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Abstract: When analyzing challenging samples, such as low-template DNA, analysts aim to maximize
information while minimizing noise, often by adjusting the analytical threshold (AT) for optimal
results. A potential approach involves calculating the AT based on the baseline signal distribution
in electrophoresis results. This study investigates the impact of reagent kits, testing quarters, en-
vironmental conditions, and amplification cycles on baseline signals using historical records and
experimental data on low-template DNA. Variations in these aspects contribute to differences in
baseline signal patterns. Analysts should remain vigilant regarding routine instrument maintenance
and reagent replacement, as these may affect baseline signals. Prompt analysis of baseline status and
tailored adjustments to ATs under specific laboratory conditions are advised. A comparative analysis
of published methods for calculating the optimal AT from a negative signal distribution highlighted
the efficiency of utilizing baseline signals to enhance forensic genetic analysis, with the exception of
extremely low-template samples and high-amplification cycles. Moreover, a user-friendly program
for real-time analysis was developed, enabling prompt adjustments to ATs based on negative control
profiles. In conclusion, this study provides insights into baseline signals, aiming to enhance genetic
analysis accuracy across diverse laboratories. Practical recommendations are offered for optimizing
ATs in forensic DNA analysis.

Keywords: analytical threshold; forensic genetic analysis; low-template DNA; short tandem repeats;
capillary electrophoresis; negative control

1. Introduction

International law enforcement and justice entities have reached a consensus that
DNA analysis is the “gold standard” in forensic investigations. Short tandem repeats
(STRs), characterized by their widespread distribution and high genetic polymorphism
within populations, have emerged as pivotal genetic markers for investigative procedures.
Common crime scene traces such as cigarette butts, hair, and fingerprints often present
challenges because of their low-template DNA, which is susceptible to random effects
during polymerase chain reaction (PCR) amplification, including allelic imbalance and
allele dropout [1]. These factors add complexity to subsequent STR profile analyses.

To address allele dropout (Type II error), various sensitivity-enhancing methods have
been explored, such as increasing PCR cycles, reducing PCR volume, using nested PCR,
enhancing fluorescent dye signals, extending injection times, and employing higher-purity
formamide during sample preparation for capillary electrophoresis [2–4]. However, the
heightened sensitivity increases the risk of mislabeling non-allelic signals (Type I error),
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which can arise from PCR products (e.g., stutter, non-template-dependent nucleotide addi-
tion, and non-specific amplification products) or instrumental artifacts (e.g., spikes, raised
baselines, and incomplete spectral separation resulting in pull-up or bleed-through) [5].
Many labs currently adhere to the recommended analytical threshold (AT) provided by
amplification kit manufacturers when analyzing forensic samples. This conservative ap-
proach aims to minimize the impact of background noise and PCR artifacts. However,
for low-template samples, conservative ATs cannot reliably differentiate the target DNA
signal from noise [6]. Additionally, in cases of limited sample quantity, it is impractical to
further increase the detection sensitivity and conduct retests. The SWGDAM Interpretation
Guidelines emphasize that “an AT defines the minimum height requirement at and above
which detected peaks can be reliably distinguished from background noise. Peaks above
AT are generally not considered noise, and are either artifacts or true alleles” [5]. Therefore,
to ensure optimal signal processing parameters during DNA analysis, it may be advisable
to select an AT that minimizes both Type I and Type II errors.

In practice, various forensic DNA analysis laboratories employ different methods to
determine the threshold for analysis. Gilder et al. [7] proposed a method endorsed by the
IUPAC, based on Kaiser’s suggestion [8,9]. In this approach, a threshold is established
by analyzing the baseline noise to ensure that signals arising from random fluctuations
are not erroneously labeled as true alleles. Marciano et al. [10] described a dynamic locus
and sample-specific AT based on the mean and standard deviation of noise in regions
flanking a locus within an individual sample. This system achieved 97.2% accuracy in
allele detection, representing an 11.4% increase over the lowest static threshold (50 RFU).
Additionally, some methods rely on the relationship between the RFU signal and DNA
input into PCR, originating from the field of chemical analysis and later applied to DNA
analysis [11–14]. Several previous studies compared various methods for determining the
optimal AT. Rakay et al. [14] separately tested ATs derived from negatives, the relationship
between RFU signals and DNA input, and commonly employed ATs to compare their
impact on both Type I and Type II errors. They suggested that, for samples amplified with
less than 0.5 ng DNA, applying ATs derived from baseline analysis of negatives can reduce
the probability of allele dropout by a factor of 100 without significantly increasing the
probability of erroneous noise detection. Bregu et al. [15] also outlined and compared four
different methods that rely on the analysis of baseline noise from a number of negatives
to calculate ATs. They found that variations in the procedural conditions could affect the
baseline noise associated with genetic analysis, ultimately influencing the determination of
the analysis threshold in laboratories. They also recommended the use of ATs derived from
negative samples with lower DNA levels. However, despite the abundance of methods for
calculating ATs based on negative signals, there is still no clear consensus on the preferred
method for practical casework. Law enforcement agencies face a challenge in the absence of
a scientific guide and framework for adjusting ATs, particularly for low-template samples.

