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Abstract: Breast cancer is a global health problem. It is an age-dependent disease, but cases of early-
onset breast cancer (eBC) are gradually increasing. There are many unresolved questions regarding
eBC risk factors, mechanisms of development and screening. Only 10% of eBC cases are due to
mutations in the BRCA1/BRCA2 genes, and 90% have a more complex genetic background. This
poses a significant challenge to timely cancer detection in young women and highlights the need for
research and awareness. Therefore, identifying genetic risk factors for eBC is essential to solving these
problems. This study represents an association analysis of 144 eBC cases and 163 control participants
to identify genetic markers associated with eBC risks in Kazakh women. We performed a two-stage
approach in association analysis to assess genetic predisposition to eBC. First-stage genome-wide
association analysis revealed two risk intronic loci in the CHI3L2 gene (p = 5.2 × 10−6) and MGAT5
gene (p = 8.4 × 10−6). Second-stage exonic polymorphisms haplotype analysis showed significant
risks for seven haplotypes (p < 9.4 × 10−4). These results point to the importance of studying medium-
and low-penetrant genetic markers in their haplotype combinations for a detailed understanding of
the role of detected genetic markers in eBC development and prediction.

Keywords: early-onset breast cancer; microarray-based SNP genotyping; genome-wide association
study; genetic variations; genetic markers; Kazakh population

1. Introduction

Breast cancer (BC) is a significant health concern in Kazakhstan, as it is in many other
countries around the world. According to the World Health Organization (WHO), BC is the
most common cancer among women in Kazakhstan, accounting for approximately 22% of
all cancers in females. Several factors contribute to the high incidence of BC in Kazakhstan.
These include limited access to preventative and diagnostic services, lack of awareness
about breast cancer screening and early detection, and inadequate healthcare infrastructure
in certain regions of the country. To address these issues, the Kazakhstani government,
in collaboration with international organizations, has implemented various initiatives to
improve breast cancer prevention, screening, and treatment. These initiatives include
public awareness campaigns, training of healthcare providers, and the establishment of
breast cancer screening programs [1–3].
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However, challenges remain in combating breast cancer in Kazakhstan. Limited
resources, socioeconomic disparities, and cultural factors can hinder the effectiveness of
these initiatives. Additionally, there is a need for further research and data collection to
understand better the specific risk factors and patterns of breast cancer in the country.

Genome-Wide Association Study (GWAS) is an approach typically employed to iden-
tify common genetic variants associated with specific diseases or traits. It involves compar-
ing the genomes of individuals with and without the disease or trait to pinpoint specific
genetic markers [4]. In the case of breast cancer, GWAS has been instrumental in revealing
numerous genetic variants associated with an increased risk of developing the disease.
Over the years, several large-scale GWASs have identified numerous genetic variants linked
to breast cancer susceptibility. Some of these variants are found in genes involved in DNA
repair, estrogen metabolism and cell growth regulation.

The information obtained from GWAS has expanded our understanding of the genetic
basis of breast cancer, contributing to the development of more accurate risk prediction
models [5,6]. This allows individuals with a higher genetic risk for breast cancer to under-
take proactive measures for early detection and prevention, such as increased surveillance
and preventive surgeries.

GWAS analyzes high-frequency genetic markers, which are widespread in differ-
ent populations (minor allele frequency more than 3% (MAF > 0.03)), in contrast to rare
but pathologically significant mutations (mutations in the BRCA1_c.5266dup, 185delAG,
BRCA2_6174delT genes [7]). As a rule, these genetic markers or polymorphisms have
medium or low penetrance of phenotype traits. Often, phenotypic manifestations of these
polymorphisms are visible only at the molecular level (by experimental methods or predic-
tion structure tools). They do not affect the total destruction of protein function, but milder
modifications of its expression (promoter polymorphisms), transcriptions/translations
(splice-site polymorphisms), mRNA bioavailability (synonymous variants), and structures
that potentially influence protein interaction with targets (missense variants). These poly-
morphisms, apparently, have a longer time for accumulating initial (predisposing) events
of cancer processes and are more dependent on the influence of external modifying factors.
Therefore, GWAS shows that most of the identified high-frequency polymorphisms are not
extrapolated to other populations with different environmental, cultural, socioeconomic,
and lifestyle features. Undoubtedly, they are essential for the functioning of an organ-
ism. However, their contribution to phenotypic characteristics is hard to detect since their
functional significance manifested in interaction with other factors (internal and external).

The genetic structure of the ethnic Kazakh women population is insufficiently studied.
Some studies devoted mainly to BRCA1 and BRCA2 genes and other BC-associated genes
have been conducted in various regions of Kazakhstan [8–11]. Moreover, there are no data
on early-onset BC-associated SNP markers. This study presents for the first time the results
of the GWAS that allow us to identify SNP markers previously uncharacterized for this
group of patients.

Given the above, determining the general population and individual risk of developing
breast cancer becomes a difficult task. Risk assessment should be complex and consider
multiple interactions of various factors currently under research.

In this regard, in our study, we assessed the significance not only of separate genetic
markers but their combinations (haplotypes) in the development of ABC based on a
population of ethnic Kazakh women. Using the odds ratio approach, we tried to quantify
the strength of an association between haplotypes of genetic markers located in exons
(proteins take part in physical interactions) and eBC.

2. Results
Genome-Wide SNP Genotyping Results

Genotyping of 654,027 autosomal genetic markers revealed 25,323 SNP variants with
high no-call rates and three samples with a genotype call rate less than 0.95. They were
filtered out and excluded from the analysis. Additionally, 231,362 variants with an MAF of
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less than 3% were filtered out from the genotyping data screened. A futher 70,304 mark-
ers did not correspond to the HWE and were also excluded from the analysis. In total,
327,038 SNP markers were tested for the association analysis.

The associative analysis of the data was carried out using a multiplicative model
of inheritance (A allele vs. B allele). Totally, 18,508 SNPs showed OR associations with
a classical confidence level not exceeding a 5% error rate (p = 0.05). According to the
analysis, there were no genetic markers achieving a GWAS significance threshold p-value of
<5 × 10−8 and internal Bonferroni correction p = 1.5 × 10−7. Visualization of the obtained
OR results were plotted by a Manhattan plot, –log10 (p-value) against the chromosome
position (Figure 1).
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disequilibrium (R2 = 1, D’ = 1, p < 0.0001) within a gene sequence (intron), and a genetic 
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Figure 1. Manhattan plot showing the level of statistical significance of detected associations for each
analyzed polymorphism. The x-axis includes the genomic coordinates of analyzed polymorphisms
(SNPs) for each chromosome. The highest p value (OR = 2.51; p = 5.2 × 10−6) was observed for
rs942694 in the first chromosome. The horizontal black line shows the GWAS threshold at p = 5 × 10−8

(−log10P = 7.3). Chr: chromosome.

