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Abstract: The mesocorticolimbic (MCL) system is crucial in developing risky health behaviors which
lead to cardiovascular diseases (CVDs) and type 2 diabetes (T2D). Although there is some knowledge
of the MCL system genes linked to CVDs and T2D, a comprehensive list is lacking, underscoring the
significance of this review. This systematic review followed PRISMA guidelines and the Cochrane
Handbook for Systematic Reviews of Interventions. The PubMed and Web of Science databases
were searched intensively for articles related to the MCL system, single nucleotide variants (SNVs,
formerly single nucleotide polymorphisms, SNPs), CVDs, T2D, and associated risk factors. Included
studies had to involve a genotype with at least one MCL system gene (with an identified SNV) for
all participants and the analysis of its link to CVDs, T2D, or associated risk factors. The quality
assessment of the included studies was performed using the Q-Genie tool. The VEP and DAVID
tools were used to annotate and interpret genetic variants and identify enriched pathways and gene
ontology terms associated with the gene list. The review identified 77 articles that met the inclusion
criteria. These articles provided information on 174 SNVs related to the MCL system that were linked
to CVDs, T2D, or associated risk factors. The COMT gene was found to be significantly related to
hypertension, dyslipidemia, insulin resistance, obesity, and drug abuse, with rs4680 being the most
commonly reported variant. This systematic review found a strong association between the MCL
system and the risk of developing CVDs and T2D, suggesting that identifying genetic variations
related to this system could help with disease prevention and treatment strategies.

Keywords: CVDs; diabetes; gene variant; mesocorticolimbic; reward pathway; SNV; SNP

1. Introduction

Non-communicable diseases (NCDs) pose a significant global health challenge and
are among the top causes of adult mortality worldwide [1]. In 2022, NCDs were estimated
to account for 41 million (71%) of the 57 million global deaths, of which cardiovascular
diseases (CVDs) caused 17.9 million (31%) of the global deaths and 44% of all deaths as a
result of NCDs [1], whereas diabetes mellitus (DM) was attributed to 1.5 million (3%) of all
global deaths and 4% of all NCD deaths [1]. Most NCDs share common risk factors, which
are often categorized as behavioral or biological [2].

The mesocorticolimbic (MCL) system, originating in the ventral tegmental area (VTA)
region of the brain [3], might play a crucial role in the development of key risky health
behaviors leading to chronic NCDs of major public health importance. Studies have re-
vealed that there is a strong association between the MCL system and the risk of developing
CVDs [4,5]. A substantial body of research has demonstrated that certain single nucleotide
variants (SNVs) of specific MCL genes are significant in the increased risk of CVDs. For
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instance, rs7396366, rs4680, and rs4714210 were found to be related to coronary artery
disease [6]; rs4680 was associated with hypertension; rs4633 and rs4680 were linked to
atherosclerosis [7]; and rs2097603, rs4633, rs4680, and rs174699 were associated with venous
thrombosis [8]. Additionally, rs324420 was found to be related to an increased heart rate [9].
The mesolimbic system plays important roles in the regulation of behavior, vulnerability to
stress, and drug abuse [10,11]. Stress is a potential activator of mesolimbic and mesocortical
projections [12,13]. It is also associated with noticeable cardiovascular responses, like differ-
ential vasoconstrictor response, change in blood pressure, and heart rate [14,15]. The MCL
system also regulates optimal cardiovascular responses such as the assimilation of sen-
sory and behavioral information with cardiovascular homeostasis [4,14,16]. To sum up, it
works as a connector between behaviors like locomotory and cognitive, and cardiovascular
homeostasis, which result in CVDs [4,14].

Likewise, studies have revealed that the MCL system has some impacts on the etiology
and pathogenesis of type 2 diabetes (T2D) and metabolic syndrome (MS) [17,18]. An animal
experiment showed that increased dopamine tone in mesolimbic brain areas leads to an
increased value of various rewarding stimuli, including food intake [19,20]. This fact may
have determined an increased motivation for food consumption in the test animals, which
at later stages, could result in obesity and deficits in glucose control [21].

Furthermore, environmental and genetic risk factors influence the incidence and sever-
ity of CVDs and T2D. Other behavioral risk factors that contribute to the development of
CVDs and T2D are smoking, excessive alcohol intake, poor diet, drug addiction, and physi-
cal inactivity [22,23]. These lifestyle factors are closely linked to the MCL system, which
involves a complex interplay between genetic and environmental influences. Research
indicates that variations in MCL genes can increase susceptibility to CVDs and T2D among
individuals with these risk factors [22,23]. Genome-wide association studies have revealed
that heterogeneity can result in different susceptible genes being associated with CVDs and
T2D [24,25].

Identifying genetic variants linked to the development of, or considered risk factors
for, CVDs and T2D is critical for disease prevention and therapy. There is no comprehensive
information from genetic association research on MCL system genes that have been identi-
fied as risk factors for CVDs and T2D. Therefore, this systematic review was undertaken to
give a complete list of SNVs of the MCL system that are related to CVDs and T2D, as well
as their possible risk factors.