This study analyzed the status and distribution of baseline noise across multiple labo-
ratories over three years, considering reagent kits, testing quarters, laboratory conditions,
and amplification cycle numbers, using a large number of negative control profiles. The
objective of this study was to explore the need for each laboratory to establish an optimal
AT. In this study, we utilized established methods, relying on amplification negatives, to
determine ATs for analyzing low-template DNA profiles. The goal was to compare error
rates across laboratories. The overall objective of this study was to establish a univer-
sally applicable AT calculation practice model for scientific and efficient genetic analysis,
providing guidance and references for laboratory personnel in diverse settings.

2. Materials and Methods
2.1. Collection of Historical and Experimental Data

In total, 929 negative control samples were collected from six laboratories (LAB_a–f)
between 2019 and 2022. The amplification kits used included the AGCU EX22 kit (Applied
ScienTech, Wuxi, China), PowerPlex 21 kit (Promega, Madison, WI, USA), and VeriFiler™
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Plus kit (Thermo Fisher Scientific, Waltham, MA, USA). Amplified products were analyzed
using an ABI 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

Additionally, the experiments on low-template DNA samples were conducted by
seven laboratories (LAB_a–e, g and h) using the VeriFiler™ Plus kit. All experiments were
consistently performed by the same experimenter. Female control DNA 9947A (OriGene,
Rockville, MD, USA) was diluted to three concentrations: 31.25 pg/µL, 15.625 pg/µL,
and 7.8125 pg/µL. Each PCR reaction used 1 µL of DNA, with a total volume of 10 µL,
following the routine protocol for the cases. Three PCR replicates were conducted for
each concentration of 9947A and negative control for 27, 29, and 31 cycles. The amplified
products were separated via capillary electrophoresis using an ABI 3500 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA), with three replicates for each amplified
product. The research protocol was reviewed and approved by the Ethics Committee at the
Institute of Forensic Medicine, Sichuan University (No. KS2022770) (4 March 2022).

2.2. Analysis of Large-Scale Negative Control Samples

The negative control results from historical records and low-template DNA experiment
were analyzed using GeneMapper ID-X. First, the empirical AT commonly used in each
laboratory was used to analyze all negative samples. Negative samples with peak heights
above this threshold were excluded. Subsequently, an AT of 1 RFU (with the threshold
of the internal lane standard set at 175 RFU) was used to analyze the remaining negative
samples. The data from the “Sizing Table” in GeneMapper ID-X for each dye were exported,
containing the details of each signal above the AT, such as marker, allele, size, height, area,
and data point. An in-house Python script was used to filter signals outside the read
region recommended by the manufacturer. All signals within 2 bases of the internal lane
standard were removed to avoid the influence of pull-up [15]. Negative samples from each
laboratory were then grouped into quarters at three-month intervals. The signal number
and height distribution for each dye across the quarters and laboratories were analyzed.

2.3. Study on ATs

The low-template DNA results were analyzed using GeneMapper ID-X, with a min-
imum AT set at 1 RFU for each non-internal standard dye. Signal data from the “Sizing
Table” for each dye were exported and processed using a Python script. This script initially
screened the peaks occurring at the locus positions. Subsequently, to eliminate pull-up
peaks, it excluded signals meeting specific criteria: sharing the same position (±0.3 bases)
as an allelic peak in another dye, and with a peak height of 5% or less compared to that of
the allelic peak [16]. The AT for each dye varied from 1 to 200 RFU. The number of allelic
dropouts and non-allelic peaks at each AT were statistically analyzed with the reference
control DNA 9947A with 1 ng input.

In addition, low-template control DNA samples were analyzed using GeneMapper ID-
X with six distinct groups of ATs. These ATs included one conventional threshold (denoted
ATori) and five thresholds calculated using previously published methods [7–9,12,15,17,18].
The ATori set uses a specific threshold value of 175 RFU for each dye. The other five methods
were developed based on the analysis of signals from negative samples in low-template
DNA experiments.

AT1: AT1 was calculated using the following equation:

AT1 = Yn + k·sY,n (1)

where Yn is the mean of the negative signals, sY,n is the standard deviation of the negative
signals, and k is a constant that depends on the desired confidence level. In accordance
with insights from the preceding literature on the choice of k [7,8,12–14], this study opted
to set k equal to three.
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AT2: The following equation was used to determine AT2:

AT2 = Yn + tα,υ·
sY,n√

nn
(2)

where Yn and sY,n are the mean and standard deviation of the negative signals, respectively,
tα,υ is the one-sided critical value from the t-distribution for a given confidence interval,
and nn is the number of negative samples.