The most significant genetic markers identified were genetic loci, and SNPs reached
the threshold of 5 × 10−6 (−log10P = 5.3) on the first, second, third and sixth chromosomes.
A genetic locus on the first chromosome included four SNPs in high linkage disequilibrium
(R2 = 1, D’ = 1, p < 0.0001) within a gene sequence (intron), and a genetic locus on the second
chromosome included three SNPs in linkage disequilibrium (R2 = 1, D’ = 1, p < 0.0001)
within a gene sequence (intron). The other three genetic variations on the first, third and
sixth chromosomes were in linkage equilibrium with neighboring markers and located
within poorly characterized intergenic sequences. Data for these markers are presented in
a summary Table 1.
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Table 1. Significant markers on chromosomes analyzed (threshold of 5 × 10−6).

SNP ID Base
Change Chr Position MAF

(Database)
MAF

Case/Control
Effect
Allele OR (95%CI) p-Value Gene

SNP 1

rs55914748 T/G 1 82884721 0.22 (G) 0.23/0.09
T 0.36 (0.22–0.56) 6.4 × 10−6 -

G 2.81 (1.77–4.46)

Locus 1

rs942694 T/C 1 111784138 0.19 (C) 0.29/0.14
T 0.4 (0.27–0.6) 5.2 × 10−6 CHI3L2

C 2.51 (1.68–3.75)

rs942693 T/C 1 111784158 0.19 (C) 0.29/0.14
T 0.40 (0.27–0.7) 6.2 × 10−6 CHI3L2

C 2.49 (1.66–3.72)

rs5003370 T/G 1 111784509 0.19 (G) 0.29/0.14
T 0.4 (0.27–0.6) 5.2 × 10−6 CHI3L2

G 2.51 (1.68–3.75)

rs5003373 A/G 1 111784517 0.19 (G) 0.29/0.14
A 0.41 (0.27–0.61) 8.5 × 10−6 CHI3L2

G 2.44 (1.64–3.65)

Locus 2

rs2289467 T/C 2 135180550 0.08 (T) 0.15/0.05
T 3.71 (2.02–6.83) 8.4 × 10−6 MGAT5

C 0.27 (0.15–0.5)

rs35237563 A/G 2 135182574 0.08 (A) 0.15/0.05
A 3.71 (2.02–6.83) 8.4 × 10−6 MGAT5

G 0.27 (0.15–0.5)

rs3828184 T/G 2 135200567 0.09 (G) 0.14/0.04
G 3.8 (2.03–7.13) 9.9 × 10−6 MGAT5

T 0.26 (0.14–0.5)

SNP2

rs73095511 T/C 3 72385521 0.16 (C) 0.1/0.23
T 2.82 (1.77–4.5) 7.4 × 10−6 -

C 0.35 (0.22–0.56)

SNP3

rs9355092 T/G 6 169210922 0.3 (G) 0.37/0.21
T 0.44 (0.31–0.63) 7.5 × 10−6 -

G 2.26 (1.58–3.24)

Since statistical methods for calculating OR and p-value are largely dependent on the
sample size, and taking into account the sample size of this study, we took a comprehensive
approach to assessing the role of the analyzed genetic markers.

Since nucleotide variations in exonic regions of genes can potentially affect the struc-
ture of the protein they encode and, thereby, protein–protein interactions (PPI), we analyzed
genes whose exons contain associated SNPs (p < 0.05). A total of 909 polymorphisms were
selected within the exons of 757 genes. To identify direct physical interactions between
the proteins of the analyzed genes, we projected them into a PPI network created by the
web-based STRING database [12]. The analysis was carried out taking into account that the
interaction of the two proteins is a part of the physical complex and not the functional status
in cells and their co-expression. A general network was created with possible PP physical
interactions of 716 nodes, 358 edges and the network enrichment of 4.37 × 10−7. Physical
PP interactions with a minimum required interaction score of 0.700 (high confidence) were
noted for 132 PP pairs.

Clustering of the physical PPI network revealed the main sub-networks: SRC-associated
(ten nodes, eight edges, p = 5.79 × 10−8) and ERCC6-associated (eight nodes, eleven edges
and p = 3.02 × 10−12). Also, there were five small sub-networks consisting of several nodes
and edges with significant enrichment p-values (Figure 2).
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The associative analysis was carried out using a standard approach of odds ratios 
(OR) by combining selected earlier polymorphisms of genes into corresponding 
haplotypes. In Figure 3, four types of possible haplotype (nine haplotypes) combinations 
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possible haplotypes to calculate statistically significant OR results. We simplified these 

Figure 2. PPI networks based on the STRING on-line tool. (A)-SRC-kinase activity network (10 nodes;
8 edges; p = 5.79 × 10−8); (B)-ERCC6-excision repair PPI network (8 nodes; 11 edges; p = 3.02 × 10−12);
(C)-integrin cell adhesion PPI network (6 nodes; 3 edges; p = 1.43 × 10−5); (D)-HLA Class II PPI
network (5 nodes; 6 edges; p = 2.22 × 10−15); (E)-Ubiquitin ligase complex PPI network (4 nodes;
3 edges; p = 2.61 × 10−6); (F)-Lipoprotein regulation network (6 nodes; 3 edges; p = 1.43 × 10−5);
(G)-Pyroptosis PPI network (6 nodes; 5 edges; p = 2.48 × 10−8).

Further, 132 physical PPI pairs were analyzed for associations between corresponding
haplotypes and eBC. Polymorphisms located within exons of the selected genes pairs were
accepted for this analysis. Out of 132 pairs, 52 pairs were identified.