2. Materials and Methods
2.1. Study Design and Search Strategy

This review was conducted in accordance with PRISMA guidelines and the Cochrane
Handbook for Systematic Reviews of Interventions [26]. Prior to sorting the studies for
inclusion, the review protocol was registered in the international prospective register of
systematic reviews, PROSPERO (ID: CRD42021273784). Two databases (PubMed and
Web of Science) were searched intensively to identify articles that were related to the
MCL system, SNPs, gene variants, and CVDs, T2D, or their risk factors. Those databases
were used since they are considered the most fundamental sources of medical research.
Search terms and keywords were developed based on the concepts that made up the
research question by using the National Library of Medicine’s vocabulary thesaurus, MeSH,
as indicated in Supplementary Tables S1–S3. To maximize our search sensitivity, the
bibliographies of first hit articles, similar articles to those in PubMed, and articles in Google
Scholar, ProQuest, and some related journals were manually screened to cover all published
and unpublished related articles. The process of selecting studies is illustrated in Figure 1.



Genes 2024, 15, 109 3 of 23Genes 2024, 15, x FOR PEER REVIEW 3 of 24 

Figure 1. PRISMA flow chart of the included studies. 

2.2. Inclusion Criteria 
Studies published up to 31 May 2023 were included in this review based on the fol-

lowing criteria: (1) at least one gene (with an identified SNV) related to the MCL system 
was genotyped for all study participants; (2) the genes (with identified SNVs) were asso-
ciated with CVDs, T2D, or their risk factors; and (3) primary studies were conducted in 
the English language and on humans only. 

2.3. Exclusion Criteria 
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on a scale of 1–77; the average score of all included articles was 71 (ranging from 52 to 77), 
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thesis of the extracted data from the included articles is indicated in Table 1. A thematic 
analysis was used since it is an appropriate method in the context of a systematic review 

Figure 1. PRISMA flow chart of the included studies.

2.2. Inclusion Criteria

Studies published up to 31 May 2023 were included in this review based on the
following criteria: (1) at least one gene (with an identified SNV) related to the MCL
system was genotyped for all study participants; (2) the genes (with identified SNVs) were
associated with CVDs, T2D, or their risk factors; and (3) primary studies were conducted
in the English language and on humans only.

2.3. Exclusion Criteria

Studies must not have been conducted on psychiatric-related health statuses like
schizophrenia or major depressive disorder (MDD). Furthermore, no limitation was created
regarding the study type or characteristics of subjects.

2.4. Quality Assessment and Data Extraction

Quality assessment for all included studies was conducted using the standard genetic
association study quality assessment tool (Q-Genie tool) [27]. Each article was evaluated
on a scale of 1–77; the average score of all included articles was 71 (ranging from 52 to
77), which indicates good-quality studies (Supplementary Appendix S1). A preliminary
synthesis of the extracted data from the included articles is indicated in Table 1. A thematic
analysis was used since it is an appropriate method in the context of a systematic review of
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heterogeneous data [28]. Independently, two authors completed all of the above steps. In
case of any inconsistency, the opinion and advice from a third reviewer was considered.

2.5. Bioinformatics Analysis

We performed a bioinformatics analysis to annotate and interpret genetic variants
and to identify overrepresented biological functions and pathways associated with our
identified genes and variant lists. The variant effect prediction (VEP) tool was used to
annotate the functional effects of genetic variants [29]. The VEP tool was run with the
human genome assembly GRCh38.p13 and the Ensembl transcript database release 109. For
the functional annotation and enrichment analysis, the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) tools was used to identify enriched pathways and
gene ontology (GO) terms for our gene list [30]. We selected the “Homo sapiens” species
database and gene symbol as the gene identifier in DAVID and used the KEGG pathway as
the background database. We visualized the enriched terms using a bar plot and performed
gene set enrichment analysis using Excel 2019.

3. Results

Of the 3123 articles retrieved, 77 articles that met the inclusion criteria were included
in this review. Out of them, seven were related to CVDs; five were related to T2D; six were
related to obesity, and one was related to physical activity, as they were considered risk
factors for CVDs and T2D; fourteen were associated with smoking and fifteen, with alcohol
consumption; and others were related to drug addiction (three on cocaine, ten on heroin,
five on opioids, three on amphetamine, and eight on substance abuse), as they can be risk
factors for CVDs as well. Regarding the study designs, the majority of the studies were
case–control (n = 50), seventeen were cross-sectional, seven were cohort, and three were
randomized controlled trials.

Overall, 117,197 participants were included in 77 studies. Out of them, 27,883 were
Asian (65.9% were Chinese), 39,727 were European (16% were European Americans), 6248
were African American, and 158 were Hispanic, although ethnicity was either reported
as “Other” or not reported for 49,587 participants. A total of 174 SNVs in 69 different
genes of the MCL system that were related to CVDs, T2D, and their potential risk factors
were identified. Details on the identified genes and SNVs, including their IDs and other
genomic features, are provided in Supplementary Appendix S2 and Supplementary Table
S4. The findings were analyzed based on their themes (CVDs, T2D, obesity, smoking
and nicotine dependence, alcohol dependence, drug addiction, and exercise behavior),
which were related to the review question. Significant and non-significant SNVs for each
gene are summarized under those thematic headings in Table 2. Notably, the significant
SNVs associated with cardiovascular diseases were related to coronary artery disease,
hypertension, venous thrombosis, atherosclerosis, and heart rate.

Our systematic review identified a significant association between the COMT gene
and various themes related to CVDs, T2D, and their risk factors. The COMT gene was
found to be significantly related to hypertension, dyslipidemia, insulin resistance, obesity,
and drug abuse. The rs4680 SNP within the COMT gene was the most frequently reported
genetic variant associated with these diseases and their risk factors. This SNP has been
shown to affect the activity of the COMT enzyme, which may impact various physiological
processes related to CVDs and T2D.
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Table 1. Characteristics of the included articles (n = 77).