AT3: AT3 was computed using the following equation:

AT3 = Yn + tα,υ·
(

1 +
1

nn

) 1
2
·sY,n (3)

where the parameters are defined as in the equation for AT2, and (1 + 1
nn
) expresses the

correction for the uncertainty of the true and calculated mean negative signal.
AT4: AT4 indicates the level of background noise in a signal. This was calculated by

determining the value that separated 99% of the negative signals from the rest.
AT5: The following equation was used to determine AT5:

AT5 = eυ+kτ (4)

The calculation of AT5 was based on the assumption that a negative signal follows a
lognormal distribution. Consequently, the natural logarithm (log base e) of the negative
signal is assumed to follow a normal distribution, with a mean denoted as υ and a variance
represented by τ. The specific value of factor k depends on the chosen confidence level
used to estimate the noise. The value of k was set to three.

The exported “Sizing Table” at each AT group underwent further analysis. The number
of allelic dropouts and non-allelic peaks in the low-template DNA samples under different
DNA inputs and amplification cycles were counted and analyzed. Receiver operating
characteristic (ROC) curves were plotted for the six AT groups based on the true-positive
and false-positive results. ROC analysis was used to determine the optimal method for
determining ATs in different laboratories under different conditions.

2.4. Building of the Executable Program NegaProcess

Utilizing PyInstaller-6.1.0 (http://www.pyinstaller.org/, accessed on 20 October 2023),
the signal analysis script for negative samples and the calculation script for five AT calcula-
tion methods based on negative signals were compiled into an executable program named
NegaProcess. This versatile program empowers researchers to effortlessly load any quan-
tity of negative control samples, assess the baseline conditions of their laboratories, and
scientifically adjust the AT to enhance sample analysis. Importantly, it does not demand
programming or statistical expertise, allowing users to save time that would otherwise be
spent on learning analysis procedures.

3. Results
3.1. Characteristics of Negative Signals

Negative samples collected over time were categorized into quarterly divisions, with
each quarter comprising three months. The yearly timeframe was divided into four quarters,
denoted as S1–4. Table 1 provides an overview of the distribution of the available negative
samples collected from various laboratories. Distinct superscript numbers indicate the
different STR kits used.

Analysis of the three PCR kits revealed comparable numbers of signals for each dye in
each kit, with no significant differences observed (Table S1). The graphical representation
displays a right-skewed normal distribution of signal heights for each dye (Figure 1).
Subsequent fitting and validation confirmed the lognormal distribution of the signal heights,
which was consistent with prior research findings [15]. Notably, distinct and consistent

http://www.pyinstaller.org/
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disparities were noted in the signal height distributions among the dyes in the three kits.
The blue dye consistently exhibited the smallest average signal height across all the kits.
For the AGCU EX22 kit, no significant differences were observed in the signal height
distributions of other dyes. In the PowerPlex® 21 System, a significantly higher number of
signals were clustered around the average signal height in the blue dye than in the other
dyes. The green dye displayed the second-highest average signal height, with no significant
disparities observed in the signal height distribution between the yellow and red dyes.
In the VeriFiler™ Plus kit, signals in the blue dye also concentrated around the average
height, while the yellow dye exhibited the second-highest average signal height. Notably,
the purple dye showed the largest average height, characterized by a broader and shorter
distribution in the graphical representation compared to the other dyes. These findings
indicate that specific patterns emerged in the variations among the different dyes in terms
of negative signals and signal heights. The analysis of common samples may have been
influenced to varying extents by the detection of genuine allelic peaks. Consequently, it is
necessary to establish a distinct AT tailored to the unique baseline characteristics of each
dye to minimize the interference from the baseline signals introduced by the equipment
and reagents.

Table 1. The overview of the quantity distribution of negative samples collected across six laboratories.

Year Quarter LAB_a LAB_b LAB_c LAB_d LAB_e LAB_f

2019 S4 17 #

2020 S1 4 * 32 + 11 # 6 #

S2 25 * 50 # 8 # 8 #/5 + 4 #

S3 23 * 35 # 6 # 13 # 7 #

S4 26 * 39 # 10 # 11 # 5 #

2021 S1 29 * 34 # 17 # 10 # 5 #

S2 23 * 23 # 7 # 12 # 6 #

S3 26 * 7 + 31 + 12 # 7 + 6 #

S4 21 * 12 + 17 + 16 # 9 + 4 #

2022 S1 26 * 10 + 56 + 14 + 8 #

S2 21 * 17 + 25# 12 +

S3 20 * 8#

S4 25 * 8#

* AGCU EX22; # PowerPlex® 21 System; + VeriFiler™ Plus.
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Figure 1. The comparison of signal height distribution of various dyes obtained from negative
samples using the AGCU EX22 (A), PowerPlex® 21 System (B), and VeriFiler™ Plus (C). Distributions
distinguished by various colors correspond to different dyes.