The associative analysis was carried out using a standard approach of odds ratios (OR)
by combining selected earlier polymorphisms of genes into corresponding haplotypes. In
Figure 3, four types of possible haplotype (nine haplotypes) combinations are presented.
Due to our limited case/control sample size, it was difficult to catch all the possible
haplotypes to calculate statistically significant OR results. We simplified these possible
haplotypes to groups according to the numbers of negative and positive alleles in each
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haplotype for the case and control (Figure 3). A multiplicative model of inheritance based on
the assumption that penetrance depends on the number of copies of the predisposing alleles.
We used it as the main one to establish correlations. Results for this model are presented
in Supplementary Table S1. The simplified haplotype groups were used to estimate the
additive model where the penetrance value of Group II (compound heterozygotes) lies
between the penetrance values for both Group I and III (with the prevalence of negative
(Group I) or positive (Group III) alleles in haplotypes) (Supplementary Table S2).
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Figure 3. Types of possible haplotypes and their combinations. Red—alleles with negative effect;
green—alleles with protective effect (positive). Group I contain three haplotypes with prevalence of
negative alleles; Group II contains three equal proportion of negative and positive alleles; Group III
contains three haplotypes with prevalence of positive alleles.

According to the multiplicative model, seven PPI genes pairs achieved an internal
Bonferroni correction threshold (p = 9.4 × 10−4). Table 2 shows the association results for
these pairs. The most significant association was for negative alleles of A2M/LRP1 gene
pair (OR = 2.15; p = 7.7 × 10−6). The combination of haplotypes in the additive model for
A2M/LRP1 gene pair confirmed these findings and showed a strong negative effect for
Group I (OR = 2.98; p = 3.3 × 10−4). This was strengthened by the presence of the second
signal from the A2ML1/LRP1 gene pair. The negative and positive allele distribution for
rs1860967/rs1800137 gave OR = 1.65 and p = 2.8 × 10−4. These results were confirmed by
the additive model (OR = 3.10, p = 4.6 × 10−4).

Another analyzed gene HEATR1 had three polymorphisms for the combination analy-
sis with polymorphisms of genes NOP14 (rs2515960) and NOL10 (rs3732111). Out of six
pair combinations, only one HEATR1/NOP14 pair (rs60920266/rs2515960) was confirmed
by both multiplicative and additive models. According to the multiplicative model, the
distribution of negative and positive alleles in the case and control groups were statistically
different (OR = 1.58; p = 9.1 × 10−4). These findings were confirmed by the appropriate
distribution of haplotypes in the additive model, which showed a high OR = 2.94 for
Group I and statistically significant p = 8.2 × 10−4.

Polymorphism rs2515960 in the NOP14 gene also had a statistically significant associa-
tion in combination with NOL10 gene polymorphism (rs3732111). The multiplicative model
showed an elevated level of OR = 1.52 (p = 7.3 × 10−4) and was confirmed by the additive
model (OR = 2.07), but with a decreased level of confidence (p = 7.6 × 10−3). The other
polymorphism combinations in the HEATR1, NOP14, and NOL10 genes had not reached
the Bonferroni significance level.

Also, elevated OR results with decreasing confidence levels were shown for two
genes pairs, SLX4/TOPBP1 and GABRP/NSF. The gene pair SLX4/TOPBP1 had significant
OR = 1.73, p = 7.2 × 10−4 in the multiplicative model but high OR = 3.71 and lower
p = 7.2 × 10−3 in the additive model. The pair of GABRP/NSF had OR almost twice as high
(OR = 1.93, p = 0.00033) in the multiplicative model but a high OR and lower significance of
genotype distribution in the additive model (OR = 5.74, p = 0.0018).
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Table 2. Odds ratios (ORs) and 95% confidence intervals (CIs) for significant SNP pairs.

No

Alleles
Protein-Protein
Pair

Case Control

OR (95% CI) p-Value
Negative Positive Negative

Alleles
Positive
Alleles

Negative
Alleles

Positive
Alleles

1 G A A2M_rs669 103 473 60 592 2.15 (1.53–3.02) 0.000007

T C LRP1_rs1800137

2 C T A2ML1_1860967 156 420 120 532 1.65 (1.26–2.16) 0.00028

T C LRP1_rs1800137

3 C T HEATR1_rs60920266 469 107 479 173 1.58 (1.21–2.08) 0.00091

A G NOP14_rs2515960

4 A G NOL10_rs3732111 418 158 413 237 1.52 (1.19–1.94) 0.00073

A G NOP14_rs2515960

5 G A SLX4_rs3810813 507 69 528 124 1.73 (1.25–2.37) 0.00072

T C TOPBP1_rs10935070

6 C A GABRP_rs1063310 84 492 53 599 1.93 (1.34–2.78) 0.00033

A G NSF_rs199533

7 A G ACKR1_rs12075 216 360 181 435 1.44 (1.13–1.84) 0.003

A G CD82_rs1139971

The pair of ACKR1/CD82 had the opposite results of OR = 1.44 and p = 3 × 10−3 in
the multiplicative model vs. OR = 3.98 for the Group I and high p = 4.7 × 10−5 in the
additive model.

Thus, the genome-wide association analysis revealed that out of 327,038 SNP markers,
18,508 SNPs had OR associations with the classical confidence level of p ≤ 0.05. However,
none of these markers reached the GWAS or internal Bonferroni correction thresholds. The
most significant markers were noted for intron polymorphisms within the CHI3L2 and
MGAT5 genes. Further analysis of exon polymorphisms in haplotypes revealed that among
132 PP pairs, five exhibited statistically significant OR values for corresponding haplotype
combinations. The other polymorphism combinations in the PP pairs did not reach the
Bonferroni internal significance level, but are still of interest for further research.

3. Discussion

Generally, in this study we followed the hypothesis that cancer is a complex multi-stage
process of enrichment for normal molecular–biochemical (cell–cell communication, division,
growth, etc.) processes with negative «elements» predisposing to a shift towards cancer-
related processes and pathways. The enrichment degree of normal processes apparently
determines the approximation degree to the point of no return (hotspot) and further
malignancy (malignancy hotspot). The enrichment and approximation degree may be
determined by a combination of known (age, gender, mutations, radiation, lifestyle etc.)
and unknown factors. They are parts of more general processes: environment–genetics–
function (Figure 4). Each of the three interacting processes is huge and complex due to
the large number of components involved. They are inseparable from each other as they
constitute life. Probability assessment of cancer outcome depends on the number of these
factors taken into account.
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This picture represents different combinations of three main processes to produce a
combination risk of the disease: Environmental, Genetics and Function. We consider that
each of the processes include a huge number of elements. Not all elements within one
process correspond to the disease cause of the structured reactome interactions.