No. First Author, Year Country Risk Factor/Disease Sample Size (Male) Study Design

1 Adamska-Patruno et al., 2019 [31] Poland Obesity 927 (473) Case–control

2 Al-Eitan et al., 2012 [32] Jordan Drug use 460 (220) Case–control

3 Aliasghari et al., 2021 [33] Iran Obesity 531 (0) Case–control

4 Anney et al., 2007 [34] Australia Substance
dependence 815 (–) Cohort study

5 Aroche et al., 2020 [35] Brazil Crack cocaine
addiction 1069 (605) Case–control

6 Avsar et al., 2017 [36] Turkey Obesity 448 (142) Case–control

7 Bach et al., 2015 [37] Germany Alcohol dependence 81 (43) Cross-sectional

8 Batel et al., 2008 [38] France Alcohol dependence 230 (138) Case–control

9 Beuten et al., 2006 [39] USA Nicotine dependence 2037 (668) Cross-sectional

10 Beuten et al., 2007 [40] USA Nicotine dependence 2037 (–) Cohort study

11 Céspedes et al., 2021 [41] Brazil Alcohol dependence 401 (366) Case–control

12 Carr et al., 2014 [42] USA Obesity 245 (119) Cross-sectional

13 Clarke et al., 2014 [43] USA Opioid and cocaine
addiction 3311 (1554) Case–control

14 da Silva Junior et al., 2020 [44] Brazil Alcohol dependence 300 (300) Case–control

15 Doehring et al., 2009 [45] Germany Opioid dependence 88 (62) Case–control

16 Erlich et al., 2010 [28] USA Nicotine and opioid
dependence 505 (153) Cross-sectional

17 Fedorenko et al., 2012 [46] Russia Alcohol dependence 501 (501) Case–control

18 Fehr et al., 2013 [47] Germany Alcohol dependence 1159 (804) Case–control

19 Fernàndez-Castillo et al., 2010 [48] Spain Cocaine dependence 338 (142) Case–control

20 Fernàndez-Castillo et al., 2013 [49] Spain Cocaine dependence 914 (755) Case–control

21 Flanagan et al., 2006 [50] USA

Drug addiction
(cocaine, alcohol,
heroin, methadone,
and
methamphetamine)

1024 (–) Case–control

22 Ge et al., 2015 [51] China Blood pressure and
lipid level 3079 (1864) Cohort study

23 Gellekink et al., 2007 [8] Netherland Venous thrombosis 607 (302) Case–control

24 Gold et al., 2012 [52] USA Smoking cessation 1217 (553) RCT

25 Hall et al., 2014 [53] USA CVD, aspirin and
vitamin E 23,273 (0) RCT

26 Hall et al., 2016 [54] USA T2D 909 (0) Cross-sectional

27 Harrell et al., 2016 [55] USA Smoking 96 (71) Cross-sectional

28 Huang et al., 2009 [56] USA Nicotine dependence 2037 (–) Cohort study

29 Johnstone et al., 2004 [57] USA Smoking behavior 975 (399) Cohort study

30 Joshua WB, 2013 [58] USA Obesity and drug
abuse 59 (29) Cross-sectional

31 Kaminskaite et al., 2021 [59] Lithuania Alcohol dependence 329 (127) Case–control

32 Kishi et al., 2008 [7] Japan Meth use disorder 944 (479) Case–control

33 Ko et al., 2012 [60] China Atherosclerosis 1503 (696) Cross-sectional

34 Koijam et al., 2021 [61] India Heroin dependence 279 (110) Case–control

35 Kring et al., 2009 [62] Denmark T2D and obesity 1557 (1557) Cross-sectional

36 Kuo et al., 2018 [63] China Amphetamine
dependence 1063 (854) Case-control

37 Lachowicz et al., 2020 [64] Poland Polysubstance
addiction 601 (601) Case–control
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Table 1. Cont.

No. First Author, Year Country Risk Factor/Disease Sample Size (Male) Study Design