3.1.1. Comparative Analysis of Negative Signal Quantities and Heights across
Different Quarters

Three laboratories (LAB_b, LAB_c, and LAB_e) conducted routine detections using the
VeriFiler™ Plus kit over multiple quarters. The signal quantities and height distributions
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of the five dyes in the negative samples are depicted in Figure 2. The results revealed sig-
nificant differences in negative signal quantities for these labs during the 2021_S3, 2022_S1,
and 2021_S4 quarters compared with the other quarters. However, these disparities in
signal height distribution did not align perfectly with the signal quantities. In the 2021_S3
quarter, LAB_b exhibited a higher average signal height than in the 2021_S4 and 2022_S1
quarters. LAB_e displayed a markedly lower average signal height for various dyes in
the 2020_S2 quarter, in contrast to the other quarters, where the signal height showed no
significant differences. LAB_c did not exhibit substantial differences in signal height across
the four quarters analyzed. The analysis using the AGCU EX22 kit focused exclusively
on LAB_a over 12 quarters (Figure S1). Significant differences in signal quantities were
noted among various quarters, particularly in the 2021_S4, 2022_S1, and 2022_S3 quarters,
compared with several other quarters in which significant differences in signal quantities
were infrequent or relatively weak (0.01 < p ≤ 0.05). However, the highest average signal
heights were observed in the 2020_S2 and 2020_S3 quarters, with maximum signal heights
exceeding 40 RFU. Analysis using the PowerPlex® 21 System kit included results from four
laboratories (LAB_c, LAB_d, LAB_e, and LAB_f) (Figure S2). Similar to the previous two
kits, varying degrees of differences in negative signal quantities were observed across the
different quarters. Notably, these differences seemed to occur randomly, and no regular
patterns were observed. Furthermore, the disparity in the results for different dyes varied
slightly. Additionally, the differences observed in the signal quantities did not parallel the
variations in the signal height distribution. Occasional disparities in height distribution
are inevitably poised to exert varying degrees of influence on the exploration of potential
information below the AT.

3.1.2. Comparative Analysis of Negative Signal Quantities and Heights across
Different Laboratories

A comparison of signal quantities and height distributions in negative samples using
the PowerPlex® 21 System kit across the four distinct laboratories is shown in Figure 3.
The results from the 2020 (S2, S3, and S4) and 2021 (S1) quarters indicated a significant
disparity in the quantity of negative sample signals generated by LAB_d during routine
testing, in contrast to other labs. However, there was no notable difference in the height
distribution of the negative signals when compared with those of other laboratories, which
is consistent with the results of the preceding section. In the 2021_S2 quarter, the difference
in the number of negative signals between LAB_d and the other laboratories diminished.
During this period, LAB_f produced a considerably lower number of negative signals than
the remaining three labs. Notably, the height distribution graph of the negative signals in
LAB_c appeared broader than that in the other labs across all five quarters. This suggests
that both the average negative signal height and the highest height in LAB_c surpassed
those in the other labs.

Furthermore, the variations in negative sample detection results among labs using the
VeriFiler™ Plus kit were relatively minor (Figure S3). Across all three analyzed quarters, the
signal quantity of negative samples in LAB_c was significantly lower than that in the other
two laboratories, but only in the 2022_S1 quarter. Similar to the findings of the PowerPlex®

21 System kit for detecting negative signals, LAB_c exhibited a higher average negative
signal height and the highest signal height compared with those of the other laboratories.

It is essential to acknowledge that different laboratories operate under distinct environ-
mental conditions, and variations in the configuration of their electrophoresis instruments
and reagents may lead to potential interpretation discrepancies in the analysis results.
Consequently, it is advisable to employ different analysis methods in the process of sample
detection and interpretation across these varied laboratory settings.