Understanding genetic processes is an important step in cancer susceptibility and
development. The identification and characterization of specific genes that play a role in
cancer development, as well as the evaluation of genetic variants that may contribute to
individual susceptibility to cancer, provide insights into the genetic processes underlying
different types of cancer. Moreover, they may partially influence the functional processes
from cells to the whole body.

In this regard, we tried to clarify whether there are genetic markers involved in eBC
development in Kazakh women by associative study. To investigate the involvement of
common genetic variants (SNPs) associated with eBC in the population of Kazakh women,
we performed genome-wide association analysis using a total of 144 breast cancer cases
and 163 control individuals. The main steps of the analysis are presented on the scheme
(Figure 5).

Selection of cases and controls should be conducted carefully to minimize bias and
ensure accurate population representation. To create breast cancer case and control groups,
we used three main population characteristics: ethnicity, gender and age.

Allele frequencies may be different among different populations contributing to het-
erogeneity in disease burden. In our study, only women of Kazakh ethnicity from one
geographic zone (long-term residents, Almaty city, Kazakhstan) were chosen. A total of
16% of participants in the case group were not from Almaty city but from nearby areas of
the city. By choosing participants for the case and control groups from the same geographic
region, we tried to minimize sub-ethnic factors. Additionally, participants from the same
geographical region are exposed to the same environmental factors. This reduces the risks
associated with environmental factors. The case/control groups matched each other by
age structure. Age is an important factor in «case-control» studies, as it can influence the
disease’s outcome and exposure. Clarifying this, BC is an age-dependent process, the
main debut of which occurs over 60 years of age. The development of eBC gives reason to
believe that genetic processes are more enriched in “negative” elements than functional and
environmental processes. For example, 5–15% of eBC cases are caused by rare pathogenic
mutations in the highly penetrant BRCA1/2 genes. Therefore, the enrichment of genetic
processes with highly penetrant alleles significantly increases the likelihood of a cancer
outcome in a short time. It is similar to believe that the remaining cases of eBC are due to
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the enrichment of genetic processes with a larger number of medium and/or low penetrant
genetic variations [13], thus increasing the time interval before cancer manifestation. The
development of BC in older age groups may indicate that along with the enrichment of ge-
netic processes, functional and environmental processes become highly enriched. It should
also be assumed that individuals may have a level of enrichment of genetic processes closer
to the average but a higher enrichment of functional and environmental processes.

Genes 2024, 15, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Scheme of the main steps conducted in the research. The scheme represents sequential 
steps of two-stage association analysis and obtained results. SNPs—single nucleotide 
polymorphisms; PPI—protein-protein interactions; LD—linkage disequilibrium. 

Selection of cases and controls should be conducted carefully to minimize bias and 
ensure accurate population representation. To create breast cancer case and control 
groups, we used three main population characteristics: ethnicity, gender and age. 

Allele frequencies may be different among different populations contributing to 
heterogeneity in disease burden. In our study, only women of Kazakh ethnicity from one 
geographic zone (long-term residents, Almaty city, Kazakhstan) were chosen. A total of 
16% of participants in the case group were not from Almaty city but from nearby areas of 
the city. By choosing participants for the case and control groups from the same 
geographic region, we tried to minimize sub-ethnic factors. Additionally, participants 
from the same geographical region are exposed to the same environmental factors. This 
reduces the risks associated with environmental factors. The case/control groups matched 
each other by age structure. Age is an important factor in «case-control» studies, as it can 
influence the disease’s outcome and exposure. Clarifying this, BC is an age-dependent 
process, the main debut of which occurs over 60 years of age. The development of eBC 
gives reason to believe that genetic processes are more enriched in “negative” elements 
than functional and environmental processes. For example, 5–15% of eBC cases are caused 
by rare pathogenic mutations in the highly penetrant BRCA1/2 genes. Therefore, the 
enrichment of genetic processes with highly penetrant alleles significantly increases the 
likelihood of a cancer outcome in a short time. It is similar to believe that the remaining 
cases of eBC are due to the enrichment of genetic processes with a larger number of 
medium and/or low penetrant genetic variations [13], thus increasing the time interval 
before cancer manifestation. The development of BC in older age groups may indicate that 
along with the enrichment of genetic processes, functional and environmental processes 
become highly enriched. It should also be assumed that individuals may have a level of 
enrichment of genetic processes closer to the average but a higher enrichment of 
functional and environmental processes. 

Figure 5. Scheme of the main steps conducted in the research. The scheme represents sequential steps
of two-stage association analysis and obtained results. SNPs—single nucleotide polymorphisms;
PPI—protein-protein interactions; LD—linkage disequilibrium.

Here, we have the ambiguous problem of selecting a control group considering age for
cases of eBC. There is a possibility that in the control group of young women, there may be
individuals who will develop cancer in the future. Since many of them may be carriers of
medium- and low-penetrance alleles, the problem of their influence on the statistical data of
association analysis remains an open question. In our study, we selected control participants
with a predominance of older age subgroups of 36–40 and 41–45 years. In addition, we did
not include participants with a family history of BC in the experimental group, thereby
filtering out cases with highly penetrant alleles. An association analysis considering an
additional older age group will probably contribute to a more comprehensive GWA analysis
and obtain comprehensive results.

Our case-control associative analysis revealed two loci with high LD. We compared
the revealed data with LD patterns in 1000 G populations by using the online NCBI LDpop
tool [14]. Locus1 for the healthy Kazakh women group showed complete LD for all four
SNPs in the locus (R2 = 1, D’ = 1; p < 0.0001). These data were consistent with all populations
available (32 populations) in the NCBI database. Locus2 included three SNPs and only
two showed 100% LD: rs2289467 and rs35237563. The obtained data were consistent
with 27 out of 32 populations compared to the NCBI LDpop base. Four populations of
China CHB, CHS, CDX, KHV and one of the general East Asian (EAS) population had
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incomplete LD (R2 = 0.7–0.79, p < 0.0001) for these two polymorphisms. The third (3d)
SNP (rs3828184) from the studied Locus2 had incomplete LD (80%) with the first two SNPs
(rs2289467 and rs35237563). LD for rs3828184/rs2289467 and rs3828184/rs35237563 had
similar results of R2 = 0.8, p < 0.0001 for our population. LD for rs3828184/rs2289467
matched four ethnically different populations out of 32 populations: BEB (Bangladesh), JPT
(Japan), CLM (Colombia), and one general AMR (Ad Mixed American) population. LD for
rs3828184/rs35237563 matched the same four ethnically different populations plus another
four populations: CHB (China), PJL (Pakistan), KHV (Vietnam), and the general SAS (South
Asian) population. Known factors such as genetic drift, natural selection, recombination,
and migrations may cause observed differences between populations.