38 Landgren et al., 2011 [33] Sweden Alcohol dependence 115 (88) Case–control

39 Långberg et al., 2013 [65] Sweden Obesity and Type 2
diabetes 1177 (827) Case–control

40 Levran et al., 2015 [66] USA
Heroin (OD) and
cocaine (CD)
addictions

522 (281) Case–control

41 Li et al., 2006 [67] China Heroin dependence 420 (–) Cross-sectional

42 Li et al., 2016 [68] China Heroin addiction 1080 (–) Case–control

43 Lind et al., 2009 [69] Australia Alcohol consumption
behavior 305 (305) Case–control

44 Lohoff et al., 2009 [70] USA Cocaine dependence 608 (328) Case–control

45 Ma et al., 2005 [71] USA Nicotine dependence 2037 (686) Case–control

46 Ma et al., 2018 [6] China Coronary artery
disease 611 (471) Case–control

48 Mattioni et al., 2022 [72] France
Alcohol use, nicotine,
and cannabis
dependence

3056 (1834) Case–control

47 Mir et al., 2018 [73] India Cardiovascular
disease 200 (96) Cohort study

49 Mutschler et al., 2013 [74] Germany Smoking behavior 551 (–) Case–control

50 Najafabadi et al., 2005 [75] Iran Opium dependence 230 (230) Case–control

51 Nelson et al., 2014 [76] USA and Australia Heroin dependence 3485 (2095) Case–control

52 Noble et al., 1994 [77] USA Smoking 354 (190) Case–control

53 Peng et al., 2013 [78] China Heroin dependence 844 (436) Case–control

54 Perez de los Cobos et al., 2007 [79] Spain Heroin dependence 426 (305) Case–control

55 Prado-Lima et al., 2004 [80] Brazil Smoking behaviors 625 (266) Cross-sectional

56 Ragia et al., 2013 [81] Greek Smoking initiation 410 (215) Case–control

57 Ragia et al., 2016 [82] Turkey Alcohol dependence 146 (111) Case–control

58 Schacht et al., 2009 [9] USA Smoking marijuana 40 (30) Cross-sectional

59 Schacht et al., 2022 [83] USA Alcohol dependence 87 (33) RCT

60 Shiels et al., 2009 [84] USA Smoking 10,059 (3873) Cross-sectional

61 Sipe, et al., 2002 [85] USA Drug users (drugs,
alcohol, nicotine) 2881 (–) Case–control

62 Spitta et al., 2022 [86] Germany Alcohol dependence 29 (26) Case–control

63 Suchankova et al., 2015 [87] USA Alcohol dependence 2671 (2405) Case–control

64 Sun et al., 2021 [88] China
Methamphetamine,
heroin, and alcohol
addiction

6146 (4364) Case–control

65 Tyndale et al., 2006 [89] Canada Drug addiction 749 (242) Cross-sectional

66 Van Der Mee et al., 2018 [90] Greece Exercise behavior 12,929 (5144) Cohort study

67 Vereczkei et al., 2013 [91] Hungary Heroin dependence 858 (597) Case–control

68 Voisey et al., 2011 [92] Australia
Alcohol, nicotine,
and opiate
dependence

748 (443) Case–control

69 Wang et al., 2018 [93] China Coronary artery
disease 707 (311) Case–control

70 Wei et al., 2012 [94] China Nicotine dependence 480 (480) Cross-sectional

71 Xie et al., 2013 [95] China Heroin addiction 533 (533) Case–control

72 Xiu et al., 2015 [96] China Type 2 diabetes 1320 (758) Case–control

73 Xu et al., 2004 [97] Germany and China Heroin dependence 1462 (–) Case–control

74 Ying et al., 2009 [98] China Obesity 426 (217) Case–control
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Table 1. Cont.

No. First Author, Year Country Risk Factor/Disease Sample Size (Male) Study Design

75 Yu et al., 2006 [99] USA Nicotine dependence 1590 (730) Cross-sectional

76 Zain et al., 2015 [100] Pakistan Type 2 diabetes 191 (107) Cross-sectional

77 Zhu et al., 2013 [101] China Opioid dependence 939 (343 *) Case–control

Total number of participants (accumulative) 117,197 (43,839)

* = Number of males available for cases only, – = no data available on gender, RCT = randomized controlled trial.

Table 2. Single nucleotide polymorphisms encoding proteins of the MCL system that are related to
cardiovascular diseases, type 2 diabetes, and their risk factors.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

1 Cardiovascular diseases (CVDs)

AP2A2 rs7396366 [6]

BZRAP1 rs2526378 [93]

COMT

rs4680 [51,53,60,73]
Haplotype: rs2097603–
rs4633–rs4680–rs174699
(G–C–G–T) [8]
rs4633 [60]
rs4818 [53]

(rs2097603
rs4633
rs174699) [8]
Haplotypes:
rs2097603–rs4633–rs4680–rs174699
(A–C-G–T, A–T-A–T, A–C–G–C) [8]

FAAH C385A (rs324420) [9]

GLP1R rs4714210 [6]

(rs761387
rs2268635
rs7769547
rs910162
rs3765468
rs3765467
rs3765466
rs10305456
rs10305518
rs1820) [6]

2 Type 2 diabetes (T2D)

5HT2A rs6311 [62]

5HT2C rs3813929 [62]

ADRA2A (rs553668
rs521674) [65] rs11195419 [65]

COMT

rs4646312 [96]
rs4680 [54,62,96]
(900 I/D C) [100]
(rs4633
rs4818) [54]

DRD3

(rs167771
rs324029
rs8076005
rs20667) [96]

SLC6A4

Haplotypes: rs4646312,
rs4680 (C–G, T–A) [96]
Diplotype:
rs4646312–rs4680
(C–G_T–G)
SNP–SNP interactions
Additive × additive
(rs4680 × rs2066713)
Dominant × dominant
(rs4680 × rs2066713) [11]

Haplotypes: rs8076005, rs2066713 (A–A,
A–G, G–G) [96]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

3 Obesity

5HT2AR –c.1438 A>G [98]

5HT2C
Combined genotype with
COMT (rs3813929
rs4680) [62]

ANNK1 rs1800497 [33]

ADRA2A (rs553668
rs521674) [65] rs11195419 [65]

COMT rs4680 [62] rs4580 [42]

DAT1 rs28363170 [42]

DBH

(rs77905
rs6271
rs1611115
rs1108580) [42]

DDC

(rs2060762
rs11575543
rs11575542
rs11575522
rs11238131) [42]

DRD1 rs4532 [42]

DRD2 rs1799732 [33] rs1800497 [42]
(rs1800498
rs6277) [72]

DRD3 rs6280 [42]

DRD4 rs4646984 [42]