3.1.3. Analysis of Signal Quantity and Peak Height Distributions in Negative Samples
across Different PCR Cycle Numbers

The signal quantity and peak height distributions of the negative samples were com-
pared under different PCR cycle numbers across seven laboratories (Figures 4 and S4).
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Apart from LAB_a, the results from the remaining six laboratories exhibited a significant
decrease in signal quantity for the blue dye after 31 cycles compared with after 27 and
29 cycles. The average and maximum signal heights for the same dye at 31 cycles were
notably higher than those observed at the other cycle numbers. No significant differences
in the signal quantity and peak height distributions were observed between cycles 27 and
29. Additionally, the results from the seven laboratories did not show a consistent pattern
of differences for other dyes. LAB_e and LAB_b demonstrated significant increases and
decreases in the signal intensity, respectively, with an increase in the cycle number of the
red dye. LAB_g showed the lowest signal intensity after 29 PCR cycles, and no significant
differences were noted in the data. The disparities in the signal height distributions were
relatively small for the other dyes.
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Figure 2. The signal quantities and height distributions in negative samples from three laboratories
across different quarters, utilizing the VeriFiler™ Plus kit. Sub-figures (A,C,E) display the signal
quantities for LAB_b, LAB_c, and LAB_e, respectively, while sub-figures (B,D,F) showcase the
corresponding signal height distributions. The outliers are represented by diamonds. Statistical
significance is indicated by symbols: * denotes 0.01 < p ≤ 0.05, ** denotes 0.001 < p ≤ 0.01, and
*** denotes 0.0001 < p ≤ 0.001.
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Figure 4. The signal quantities and height distributions in negative samples detected under PCR
cycle numbers of 27, 29, and 31, utilizing the VeriFiler™ Plus kit. Sub-figures (A,C,E) display the
signal quantities for LAB_c, LAB_e, and LAB_d, respectively, while sub-figures (B,D,F) showcase
the corresponding signal height distributions. The outliers are represented by diamonds. Statistical
significance is indicated by symbols: * denotes 0.01 < p ≤ 0.05, ** denotes 0.001 < p ≤ 0.01, *** denotes
0.0001 < p ≤ 0.001.

Increasing the number of PCR cycles in routine testing enhances the probability of
detecting alleles, primarily affecting negative signals, owing to the simultaneous increase in
non-specific amplification products or exogenous DNA. The presence of these products im-
plies the presence of certain levels of external contamination in the laboratory environment
or experimental conditions. When laboratories aim to uncover latent genetic information
below an AT, the presence of such contamination inevitably influences the interpretation of
the results.
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3.2. Comparison of Methods to Determine AT
3.2.1. ATs Ranged from 1 to 200 RFU

When the AT was systematically adjusted from 1 to 200 RFU, the analysis of control
DNA 9947A exhibited variations in allelic dropouts and non-allelic peaks across different
PCR cycle numbers and template inputs for each dye (Figures 5 and S5–S10). Despite
these discrepancies, consistent patterns emerged: allelic dropouts increased with higher
ATs, whereas non-allelic peaks decreased under similar conditions. This trend was clear
and easy to understand. Specifically, as the number of PCR cycles was increased at the
same AT, there was a noticeable reduction in allelic dropouts. Higher ATs led to a gradual
flattening of the growth trend of allele dropouts, reaching the lowest achievable level for
individual dyes. This stabilization indicated that a certain allele was either completely
absent or at an equivalent level to the baseline, rendering detection impossible. For instance,
in LAB_a, with a DNA input of 31.25 pg for 9947A, the results for the blue dye indicated
that under 27, 29, and 31 PCR cycles, the average numbers of allele dropouts were 4, 2.7,
and 2, respectively. Under 31 PCR cycles, the number of allele dropouts remained at
the lowest level of 2, despite the increasing AT. Conversely, as the DNA template input
decreased under the same AT, allelic dropout increased. Similar to the trend observed with
increasing number of PCR cycles, higher ATs led to a gradual flattening of the growth trend
of allele dropouts. For example, under 27 PCR cycles and DNA inputs of 31.25 pg, 16.625,
and 7.8125 pg, the average numbers of allele dropouts in the blue dye were 4, 9.7, and
9.9, respectively. Furthermore, when the PCR cycle numbers were increased or the DNA
template input was reduced, the reduction in the quantity of non-allelic peaks with higher
ATs was not significantly pronounced.
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Based on these observations, we recommend that when analyzing samples containing
low-template DNA, the number of PCR cycles should be increased to enhance the probabil-
ity of allele detection. However, in samples with extremely low template levels, increasing
the number of PCR cycles has minimal impact. It is advisable to raise the AT, ensuring
the stability of the dropout quantity at a certain level while minimizing the detection of
non-allelic peaks to eliminate interference.