Our GWA analysis did not show significance values above the threshold level for
GWAS studies, nor even Bonferroni internal significance. Considering the sample size of our
groups, obtained OR results for single SNPs of two Loci1 and two with p-value < 0.000001
are important candidates for the genetic markers. These SNPs lie within the introns of
genes CHI3L2 (Locus1) and MGAT5 (Locus2). The CHI3L2 and MGAT5 genes are located
on the first and second chromosomes, respectively. Both genes are secretory proteins and
involved in processes of outside-cell communications through oligosaccharide modifica-
tions. CHI3L2 is a chitinase-like protein binding to poorly understood oligosaccharides
in mammals [15]. This protein is expressed in chondrocytes of cartilage [16], the gas-
trointestinal tract and in a subset of cortical neurons. Over expression was involved in
different pathologies: osteoarthritis [17], amyotrophic lateral sclerosis [18], multiple scle-
rosis and cancers [19,20]. Prognostic significance has been noted for renal cancer [21]
and glioma [22,23]. A recent study by Ling Xue et al. proposed a prognostic role in gas-
tric adenocarcinoma [24]. CHI3L2 is mainly secreted by tumor-associated macrophages
and associated with metastasis progression and poor outcome [23,24]. The second gene,
MGAT5, expresses a glycosyltransferase family member catalyzed by an essential step in
the biosynthesis of branched, complex-type N-glycans (oligosaccharides). These branched
glycans attach to the cell’s surface and, thus, change surface levels of protein- and lipid-
bound oligosaccharides [25,26]. Alterations in branched glycan spectrum on the cell surface
are correlated with significant changes in normal adhesion, migration and proliferation
processes [25,26]. MGAT5 protein is expressed in many types of cells, and over-expression
was shown in different malignancies. Loss of function was noted for tumor suppression
and inhibition of metastasis on model objects and humans [27–30]. Thus, both proteins
are involved in mechanisms of normal cell–cell communications, adhesion and sells quo-
rum through the cell surface oligosaccharide complex’s metabolism. Modifications in the
oligosaccharide complexes’ structure, their bioavailability on cell surface and functional
activity are associated with tissue microenvironment disruption. These conditions are
predisposing factors for carcinogenesis.

Although, intronic sequences are poorly understood, there is evidence demonstrating
mechanisms of intronic variants cause diseases and cancer. Variations in the canonical
splice sequences, deep intronic variants, and intron retention variants may cause abnormal
splicing [31,32]. They may account for 15–60% of human diseases [33]. Nowadays, iden-
tifying disease-associated splicing associated variants has become more important than
ever. In this aspect, polymorphisms found within the genes discussed in our study are of
great interest for future research. Additional research using other methods and approaches
is required.

Polymorphisms in exonic regions have more specific effects on the structural features
of proteins, protein complexes or mRNAs. In this study, we analyzed associations of
combinations for all exonic polymorphisms showed earlier OR > 1 results (p < 0.05).
Combinations were made on the basis that protein–protein interactions are part of a physical
complex (STRING database tool). Thus, the obtained PP pairs had their SNP combinations
and corresponding haplotypes for further associative analysis by the odds ratio approach.
The results showed significant negative and positive allele distribution differences in case
vs. control groups observed for seven pairs. The appropriate genotype distribution of
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the additive model confirmed these results. One pair of SNPs in the ACKR1/CD82 genes
(OR = 1.44, p = 3 × 10−3) was included because it had a high level of significance in
genotypes distribution between case and control groups observed in the additive model
(OR = 3.98, p = 4.7 × 10−5 for Group I). These differences may be explained by the unequal
contribution of the studied alleles in the corresponding genotypes.

Results showed the highest double signal from the A2M/LRP1 genes pair. This com-
bination is remarkable in that the high A2M gene expression was noted for the naked
mole-rat, a subterranean rodent known for its resistance to hypoxia, hypercapnia, aging
and cancer [34]. It was shown that LRP1 is a well-known receptor for blood A2M pro-
tein [35,36]. Through interaction with the LRP1 receptor, the A2M protein mediates a
clearance of different proteins from cells and modulates signaling pathways [37]. Notably,
the A2M expression decreases with age [38]. In vitro and in vivo experiments on model
objects show tumor suppression functions for the A2M protein. Notably, the A2M protein
inhibits tumors independent of their origin [36].

In our study SNPs of the A2M and LRP1 genes are a good example of low penetrance
polymorphisms. Separately, polymorphism rs669 of the A2M gene showed OR = 2 with
p = 1.9 × 10−3 and rs1800137 of the LRP1 gene OR = 2.4 with p = 1 × 10−3. Together, these
polymorphisms give more predisposing haplotype in corresponding individuals. It should
be noted that polymorphisms in the A2M and LRP1 genes belong to the different types
of substitutions: the A2M carries a missense variation, and LRP1 carries a synonymous
variation. Protein interactions may be due to physical contact or bioavailability of one of
the proteins. In our case, the last one may be due to synonymous substitution in mRNA
structure and its bioavailability for translation into complete protein LRP1. Maybe this
process is tissue-specific. The frequency of interactions may determine the efficiency of cell
signaling. Interestingly, a protein with similar functions and high homologous structure,
A2ML1, also showed statistically significant results in A2ML1/LRP1 genes pair (OR = 1.65,
p = 2.8 × 10−4). The LRP1 protein is the ligand for this protein [39]. Thus, our results
indicate that haplotypes carried negative variants of polymorphisms rs669/rs1800137 in
the A2M/LRP1 gene pair have an elevated OR to eBC. It also highlights the importance of
signaling pathways mediated by this interaction and is of great interest for future research.

A dual signal was observed for the rRNA processing, implicating the HEATR1/NOP14
and NOP14/NOL10 in the positive regulation of rRNA processing and transcription by
RNA polymerase I. Pre-rRNA processing is tightly regulated, involving many cellular
components acting alone or as part of a complex. Studied PP pairs belong to the nucle-
olar processome complex. The HEATR1/NOP14 pair includes two missense variants in
fifteen and eight exons, respectively. These genetic variations are probably important for
target interactions of the HEATR1 and NOP14 proteins with each other or rRNA. It was
established that cancer cells have upregulated activity of rRNA biogenesis and abnormal
rRNA modifications. rRNA biogenesis is complex, and there is evidence that it is directly
associated with carcinogenesis [40].

