction by GWAS based PRS. In the
breast cancer study by Badre et al. [78], the authors used a deep neural network for breast
cancer prediction and compared it to established statistical algorithms, via a combinatory
design; first selecting SNPs by Plink and then building PRS either by deep neural network
which they called neural network risk score or linear methods. Deep neural networks
outperformed the best linear unbiased prediction methods [87].

Zhou et al. [77] developed deep neural network models for modelling Alzheimer’s
disease polygenic risk and compared them with the widely used weighted PRS and LASSO
models. In their study, they first selected the disease-associated SNPs from a GWAS
summary statistics and then predicted three different scenarios of training/validation
splits. They considered the biological properties of variants, including gene and functional
chromatin annotations, to build seven-layer neural networks. Not the neural network risk
score performs slightly better than weighted PRS and LASSO, but it is also significantly
associated with levels of the blood-based biomarkers of disease pathology.

Tree-based statistical learning methods were also tested for better PRS construc-
tion [79], showing that random forest and logic bagging outperform other tree-based
(logic regression, elastic net, and RF-VIM) methods for predicting rheumatoid arthritis.

In machine learning analyses followed by statistical evaluations of single SNPs, the
initial step involves selecting a set of SNPs based on their relevance scores. Tools like
COMBI, deepCOMBI, GenNET, and iMEGES possess built-in functions to derive these
relevance scores. Consequently, these methods are more interpretable and explainable at the
single SNP level. In contrast, other tools primarily focus on prediction modelling without
providing explicit SNP relevance scores, differing in their architecture and intended use.

One particular application area emerged as GWAS of image-derived phenotypes,
e.g., from optic nerve photographs and magnetic resonance imaging [88] as distinct mea-
sures of brain structure and function. Aggregating the complex geometric and topological
structures present in images into biomarkers that are useful in a GWAS setting is a challenge.
Methods such as transferGWAS [89] and iGWAS [90] to improve retina images, optic nerve
head [91], as well as employing convolutional neural networks to improve brain imaging
endophenotypes [92].

3. Limitations and Criticism of Machine Learning

While machine learning offers plethora of new tools when combined with countless
combinations of multi-modal omics data, there are multiple concerns for its use in GWAS.
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Exploitability. As previously mentioned, the primary use of GWAS has been to under-
stand the biological factors underlying human traits and diseases, at the single nucleotide
resolution. To this end, machine learning methods have only focused on prediction, which
cannot be used to identify molecular drug targets by default. However, the same methods
can be very powerful in predicting and classifying diseases. Recently, there has been consid-
erable research dedicated to developing interpretability frameworks toward hypothesis-free
genome scans [73]. Applications such as GenNet and iMEGES are promising tools as their
methods largely benefit from functional annotations across the human genome.

Comparability. So-called interpretable machine learning applications provide feature
importance scores reflecting the importance or relevance of variables in the prediction
model [73]. However, they can neither be translated into effect estimates nor p-values
which constitute the summary statistics tables in large repositories. Thus, there is limited
comparability between data accumulated in conventional GWAS repositories and those
generated by machine learning.

Standardisation and data accumulation. GWAS methodology has been developed
via rigorous consortia work for almost two decades. Standards related to study design,
sample size, replication, population stratification, and meta-analyses have been integrated
into practical workflows. Currently, there is a lack of standardisation for best practices in
applying machine learning to human genetics. Since the field is still in its early stages, it
requires guidelines to define the best approaches.

Data imbalance. When employing machine learning in GWAS, an often overlooked
issue is data imbalance. These methods typically require an equal number of cases and
controls [73], yet most biobanks, designed in population-based settings, have significantly
fewer cases than controls. While techniques like adjusting loss function and under-sampling
can address imbalance to some extent, their application in large biobanks is limited. This
may influence future study design choices in biobank collections. However, similar to
GWAS, machine learning also faces limitations in study power, heavily reliant on sample
size [93] and disease heritability [68].