3.2.2. Comparison of Published Methods to Determine ATs

A comparison of the results obtained at six different ATs provides valuable insights
for optimizing information extraction from electrophoretic data. In this section, LAB_a
was used as an example. Table 2 illustrates the six groups of ATs applied to the analysis of
the control DNA 9947A. The empirical value of ATori was approximately 5.47–15.91 times
higher than that of the other groups derived from negative signals. Among these, AT2 had
the smallest threshold value, while AT5 exhibited the highest threshold value. Figure 6
illustrates the number of allele dropouts and non-allele peaks observed in the six AT settings.
When the PCR cycles were set at 27, the number of observed allele dropouts significantly
decreased at AT1–AT5 compared with that at ATori. However, this also led to an increase
in the reported non-allele peak counts, especially at lower DNA inputs. AT2 consistently
yielded the highest number of non-allele peaks across different DNA input quantities,
surpassing the results obtained in other settings under the same conditions. Increasing the
number of PCR cycles to 29 resulted in a less significant reduction in allele dropout, with
lower AT values compared to 27 cycles. Under the ATori analysis, the count of non-allele
peaks exhibited a notable increase. However, for other settings, except for AT2, substantial
increases were observed solely at a DNA input of 15.625 pg, with a decrease noted at
7.8125 pg. At 31 cycles, the allele dropout counts showed no differences among the six AT
groups. However, AT2 exhibited significantly higher non-allele peak counts than those of
the other five settings. Among the remaining groups, ATori and AT5 displayed lower non-
allele peak counts under the 7.8125 pg DNA input analysis. Similar trends were noted in
the results from the other laboratories (Tables S2–S7 and Figures S5–S10). Reanalysis of the
profiles using AT calculated from negative signals effectively identified true alleles below
the routine AT, thereby reducing dropouts, except in cases with higher PCR cycles. The
detection of non-allele peaks increased in some laboratories with an increase in the number
of PCR cycles, albeit to varying extents. After adjusting the thresholds, the number of non-
allele peaks also increased to varying degrees, possibly because of laboratory environmental
conditions, necessitating cautious interpretation of the results.

Table 2. The analytical threshold values for five dyes applied to analysis in LAB_a, including both
the empirical setting and settings calculated using five published methods.

Dye-B Dye-G Dye-Y Dye-R Dye-P

ATori 175 175 175 175 175
AT1 16 24 18 22 25
AT2 11 16 11 15 17
AT3 17 24 18 23 25
AT4 16 22 16 21 23
AT5 22 32 23 29 32

AT1–AT5 were calculated based on nine negative controls in low-template DNA experiments (27 PCR circles).

Figure 7 shows a ROC plot comparing the true-positive and false-positive rates of the
results analyzed at six analytical threshold settings. Ideally, the analysis should have a
false-positive rate of 0 and a true-positive rate of 1, indicating good performance. Thus, the
point closest to the top-left corner represents the optimal method for minimizing Type I
and Type II error rates [14]. Figure 7 illustrates the high Type I error rates that occurred
when AT2 was used because of the erroneous labeling of non-allelic signals. In contrast,
ATori led to low Type I error rates, whereas high thresholds resulted in a high incidence
of Type II errors. For DNA template amounts of 31.25 pg or 15.625 pg, irrespective of
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the number of cycles, AT5 demonstrated certain advantages, as indicated by the ROC
curve. However, when the template amount was extremely low (7.8125 pg), the optimal
AT was not discernible from the ROC curve. Considering the total error rate as the sum of
false negatives and false positives under all PCR cycles, using ATori with a DNA template
amount of 7.8125 pg yielded the lowest total error rate, resulting in total error rates of 1.000,
1.217, and 1.044, respectively.
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3.3. Overview of the NegaProcess Tool

NegaProcess was executed through the command line in the same directory. The input
file consists of the “Sizing Table” data generated by analyzing any quantity of negative
control samples in Genemapper software. The output comprised two spreadsheet files
and a graphic file. The spreadsheets detailed the signal quantity and height distribution in
each fluorescence channel for each negative control sample, along with the AT calculated
using the five methods. The graphic file visually represents the height distribution of all
the negative signals across various fluorescence channels, as shown in Figure 1, providing
researchers with a clear visualization of the negative signal distribution. Prior to running the
program, users are required to provide five parameters. By typing “NegativeProcess.exe-h”,
users can access the meanings of these parameters. The parameters include the path to the
“Sizing Table” file of the negative control samples, the number of fluorescence channels used
in the STR kit for amplifying these samples (including the internal standards channel), the
recommended read region range of this kit, and the maximum x-coordinate for the output
graph. This program allows forensic analysts to directly derive thresholds from empirical
data, thereby providing a clear and scientifically grounded framework for establishing
appropriate analytical thresholds in forensic casework. NegaProcess can be accessed on
Google Drive: https://drive.google.com/drive/folders/1BcnO11F5crKli4QBJtw7SKen_
CtqaSLr?usp=sharing (accessed on 28 December 2023).

4. Discussion

Analysts generally pursue two objectives when detecting and analyzing samples:
maximizing obtainable information and minimizing noise. However, there exists a tradeoff
between these objectives. The conservative ATs commonly recommended by manufacturers
aim to accomplish the latter objective. However, valuable information may exist below the
AT, particularly for low-template samples. Indiscriminate reduction of the AT, nonethe-
less, may result in information that lacks interpretability and fails to provide compelling
conclusions in legal contexts.