HTR1A

(rs6295
rs1800044
rs1799920
rs10042486) [42]

HTR1B
(rs6296
rs13212041
rs130058) [42]

HTR2A rs6314 [42]

(rs927544
rs7997012
rs6313
rs6311
rs2770296
rs1923886) [42]

LEPR rs1137100 [58] rs1137101 [58]

MAOA
MAOA-LPR (3.5R/4R)
[42]
u VNTR [36]

MC4R
(rs1350341
rs17782313
rs633265) [31]

OPRD

(rs569356
rs2236861
rs204076
rs7773995
rs514980
rs2281617
rs1799971
rs12205732
rs10485057
rs17174801) [42]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

SERT

(rs2066713
rs2020933
rs16965628
rs1042173) [42]

SPR (rs2421095
rs1876487) [42]

TH rs71029110 [42]

TPH2

(rs7963720
rs7305115
rs4290270
rs17110690
rs1487275
rs17110747) [42]

4 Smoking and nicotine dependence

5HT2A T102C [80]

ANKK1 (rs11604671
rs2734849) [56]

(rs10891545
rs7945132
rs4938013
rs7118900
rs1800497) [56]

CHRNA3 (rs660652
rs1051730) [28]

(rs6495308
rs12443170) [28]

CHRNA4 rs2236196 [94]

CHRNA5

(DRD2/5-HT2CR
–759C>T genotype
combinations:
A1–/–759T–, A1+/–759T–,
A1–/–759T + A1+/–759T+;
DRD2/5-HT2CR –697G>C
genotype combinations:
A1–/–697C–,
A1+/–697C–, A1–/–697C+
A1+/–697C+, 5-HT2CR
–759C>T; interaction of
5-HT2CR –759C>T and
DRD2 TaqIA; 5-HT2CR
–697G>C; interaction of
5-HT2CR –697G>C and
DRD2 TaqIA) [28]
(rs936460
rs936461
rs12280580) [55]

rs16969968 [28]

CHRNB3 rs4954 [94]
rs660652 [28]

COMT

rs4680 [39,84]
(rs740603
rs4680
rs174699
rs933271
rs174699) [39]
Haplotype:
rs740603–rs4680–rs174699
(A–G–T)
rs933271–rs4680–rs174699
(T–G–T, C–A–T) [39]

rs4633 [39]
rs4680 [74]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

DBH rs77905 [84]

DDC

rs11575461 [94]
(rs12718541
rs1470747
rs11238214
rs2060761) [99]
rs921451 [71,99]
Haplotype:
rs921451–rs3735273–
rs1451371–rs2060762
(T–G–T–G)
rs921451–rs3735273–
rs1451371–rs3757472
(T–G–T–G) [71]

(rs11575542
rs732215
rs1451371
rs3823674
rs1470750
rs11575334
rs4947644) [99]
(rs998850
rs3735273
rs1470750
rs1451371
rs732215
rs3757472
rs2060762) [71]

DRD2
(rs11214613
rs6589377) [94]
TaqIA1 [77]

(rs6278
rs6279
rs1079594
rs6275
rs2075654
rs2587548
rs2075652
rs1079596
rs4586205
rs7125415
rs4648318
rs4274224
rs7131056
rs4648317
rs4350392
rs6589377) [56]
C32806T [57]
(rs1800498
rs6277) [72]

DRD3 rs2630351 [94]

DRD4
(rs936460
rs936461
rs12280580) [55]

rs1805186 [55]

DRD5 rs1967550 [94]

FIGNL1 rs10230343 [99]

GABBR2 rs2779562 [40]

GALR1 rs2717162 [52]

GRB10
(rs12669770
rs12540874
rs2715129) [99]

MAOA rs1801291 [84]

MAP3K4 rs2314378 [94]

PPP1R1B

Haplotype:
rs2271309–rs907094–
rs3764352–rs3817160
(–C–T–G–C)
rs879606 [40]

rs1874228 [40]

ZNFN1A1 (rs11980407
rs1110701) [99]

5 Alcohol dependence
ADH1B rs1229984 [88]

AGBL4 rs147247472 [88]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

ANKK1
rs1800497 [59]
(rs4938015
rs1800497) [72,86]

ANKS1B rs2133896 [88]

CHRNA3

(rs6495307
rs1317286
rs12443170
rs8042059) [34]

CHRNA4

(rs1044396
snp12284
rs6011776
rs6010918) [34]

CHRNA6

(rs17621710
rs10087172
rs10109429
rs2196129
rs16891604) [34]

CHRNB2 (rs2072659
rs2072660) [34]

CHRNB3 rs13261190 [34]

(rs62518216
rs62518217
rs62518218
rs16891561) [34]

COMT

(rs165774
rs4680) [59,83]
Haplotype:
rs4680–rs165774 (–A–A)
[92]

(rs4633
rs740602
rs4818
rs4680
rs4646315) [41]

CRH rs6999100 [58]

CSNK1E rs135745 [58]

CTNNA2 rs10196867 [88]

DDC rs11575457 [41]

(rs5884156
rs4490786
rs11575457
rs58085392
rs2876829
rs11575375
rs3735273
rs6950777
rs6264) [41]

DAT1 (rs6350
rs463379) [69]

(rs10064219
rs12516948
rs40184
rs6347
rs464049
rs403636) [69]

DRD1

rs686 [38]
(rs2283265
rs1076560
rs2075654
rs1125394
rs2734836
rs1799732) [32]
Haplotype: rs686–rs4532
(–T–G) [38]