Ethical issues. Gaps between the design and operation of algorithms and our under-
standing of their ethical implications can have severe consequences affecting individuals
as well as groups and whole societies [94]. Issues currently present in large genetic associ-
ation studies, e.g., ethnicity, gender and socio-demographic bias will extend themselves
to the field AI as well [95]. One remarkable example in health care is the so called “skin
cancer algorithm” which was be developed on datasets that under-represent darker skin
types, which may exacerbate the health disparities of some geographic regions [96]. When
applied in nation-wide health care setting, such algorithms not only prone to major ethical
problems but also, they will perform less optimum in certain sub-populations, influencing
the liability and security of AI as well. This is also related to the unfairness in data access,
sharing and transparency of AI algorithms. Accessibility to algorithms should be provided
as wells as information on how they work. Transparency on how the algorithm functions is
necessary create a form of trust between those who design the tools and the ones testing
and using them, which is important for future collaborations for AI tool development [97].

4. Future Prospects

Here we emphasize the two important drivers of the field, growing numbers of
biobanks and fast developing new AI methods.

4.1. Multimodal Omics Databases

One of the most important applications of machine learning in the medical field is
the development of multimodal AI models necessary for the integration of omics data
across different modalities from biobanks and initiatives [94]. These studies are designed to
include hundreds of thousands of individuals with in-depth genetic and health information
that are regularly enriched with new omics layers and follow-up measurements. The
data generated are high-dimensional and multi-layered as they incorporate a massive
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collection of “omics” (genomic, transcriptomic, proteomic, metabolic, or microbiome) along
with electronic health records and study-specific other measurements. The best-known
longitudinal population-based biobanks include the UK Biobank [98], the China Kadoorie
Biobank [99], the Estonian Biobank [100], and the Lifelines Biobank [101]. The use of this
data through the implementation of AI methods has allowed high-throughput analysis and
has led to new discoveries in the medical field [69] and shown to improve prediction in
comparison to an unimodal approach [94].

4.2. Opportunities of Large Language Models and Foundation Models

Genomic sequences are vast repositories of complex biological data containing distant
semantic relationships which may not be fully captured by traditional AI methods although
ideal for foundation models. In traditional AI, most of the computing resources were
spent on training models for specific tasks. To train such models, we need large amounts
of labelled data (e.g., outcomes) which is often expensive, especially in the healthcare
field. On the other hand, foundation models are large deep neural networks pre-trained
on diverse data from a range of problems using self-supervised learning [102,103], which
does not require expensive human labels. Once these foundation models are pre-trained,
they can be finetuned for downstream tasks which are specific to a particular problem
using relatively little labelled data or in some cases no labelled data. Therefore, foundation
models have been transforming the AI landscape in natural language processing, computer
vision, and multimodal analysis including the field of omics. Foundation models started to
emerge in natural language processing around 2018 and in 2023, multimodal foundation
models appeared in healthcare and radiology [104].

The self-supervised learning principles which are behind these foundation models are
usually based on simple principles. Typically, words are converted to a vector representa-
tion using simple neural network embeddings. Then, the job of the deep neural network
in self-supervised learning is to recover words masked randomly from the context. For
example, BERT [98] masks 15% of the words randomly and recovers these words at the
output. In addition, BERT predicts whether two sentences are next to each other or not.
On the other hand, GPT like model simply predicts the next word in the sentence. If the
deep neural network is unable to predict the right words, their weights are updated using
back propagation algorithms [105]. When applied in genomics, DNA or RNA strings can
be considered as text documents with characters in DNA or words in proteins enabling
foundation models to capture complex local and distant semantic relations.

The complexities of genetic information pose unique challenges, such as high dimen-
sionality and the need for significant computational power, which have so far hindered the
widespread adoption of foundation models in this area with relatively few publications
applying basic concepts of foundation models to genomic data [104,106–108]. For example,
Santiesteban et al. [109] showed that foundation models combining transcriptomics and
histopathology data through self-supervised learning significantly improve survival pre-
diction. As the volume of omics data continues to grow in biobanks and computational
capabilities advance, the full spectrum of foundation models’ capabilities is likely to bring
a new era of scientific discovery and innovation in biomedicine.

5. Conclusions

Broad range of applications under the machine learning umbrella offer solution for
some of the problems in GWAS; however, application of these methods carelessly may
also mitigate their benefits. We believe the benefits of this new interdisciplinary area
will increase by building a common language and aims and through collaborative efforts,
towards ethical, secure, and trustworthy AI applications.
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