This study employed two types of detection data: historical data collected from various
laboratories, and data obtained from low-template standard samples. The analysis explored
the baseline states of negative control samples and assessed the impact of different ATs on
both allele and non-allele detection results. The historical data encompassed outcomes from
three distinct STR detection kits, with the choice of kit constituting a factor contributing to
baseline disparities. The signal height distribution of negative samples from diverse kits
exhibited distinctive characteristics, primarily manifested in varying levels of average and
maximum peak heights for each dye, owing to different fluorescent labels. Consequently,
each kit manufacturer recommends a specific AT.

To examine whether the signal distribution of negative samples changed over time,
historical negative samples were categorized into quarters (with each year consisting of
four quarters). The results indicated that these differences appeared to occur randomly.
Further analysis was conducted to determine if these differences exhibited any seasonal
patterns. The findings revealed no correlation with seasonal temperature fluctuations in
the quantity or distribution of negative signals across different quarters. Most laboratories
operate in controlled environments, maintaining a constant temperature and humidity,
thus minimizing the impact of outdoor temperature changes on the experimental process.
Random variations may arise from the irregular maintenance of the electrophoresis instru-
ments. Investigating the influence of instrument maintenance changes on experimental
results requires dedicated monitoring of the instrument status and thorough record keeping.
We advocate that every laboratory should adopt these practices to achieve standardization
of experimental conditions. For a more comprehensive interpretation of the analysis results,
consider performing repeated tests on the negative control samples after each instrument
maintenance session to observe and document the baseline status.

Variations between laboratories are expected, owing to differences in experimental
instruments and reagent configurations. In laboratories with stringent control over experi-

https://drive.google.com/drive/folders/1BcnO11F5crKli4QBJtw7SKen_CtqaSLr?usp=sharing
https://drive.google.com/drive/folders/1BcnO11F5crKli4QBJtw7SKen_CtqaSLr?usp=sharing
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mental conditions, the practice of maintaining a lower baseline while adhering to widely
accepted ATs may result in the oversight of potential information. This becomes a critical
issue, especially in the analysis of challenging materials. In addition, when faced with
low-template samples, laboratories typically opt to increase the number of PCR cycles
during amplification. Ideally, increasing the number of PCR cycles should exponentially
increase the target DNA template quantity and increase the probability of detecting alleles
without affecting the negative signals. However, the results of this study indicated that with
an increase in PCR cycle numbers, non-specific amplification products or exogenous DNA
in the negatives also increased, leading to differences in the distribution of negative signals
at different PCR cycle numbers. Specifically, the average and maximum signal heights
of the same dye at 31 cycles were significantly higher than those at other cycle numbers.
Importantly, these heightened signals did not exceed commonly used thresholds in this
study. Designating a profile as contaminated only occurs when these signals exceed the AT,
and the quantity surpasses the maximum allowable number of drop-in events (sporadic
contamination) [18,19]. Contamination, if present, may be reproducible and can be de-
duced through different types of negative controls. According to the findings of this study,
when opting for an increase in PCR cycle numbers, analysis under conservative thresholds
ensures the stability of allele dropout events at a specific level, while concealing non-allele
peaks below the AT (Figure 5). Meanwhile, for the analysis of samples with extremely low
templates, as defined by quantities below 7.8125 pg in this study, it is imperative to employ
conservative ATs to minimize the interference from non-allele peaks.

Currently, various laboratories face a substantial backlog, with certain cases retaining
only detection results and no remaining samples for retesting. To reanalyze detection data,
there is a pressing need to establish scientific ATs to accurately distinguish allele peaks
from noise. This study employed five previously reported methods based on negative
signals to calculate the appropriate AT and analyzed the results of low-template standard
samples from seven laboratories. Based on the ROC curves, AT5 consistently exhibited the
lowest overall error rate in most cases. This favorable performance can be attributed to
AT5’s calculation, which is grounded in the assumption that negative signals conform to a
lognormal distribution. This premise aligns more closely with the observed right-skewed
normal distribution of the signal heights for each dye in the various kits. Furthermore,
reanalysis of cases showed the significant potential of adjusting the AT based on the
AT5 calculation method to unearth genuine allele information. Notably, in specific cases
involving extremely low-template quantities and increased PCR cycle numbers, the original
conservative AT exhibited even lower overall error rates, which is consistent with the
previously mentioned conclusions.