(rs686
rs155417
rs4532) [41]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

DRD2 (rs6277
rs1800498) [72]

A2/A1 [82]
rs1800497 [34]
(rs6277
rs6275
rs1076560
rs35352421
rs11608185
rs12808482) [41]

DRD3

Ser9Gly [82]
(rs149281192
rs2251177
rs3732783
rs6280) [41]

DRD4 rs7124601

DRD5
(rs2076907
rs6283
rs1967551) [41]

DβH 1021 C/T [82]

FAAH 385 C/A [85]

GHRL (rs42451
rs35680) [34]

(rs4684677
rs34911341
rs696217
rs26802) [34]

GHSR rs495225 [34]
(rs2948694
rs572169
rs2232165) [34]

GLP1R

(rs7766663
rs2235868
rs7769547
rs10305512
rs2143734
rs2268650
rs874900
rs6923761
rs7341356
rs932443
rs2300613) [87]

(rs7738586
rs9296274
rs2268657
rs3799707
rs3799707
rs910170
rs1042044
rs12204668
rs1076733
rs2268640
rs2206942
rs10305514
rs4714210
rs4254984
rs9968886) [87]

GRIK1 rs2832407 [82]

HTR2A (rs6313
rs6311) [44]

OPRM1 rs1799971 [37] A118G [82]

PIP4K2A (rs746203
rs2230469) [46]

(rs8341
rs943190
rs1132816
rs1417374
rs11013052) [46]

SLC6A3

(rs429699
rs8179029
rs6347
rs6348
rs460000
rs465130
rs465989
rs13189021
rs2254408
rs2270914
rs2270913
rs8179023
rs6350) [41]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

TH

(rs6578990
rs12419447
rs6357
rs7925924
rs4074905
rs6356
rs7925375) [41]

VMAT2

rs363387 [47]
Haplotypes: rs363332,
rs363387
(–G–T, –G–G)
rs363387–rs363333 (–T–T)
rs363333–rs363334 (C–T)
rs363387–rs363333–
rs363334 (–T–T–C)
rs363332–rs363387–
rs363333–rs363334
(–G–T–T–C) [47]

(rs363371
rs363324
rs11197931) [47]

6 Drug addiction

ADH1B rs1229984 [88]

AGBL4 rs147247472 [88]

ANKK1

(rs877137
rs877138
rs12360992
rs4938013
rs2734849
rs2734848) [76]
rs1800497 [45,91]

rs1800497 [76]
rs7118900 [66]

ANKS1B rs2133896 [88]

CDNF

(rs11259365
rs7094179
rs7900873
rs2278871) [70]

CHRM5 rs7162140 [102]

(rs661968
257A>T
rs2702309
rs2702304
rs2576302
rs2705353) [102]

CHRNA4

(rs755203
rs2273506
rs2273505
rs3787141
rs3787140
rs2273504
rs2273502
rs2273501
rs1044396
rs1044397
rs3787137
rs2236196
rs4522666) [7]

CHRNA5

rs16969968 [35]
Haplotypes: rs16969968–
rs660652–rs1051730–
rs6495308–rs12443170
(A–G–A–T–G,
G–G–G–T–G)) [28]
(rs588765
rs514743) [35]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

CHRNB2

(rs4845652
rs2072658
rs2072659
rs2072660
rs3811450) [7]

CNTFR rs7036351 [49]

COMT rs4680 [66]

rs4680 [91]
(rs933271
rs2239393
rs4818) [66]
(rs265981
rs1800497
VNTR 130–166 bp
rs2519152
VNTR) [90]

CSNK1E rs5757037 [66]

CTNNA2 rs10196867 [88]

DAT1

Int8 VNTR [48]
(rs28363170
rs3836790
rs246997) [61]

SLC6A3 VNTR [67]
3′UTR VNTR [48]
(rs40184
rs27048
rs37021
rs250683
rs250682
rs427284)
rs458609) [61]

DBH rs6479643 [49]

rs1611115 [95]
rs1108580 [66]
1021C>T [81]
(rs1108580
5UTR ins/del) [48]
rs2519152 [90]

DCC
(rs16956878
rs12607853
rs2292043) [68]

(rs2122822
rs2329341) [66]
(rs17753970
rs934345
rs2229080) [68]

DLG2 (rs575050, rs2512676, rs17145219,
rs2507850) [68]

DRD1 (rs4532
rs686) [101]

(rs4532
rs5326
rs2168631
rs6882300
rs267418) [78]
(rs686
rs5326) [66]
(rs10078866
rs10063995
rs5326
rs1799914
rs4867798) [101]
rs265981 [90]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

DRD2

TaqI A1 [67,75,79]
(rs2234689
rs1554929
rs2440390
rs1076563) [76]
rs1079597 [91]
rs1076560 [43,45]
(241 A>G; TaqIB A>G;
TaqID G>A; and intron 4
T>C) [97]
(759 C>T; 697 G>C) [81]
Haplotypes: rs1076560,
rs1800498, rs1079597,
rs6276, and rs180049 of the
ANKK1
(C–T–G–A–T,
C–T–G–A–C) [64]

rs7125415 [76]
(141 ins/del C; intron 6 ins/del G; 311
Ser>Cys; 20236 C>T; exon 822640 C>G; and
TaqIA G>A) [97]
rs1800498 [72,91]
(rs1076560
rs2283265
rs2587548
rs1076563
rs1079596
rs1125394
rs2471857
rs4648318
rs4274224
rs1799978) [66]
TaqIA [81]
rs1079597 [48]
rs1800497 [48,90]
(rs12364283
rs1799978
rs1799732
rs4648317
rs1800496
rs1801028
rs6275
rs6277) [45,72]