4. Conclusions

The contribution of genetic markers to disease predisposition is complex and depends
on various factors ranging from genetic variation penetrance to statistical methods applied.
The odds ratio method reflects the strength of the link between the two traits studied. The
link strength may depend on the penetrance of the genetic marker and may be eliminated
if the penetrance is low. Low penetrant polymorphisms do not disrupt the gene’s protein
or RNA, but they modify and may be more common in the population. Secondly, genetic
variation cannot functionally exist on its own, only in interactions with molecular targets.
These interactions could enhance or lower the link strength, making a complex phenotype
and reducing statistical association data. In this study, we tried to evaluate not only
the contribution of SNPs to the susceptibility of eBC, but also combinations of SNPs
for assessment of significant protein–protein pairs in eBC. The findings underscore the
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significance of incorporating medium- and low-penetrant SNPs in combination analyses,
as they enable the identification of crucial interactions contributing to the disease.

It is important to note that, given the limited scope of our study involving patients
from Almaty and the Almaty region, the findings may not accurately depict the actual
situation for the entire population of Kazakh women. Therefore, for future research,
we plan to consolidate existing databases and include more patients to obtain a more
representative cohort. This will help identify population-specific SNP markers and breast
cancer-associated genetic variants in ethnic Kazakh women applicable in clinical practice.
Implementing them into national screening programs will contribute to reducing breast
cancer incidence in Kazakhstan.

5. Materials and Methods
5.1. Study Subject

The study was conducted at the Kazakh Research Institute of Oncology and Radiology
and the Institute of Genetics and Physiology in Almaty, Kazakhstan. A total of 330 unrelated
Kazakh women were recruited in the «case-control» study. After all data quality control
verification steps, a total of 307 participants were selected for further statistical analysis.
The case group comprised 144 unrelated female patients of Kazakh ethnicity diagnosed
with eBC aged between 19 and 40 years at the time of diagnosis. Accurate diagnoses were
determined by qualified oncologists using mammography and histopathology. Exclusion
criteria comprised other cancers and any other early-onset and inherited inflammatory,
cardiac, hepatic, and neurological diseases. A total of 60% of patients were long-term
residents of Almaty City, and 40% were from the nearby areas of Almaty City.

A control group included 163 healthy individuals without BC diagnosis, any family
history of BC or other cancers, or cardiac, hereditary, inflammatory, and autoimmune
diseases. Participants in the control group were selected according to the age of the case
group. All personalized data of the participants (case and control groups) were enrolled in
questionnaires that included demographic status and habits (tobacco, alcohol, and diet). A
total of 84% of individuals were long-term residents of Almaty City, and 16% were from
the nearby areas of Almaty City.

Biomaterials were obtained after signing a voluntary informed consent to participate
in the research. This research work was approved by the Ethics Committee of the Kazakh
Institute of Oncology and Radiology (No. 04 from 23 September 2020) and adhered to the
principles of the Declaration of Helsinki.

5.2. Genomic DNA Isolation and Genotyping

Genomic DNA was isolated from EDTA-treated peripheral blood samples using the
Qiagen DNA blood mini kit (Qiagen, Hilden, Germany). Qualitative and quantitative
characteristics of the DNA samples were estimated by spectrophotometry (NanoDrop,
Thermo Scientific, Waltham, MA, USA). Isolated DNA samples were stored at −20 ◦C.

Scanning for known genetic markers was performed through microarray-based SNP
genotyping using the Infinium Global Screening Array (GSA-24 v3.0, Illumina, San Diego,
CA, USA). A method-specific workflow was followed according to the manufacturer’s
protocol. The normalized data was extracted and processed using the GenomeStudio Geno-
typing Module v2.0 software. The quality of the samples was assessed by the frequency
of genotype calls using the Call Rate > 0.95 algorithm. The GenTrain score was used to
characterize the data clustering algorithm (>0.7) qualitatively. The data quality control for
subsequent statistical analysis was carried out in accordance with the following criteria:
(1) exclusion of SNPs and samples with >1% of data failed genotyping, (2) exclusion of SNPs
with a minor allele frequency less than 0.03 (MAF < 3%), (3) exclusion of SNPs with p < 0.05
for Hardy–Weinberg equilibrium (HWE) and (4) exclusion of SNPs on X-chromosomes.

The data processing and clustering of all samples was performed in duplicate and
scored by different individuals.



Genes 2024, 15, 108 13 of 15

5.3. Statistical Analysis

Values characterizing the case and control populations were calculated in percentage
and were expressed as mean ± standard deviation or standard error values. The Student
t-test was used to compare the distribution of variables between case and control cohorts.
A value of less than 0.05 was accepted as significant.

The expected genotype frequencies for case and control groups were calculated in
accordance with standard Hardy–Weinberg equilibrium using the conventional Pearson’s
chi-square test (χ2). A probability value (p-value) of 0.05 was used to evaluate the signifi-
cance of a Chi-Square test.

Estimation of a statistical relationship between the sign of the disease and the ge-
netic marker was calculated according to basic statistical analysis in genetic case-control
studies [41]. A multiplicative model was used for disease penetrance assessment that
imply a specific relationship between genotype and phenotype [42]. Estimation of the
coefficient of relative risk was calculated by the method of “odds ratio” (OR) in conjunction
with an estimate 95% confidence interval (95% CI) and the “Chi-square” test (χ2) for the
degrees of freedom = 1. Generally accepted threshold for GWAS studies p = 5 × 10−8

and internal Bonferroni correction p = 1.5 × 10−7 were used as an adjustment for multiple
hypothesis testing.

Annotation of identified significant polymorphisms was performed using the ClinVar,
1000 Genomes, ExAC, Cosmic, and dbSNP databases. A theoretical assessment of the
possible impact of non-synonymous SNP substitutions was carried out using the PolyPhen-
2 program.