Moreover, we examined the size and height of non-allele peaks at each locus under
each calculated AT. Using the results obtained under AT5 for LAB_a as an illustration,
the occurrence of numerous non-allele peaks was not random; they appeared consistently
across samples with different template quantities and PCR cycle numbers (Figure S11).
Upon cross-referencing with standard genotyping, regularly occurring non-allele peaks
were identified as stutters. Although the analysis process in the GeneMapper ID-X initially
filters stutter based on the default stutter ratio of the VeriFiler™ Plus kit, its presence in the
current results suggests that the stutter ratio may differ under conditions of low-template
DNA, leading to an increased number of non-allele peaks. To address this issue, specialized
verification of low-template samples is recommended to eliminate interference from these
non-allele peaks during interpretation. Additionally, certain laboratories (such as LAB_c)
exhibited a substantial number of spikes and off-ladder (OL) peaks in their analysis results,
which contributed to a higher number of outliers in the statistical analysis of non-allele
peaks after the AT was lowered. Spike peaks may be caused by external particles, such
as dust or dried small aggregates, entering the capillary or gel, or fluctuations in the
current [18]. To maintain consistency in sample quantity across laboratories, we chose
not to exclude anomalous files. These outliers can be mitigated by increasing sample size.
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Crucially, when encountering such issues, analysts should promptly review experimental
procedures and ensure the proper maintenance of electrophoresis instruments.

This study centers on the analysis of low-template samples, significantly enhancing
information availability through the scientific adjustment of the AT. However, it is imper-
ative to acknowledge certain limitations in this research. Without reference genotypes,
distinguishing whether peaks above the adjusted AT represent alleles or non-allelic artifacts
remains challenging. Forensic researchers have recognized and actively worked toward
discerning non-allelic peaks or directly mitigating their impact, particularly with the incor-
poration of artificial intelligence [10,20–25]. Nevertheless, the “black box” issue introduced
by sophisticated artificial intelligence algorithms poses a challenge in legal contexts [26].
To meet the criteria of intelligibility and acceptability in court, algorithms addressing such
issues must prioritize transparency and readability. Developing a straightforward ma-
chine learning algorithm to effectively categorize peaks above the AT for confronting and
resolving this persistent challenge is the focal point of our ongoing research.

5. Conclusions

In conclusion, this study systematically investigated the baseline signals in elec-
trophoresis results by leveraging data from multiple laboratories. Variability in negative
signal distribution was observed across different reagent kits, laboratory conditions, and
amplification cycles. Our findings underscore the impact of routine instrument mainte-
nance and reagent changes on baseline levels, providing valuable insights for laboratories
conducting forensic DNA analyses. Adjusting the AT according to specific laboratory
conditions is crucial for minimizing allele dropout and non-allelic peak detection, ensuring
accurate and reliable results. Moreover, a comparative analysis of the five AT calculation
methods revealed that barring extreme scenarios of low-template amounts and high PCR
cycle numbers, the AT5 method consistently demonstrated the lowest overall error rate.
This suggests that AT5 is a promising method for enhancing allele detection, particularly
in the analysis of challenging historical data. As a practical outcome, we developed a
user-friendly program for real-time statistical analysis that facilitates prompt adjustments
to the AT based on laboratory-specific conditions. This tool empowers laboratory personnel
to conduct efficient and scientifically guided analyses, thereby maximizing information
retrieval and ensuring robust forensic DNA analysis.

In summary, our comprehensive investigation of baseline signals and AT optimization
provides valuable insights for forensic DNA analysis. The tailored adjustments recom-
mended in this study, supported by the empirical evidence, offer a practical framework for
laboratories to enhance the accuracy and reliability of genetic analysis procedures.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes15010117/s1, Figure S1: The signal quantities and
height distributions in negative samples from LAB_a across different quarters, utilizing the AGCU
EX22 kit. Figure S2: The signal quantities and height distributions in negative samples from four
laboratories across different quarters, utilizing the PowerPlex® 21 System kit. Figure S3: The signal
quantities and height distributions in negative samples across three laboratories over five quarters,
utilizing the VeriFiler™ Plus kit (LAB_b, c, and e). Figure S4: The signal quantities and height distri-
butions in negative samples detected under PCR cycle numbers of 27, 29, and 31 cycles across three
laboratories, utilizing the VeriFiler™ Plus kit. Figures S5–S10: (A) The variation in allele drop-outs
and non-allele peaks across five dyes for low-template control DNA 9947A detected using the Veri-
Filer™ Plus kit in LAB_b–e, g and h. (B) The counts of allele dropouts and non-allele peaks analyzed
under six different analytical threshold settings of LAB_b–e, g, and h, considering different DNA
template inputs and PCR cycle numbers. (C) The receiver operating characteristic (ROC) and the total
error rate at the six analytical threshold settings of LAB_b–e, g, and h, considering different DNA
template inputs and PCR cycle numbers. Figure S11: The overview of the size and height of non-allele
peaks across five dyes for LAB_a under AT5 conditions, considering variations in template quantities
and PCR cycle numbers. Table S1: The quantity of signals identified in each dye for three different
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STR kits. Tables S2–S7: The analytical threshold values for five dyes applied to analysis in LAB_b–e,
g, and h, including both the empirical setting and settings calculated using five published methods.
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