DRD3

Haplotype: rs324029–
rs6280–rs9825563 (A–T–A)
rs2134655–rs963468–
rs9880168 (A–T–A)
[63]

(rs3773678
rs167771) [66]
rs6280 [90]
(rs2046496
rs2630351) [63]

DRD4 rs1800955 [91]
(rs936462
rs747302) [91]
VNTR 48 bp [90]

DRD5
DRP (A9/A9) [67]
rs2867383 [66]
VNTR 130–166 bp [90]

FAAH

(rs12075550
rs6658556
796A>G
rs932816
rs4660930) [50]

385 C/A * [50,89]

FAT3

(rs10765565
rs4753069
rs2197678
rs7927604) [68]

HTR1E rs1408449 [49]

HTR2A (rs6561332
rs6561333) [49]

KTN1

(rs10146870
rs1138345
rs10483647
rs1951890
rs17128657
rs945270) [68]

NCAM1 (rs4492854
rs587761) [76] rs11214546 [76]

NGFR rs534561 [49]

NTF3 rs4073543 [49]

NTRK2 rs1147193 [49]

NTRK3
(rs12595249
rs744994
rs998636) [49]
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Table 2. Cont.

No. Risk Factor/Disease Gene Name ‡ Significant SNVs † Non-Significant SNVs †

TH rs2070762 [49]

TTC12

(rs2303380
rs10891536
rs4938009
rs7130431
rs12804573) [76]

rs719804 [76]

7 Exercise Behavior

COMT rs4680 [90]

DAT1 VNTR 440 bp [90]

DBH rs2519152 [90]

DRD1 rs265981 [90]

DRD2/ANKK1 rs1800497 [90]

DRD3 rs6280 [90]

DRD4 VNTR 48 bp (7r) [90]

DRD5 VNTR 130–166 bp [90]

MAOA VNTR 30 bp [90]

‡ A concise summary of the role of each gene and the chromosome where it is located is provided in Supplementary
Table S4, † “Significant” denotes SNVs with a statistically significant association with CVDs, T2D, and/or their
risk factors, while “Non-Significant” indicates SNVs without a statistically significant association, * significant
with regular sedative users only.

The significant SNVs were analyzed using the VEP tool [29]. The predicted effects
of the genetic variants on protein function were synonymous (53%) and missense (47%)
(Figure 2). Further analysis of the missense variants using VEP revealed that 48.2% were
predicted to be benign, 3.38% were predicted to be likely benign, and 18.42% were predicted
to initiate a drug response.
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Moreover, cellular component and functional enrichment analyses of the 69 identified
genes were performed using DAVID [30]. For the cellular component enrichment analysis,
we found that genes were significantly enriched in several cellular components, including
serotonergic and dopaminergic synapses. These results suggest that the 69 genes are involved
in various cellular processes and may play important roles in CVDs and T2D development. We
also performed a functional enrichment analysis. We found that the 69 genes were significantly
enriched in several functional pathways, including “dopamine neurotransmitter receptor
activity”, “dopamine binding”, and “serotonin binding”. These pathways are known to be
involved in various aspects of CVD and T2D development and progression. The top ten
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terms for the cellular components, functional enrichments, and phenotypic enrichments of the
identified genes are provided in Supplementary Figures S1–S3.

4. Discussion

The MCL system, originating in the VTA region of the brain, is known to affect a
person’s adverse health behaviors, which increase their risk for CVDs and T2D develop-
ment [103,104]. Overstimulation of dopamine, as the main neurotransmitter of the MCL,
will lead to craving for different substances, and thus, might be related to increasing the risk
of developing CVDs and T2D [9]. Numerous genes in the MCL system have been found
to be related to CVDs and T2D, either directly or indirectly, through their involvement in
different risky behaviors [8,51,53,54,60,62,73,96]. MCL genes that were frequently found to
be associated with multiple traits are discussed herein.

The catechol-O-methyltransferase (COMT) gene was found to be significantly related
to all themes of this study. The COMT enzyme is encoded by the COMT gene, as it is
responsible for the degradation of dopamine–adrenaline and noradrenaline, and cate-
cholamine [73]. Studies show that regulating dopamine activities might have an impact
on vascular resistance [73] and numerous reward behaviors like obesity [62]. The rs4680
(Val158Met) of the COMT gene was the most prevalent SNV that was related not only to
CVDs [8,51,53,60,73] but also to T2D [54,62,96] and other risk factors [22,39,62,68,76,105].
A case–control study among subjects of European ancestry found no significant association
between rs4680 and nicotine dependence when using the Fagerstrom Test for Nicotine
Dependence (FTND) [74]. However, the same measurement tool revealed a significant
association among two ethnic groups (African American and European American) [39].
Furthermore, a study showed a positive relationship between rs4680 and smoking initia-
tion among females and with smoking persistence among males, as smoking status was
self-reported, but not with other smoking behaviors. This variation might be due to the
absence of a standard measurement tool for smoking behaviors [39].