For the reconstruction of possible protein–protein interactions, a STRING database (ver-
sion 12.0) was used (https://string-db.org/cgi/input?sessionId=bOgLukFsBdI0&input_
page_active_form=multiple_identifiers, accessed on 14 August 2023). The STRING database
is a web-based tool for creation and visualization of complex biological networks. A direct
or physical subnetwork association algorithm was applied in the obtained PPI network
analysis, which constructs PPI edges based on known physical complexes, not functional
and co-expression interactions. These interactions were created based on the known ex-
perimental and/or biochemical data of human and other organisms and from data in
curated databases or co-mention in Pubmed abstracts database. A minimum required
interaction score of 0.700 was applied. PPI enrichment p-value < 0.05 was considered as
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15010108/s1, Supplementary Table S1: PPI_pairs_Multiplicative_
model. Supplementary Table S2: PPI_pairs_Additive_model.

Author Contributions: Conceptualization, L.S. and G.Z.; methodology, L.S., S.A., A.P., A.Z. and
N.M.; formal analysis, L.S., B.B., L.D. and G.Z.; investigation, L.S., S.A., K.Y., A.Z. and G.Z.; resources,
N.O., Z.K., T.S. and D.K.; data curation, L.S., S.A., K.Y. and N.O.; writing—original draft preparation,
L.S. and S.A.; writing—review and editing, L.D., D.K. and G.Z.; visualization, L.S., D.K., L.D. and
G.Z.; supervision, G.Z. and D.K.; project administration, G.Z.; funding acquisition, G.Z. and D.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Republic
of Kazakhstan (grant No. AP09259034) and the Ministry of Healthcare of the Republic of Kazakhstan
(programs No. OR12165486, No. 49019/ΠЦΦ-МЗCР-ОТ-18). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of the Kazakh Institute of Oncology
and Radiology (No. 04 from 23 September 2020).

Informed Consent Statement: All participants provided written voluntary informed consent.

Data Availability Statement: All data generated or analyzed during this study are available from the
corresponding author upon request.

https://string-db.org/cgi/input?sessionId=bOgLukFsBdI0&input_page_active_form=multiple_identifiers
https://string-db.org/cgi/input?sessionId=bOgLukFsBdI0&input_page_active_form=multiple_identifiers
https://www.mdpi.com/article/10.3390/genes15010108/s1
https://www.mdpi.com/article/10.3390/genes15010108/s1


Genes 2024, 15, 108 14 of 15

Acknowledgments: We thank all patients and volunteers for the participation in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Igissinov, N.; Toguzbayeva, A.; Turdaliyeva, B.; Igissinova, G.; Bilyalova, Z.; Akpolatova, G.; Vansvanov, M.; Tarzhanova, D.;

Zhantureyeva, A.; Zhanaliyeva, M.; et al. Breast Cancer in Megapolises of Kazakhstan: Epidemiological Assessment of Incidence
and Mortality. Iran. J. Public Health 2019, 48, 1257–1264. [CrossRef] [PubMed]

2. Midlenko, A.; Mussina, K.; Zhakhina, G.; Sakko, Y.; Rashidova, G.; Saktashev, B.; Adilbay, D.; Shatkovskaya, O.; Gaipov, A.
Prevalence, incidence, and mortality rates of breast cancer in Kazakhstan: Data from the Unified National Electronic Health
System, 2014–2019. Front. Public Health 2023, 11, 1132742. [CrossRef]

3. Kaidarova, D.; Zhylkaidarova, A.; Saktaganov, M. 531 12-years results of the Kazakhstan breast cancer screening programme. Int.
J. Gynecol. Cancer 2020, 30, A1–A2.

4. Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D.
Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [CrossRef]

5. Jia, G.; Ping, J.; Shu, X.; Yang, Y.; Cai, Q.; Kweon, S.S.; Choi, J.Y.; Kubo, M.; Park, S.K.; Bolla, M.K.; et al. Genome- and
transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer
genetics. Am. J. Hum. Genet. 2022, 109, 2185–2195. [CrossRef]

6. Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; et al.
Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.
Nat. Genet. 2020, 52, 572–581. [CrossRef] [PubMed]

7. Rinella, E.S.; Shao, Y.; Yackowski, L.; Pramanik, S.; Oratz, R.; Schnabel, F.; Guha, S.; LeDuc, C.; Campbell, C.L.; Klugman, S.D.; et al.
Genetic variants associated with breast cancer risk for Ashkenazi Jewish women with strong family histories but no identifiable
BRCA1/2 mutation. Hum. Genet. 2013, 132, 523–536. [CrossRef] [PubMed]

8. Shanazarov, N.; Zhapparov, Y.; Kumisbekova, R.; Turzhanova, D.; Zulkhash, N. Association of Gene Polymorphisms with Breast
Cancer Risk in the Kazakh Population. Asian Pacific J. Cancer Prev. APJCP 2023, 24, 4195–4207. [CrossRef]

9. Akilzhanova, A.; Nyshanbekkyzy, B.; Nurkina, Z.; Shtephanov, I.; Makishev, A.; Adylkhanov, T.; Rakhypbekov, T.; Ramanculov,
E.; Momynaliev, K. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan. Cent. Asian
J. Glob. Health 2013, 2, 29. [CrossRef]

10. Aitmagambetova, M.A.; Smagulova, G.A.; Tuhvatshin, R.R.; Zheksenova, A.N.; Amanzholkyzy, A. Genetic and clinical char-
acteristics of BRCA-associated hereditary breast cancer in the West region of Kazakhstan. Carcinogenesis 2022, 43, 838–841.
[CrossRef]

11. Zhunussova, G.; Omarbayeva, N.; Kaidarova, D.; Abdikerim, S.; Mit, N.; Kisselev, I.; Yergali, K.; Zhunussova, A.; Goncharova,
T.; Abdrakhmanova, A.; et al. Determination of genetic predisposition to early breast cancer in women of Kazakh ethnicity.
Oncotarget 2023, 14, 860–877. [CrossRef] [PubMed]

12. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.;
et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced
genome of interest. Nucleic Acids Res. 2023, 6, D638–D646. [CrossRef] [PubMed]

13. Yanes, T.; Young, M.A.; Meiser, B.; James, P.A. Clinical applications of polygenic breast cancer risk: A critical review and
perspectives of an emerging field. Breast Cancer Res. 2020, 22, 21. [CrossRef]

14. Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking
correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [CrossRef] [PubMed]

15. Schimpl, M.; Rush, C.L.; Betou, M.; Eggleston, I.M.; Recklies, A.D.; van Aalten, D.M. Human YKL-39 is a pseudo-chitinase with
retained chitooligosaccharide-binding properties. Biochem. J. 2012, 446, 149–157. [CrossRef]