In regards to drug addiction and rs4680, two case–control studies [66,91] have shown
contradictory results for heroin addiction, even though the same standard instrument
(Diagnostic and Statistical Manual of Mental Disorders, 4th edition) was applied for both.
A study revealed that African American descent were genetically susceptible to heroin
addiction, as the Val allele of the COMT gene is a risk allele [66]; in contrast, no relationship
was found in another study conducted among people of European descent only [91]. These
reversing findings might be attributed to the diversity in the ethnic groups and sample
sizes of the studies.

A release of mesocorticolimbic dopamine is modulated by a CB1 receptor that is
inactivated by fatty acid amide hydrolase (FAAH) enzymes, triggering different aspects
of addiction [9,50,89]. An SNV variant (rs324420/C385A) of the FAAH gene was found to
establish important risk factors for alcohol dependence [50] and marijuana use [9]. Under
the recessive model of C385A, it was found to be related to increased heart rate following
cannabis smoking [50]. This proved the connection between MCL and drug addiction,
which is considered a risk factor for CVDs. However, a study with a larger sample size
conducted among adult Caucasians found that a variant of FAAH was not significantly
associated with cannabis use [89]. Despite using the same diagnostic criteria for substance
use disorder (DSM-IV) in the studies by Schacht et al. [9] and Flanagan et al. [50], the
heterogeneity of the sample size, ethnicity, and inclusion criteria might have contributed to
the variety in the correlation between the FAAH variant and substance use.

The glucagon-like peptide-1 (GLP-1) is a hormone that regulates appetite and food
intake [6,87], and its receptor activation might affect the reduction in driven behavior for
alcohol use [87,106]. GLP-1R in the mesolimbic area is involved in food-related reward
processing [6,87]. GLP-1R agonists have a consequence on CVDs through their physiological
effects like reduction in fatty acid absorption, increased satiety, and reduction in body
weight [6,87]. The risk of coronary artery diseases (CADs) was found to be lower among
individuals who carried the GG genotypes of the rs4714210 variant of the GLP-1R gene
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than for AA genotype carriers [107]; however, another study that addressed the targeted
SNVs of GLP-1R for the treatment of alcohol use disorder (AUD) among Caucasians and
African Americans indicated no relationship between rs4714210 and AUD [106]. On the
other hand, rs7769547 of the GLP-1R gene was significantly associated with AUD [87], but
not with that of CADs [6]. This might be due to the fact that different phenotypes were
considered; as a consequence, one variant might be a risk for a particular phenotype but
not for others.

Different substances such as nicotine, cocaine, alcohol, opiates, and food increase
brain dopamine levels and activate the MCL dopaminergic reward pathways of the brain,
hence resulting in various risky behaviors such as smoking, alcohol dependence, and
obesity [42,67,75,77,79,82,94]. There are five dopamine receptor genes, DRD1, DRD2, DRD3,
DRD4, and DRD5, which are mainly related to different risky behaviors like substance
abuse and addiction [32,38,42,55,63,67,75,77,79,90,94,101]. They are considered risk factors
for CVDs and T2D. DRD2 TaqI A is an SNV with two variants: A1, the less frequent allele,
and A2, the most frequent. The A1 allele is related to a reduction in the concentrations
of D2 receptors which results in diverse substance use disorders (SUDs). Studies have
identified that TaqI A is significantly associated with smoking [77], heroin [67,79], and
opium addiction [75]. On the other hand, Ragia et al. [81] showed no interaction between
the DRD2 TaqI A polymorphism and smoking initiation; however, they indicated that an
interaction between DRD2 TaqI A1 and 5-HT2CR -759T alleles resulted in smoking initiation
behavior [81].

Though the genetic risk factors for CVDs and T2D are abundant, no fundamental
study has yet been conducted to study all MCL genetic variants in a comprehensive manner.
Intensively studying the impacts of these SNVs on chronic diseases might pave the way for
establishing new preventive and treatment approaches. Therefore, this systematic review
was conducted to compile worthwhile SNVs encoding proteins of the MCL system that
were associated with CVDs and T2D. Although some published studies did not consider
ethnicity and gender as cofounders, the available data from the literature seem to designate
that the MCL system has a strong relationship with increasing the risk of developing CVDs
and T2D, either directly or indirectly through modifying their risk factors. Dimorphisms
in gender and ethnicity among the included studies might have contributed to the het-
erogeneity of the outcomes of this review. Another limitation would be that relying on
aggregated data restricted our ability to analyze individual patient data, curtailing detailed
insights into specific subpopulations. While our comprehensive search strategy aimed to
minimize bias in study selection, it is imperative to acknowledge the underrepresentation
of studies in languages other than English. Moreover, interpreting biological causality
remains challenging; although our review identified statistically significant associations,
establishing causation necessitates a more nuanced understanding of the underlying biological
mechanisms. Future research should rigorously explore molecular pathways to enhance com-
prehension. The generalizability of our findings is inherently constrained by the variations in
the included study populations, methodologies, and geographic locations, thereby limiting
the external validity of our results. Altogether, further studies using these SNVs might help in
developing a better understanding of how these SNVs alter CVDs and T2D.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15010109/s1, Figure S1: The top ten cellular component
enrichment terms of the identified genes; Figure S2: The top ten functional enrichment terms of the
identified genes; Figure S3: The top ten phenotypic enrichment terms of the identified genes; Table S1:
Keywords used for PubMed search performed on 2023-03-06; Table S2: Search strategy on PubMed;
Table S3: Search strategy on Web of Science; Table S4: Gene Catalog: Chromosome Assignment and
Functional Roles.
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