16. Steck, E.; Breit, S.; Breusch, S.J.; Axt, M.; Richter, W. Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not
chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage. Biochem. Biophys. Res. Commun. 2002, 299, 109–115. [CrossRef]

17. Miyatake, K.; Tsuji, K.; Yamaga, M.; Yamada, J.; Matsukura, Y.; Abula, K.; Sekiya, I.; Muneta, T. Human YKL39 (chitinase 3-like
protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells. Biochem
Biophys Res Commun. 2013, 431, 52–57. [CrossRef] [PubMed]

18. Sanfilippo, C.; Longo, A.; Lazzara, F.; Cambria, D.; Distefano, G.; Palumbo, M.; Cantarella, A.; Malaguarnera, L.; Di Rosa, M.
CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol. Cell. Neurosci. 2017, 85, 162–169.
[CrossRef]

19. Comabella, M.; Sastre-Garriga, J.; Borras, E.; Villar, L.M.; Saiz, A.; Martínez-Yélamos, S.; García-Merino, J.A.; Pinteac, R.; Fissolo,
N.; Sánchez López, A.J.; et al. CSF Chitinase 3-Like 2 Is Associated With Long-term Disability Progression in Patients With
Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1082. [CrossRef]

20. Liu, T.; Larionova, I.; Litviakov, N.; Riabov, V.; Zavyalova, M.; Tsyganov, M.; Buldakov, M.; Song, B.; Moganti, K.; Kazantseva,
P.; et al. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor
YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology 2018, 7, e1436922. [CrossRef]

https://doi.org/10.18502/ijph.v48i7.2948
https://www.ncbi.nlm.nih.gov/pubmed/31497546
https://doi.org/10.3389/fpubh.2023.1132742
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1016/j.ajhg.2022.10.011
https://doi.org/10.1038/s41588-020-0609-2
https://www.ncbi.nlm.nih.gov/pubmed/32424353
https://doi.org/10.1007/s00439-013-1269-4
https://www.ncbi.nlm.nih.gov/pubmed/23354978
https://doi.org/10.31557/APJCP.2023.24.12.4195
https://doi.org/10.5195/cajgh.2013.29
https://doi.org/10.1093/carcin/bgac068
https://doi.org/10.18632/oncotarget.28518
https://www.ncbi.nlm.nih.gov/pubmed/37791908
https://doi.org/10.1093/nar/gkac1000
https://www.ncbi.nlm.nih.gov/pubmed/36370105
https://doi.org/10.1186/s13058-020-01260-3
https://doi.org/10.1093/bioinformatics/btv402
https://www.ncbi.nlm.nih.gov/pubmed/26139635
https://doi.org/10.1042/BJ20120377
https://doi.org/10.1016/S0006-291X(02)02585-8
https://doi.org/10.1016/j.bbrc.2012.12.094
https://www.ncbi.nlm.nih.gov/pubmed/23291184
https://doi.org/10.1016/j.mcn.2017.10.001
https://doi.org/10.1212/NXI.0000000000001082
https://doi.org/10.1080/2162402X.2018.1436922


Genes 2024, 15, 108 15 of 15

21. Pusztai, C.; Yusenko, M.V.; Banyai, D.; Szanto, A.; Kovacs, G. M2 Macrophage Marker Chitinase 3-Like 2 (CHI3L2) Associates
With Progression of Conventional Renal Cell Carcinoma. Anticancer Res. 2019, 39, 6939–6943. [CrossRef]

22. Liu, L.; Yang, Y.; Duan, H.; He, J.; Sun, L.; Hu, W.; Zeng, J. CHI3L2 Is a Novel Prognostic Biomarker and Correlated With Immune
Infiltrates in Gliomas. Front. Oncol. 2021, 11, 611038. [CrossRef] [PubMed]

23. Qian, W.; Wang, Q.; Zhang, C.; Zhu, J.; Zhang, Q.; Luo, C. M2 macrophage marker CHI3L2 could serve as a potential prognostic
and immunological biomarker in glioma by integrated single-cell and bulk RNA-Seq analysis. J. Gene Med. 2023, 25, e3523.
[CrossRef]

24. Xue, L.; Chu, W.; Wan, F.; Wu, P.; Zhao, X.; Ma, L.; She, Y.; Li, C.; Li, Y. YKL-39 is an independent prognostic factor in gastric
adenocarcinoma and is associated with tumor-associated macrophage infiltration and angiogenesis. World J. Surg. Oncol. 2022,
20, 362. [CrossRef] [PubMed]

25. de-Souza-Ferreira, M.; Ferreira, É.E.; de-Freitas-Junior, J.C.M. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc
branched N-glycans as critical regulators of tumor development and progression. Cell. Oncol. 2023, 46, 481–501. [CrossRef]
[PubMed]

26. Osuka, R.F.; Hirata, T.; Nagae, M.; Nakano, M.; Shibata, H.; Okamoto, R.; Kizuka, Y. N-acetylglucosaminyltransferase-V requires
a specific noncatalytic luminal domain for its activity toward glycoprotein substrates. J. Biol. Chem. 2022, 298, 101666. [CrossRef]

27. Granovsky, M.; Fata, J.; Pawling, J.; Muller, W.J.; Khokha, R.; Dennis, J.W. Suppression of tumor growth and metastasis in
Mgat5-deficient mice. Nat. Med. 2000, 6, 306–312. [CrossRef]

28. Li, D.; Li, Y.; Wu, X.; Li, Q.; Yu, J.; Gen, J.; Zhang, X.L. Knockdown of Mgat5 inhibits breast cancer cell growth with activation of
CD4+ T cells and macrophages. J. Immun. 2008, 180, 3158–3165. [CrossRef]

29. Dimitroff, C.J. I-branched carbohydrates as emerging effectors of malignant progression. Proc. Natl. Acad. Sci. USA 2019, 116,
13729–13737. [CrossRef]

30. Couldrey, C.; E Green, J. Metastases: The glycan connection. Breast Cancer Res. 2000, 2, 323. [CrossRef]
31. Anna, A.; Monika, G. Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018,

59, 253–268. [CrossRef] [PubMed]
32. Shah, J.S.; Milevskiy, M.J.G.; Petrova, V.; Au, A.Y.M.; Wong, J.J.L.; Visvader, J.E.; Schmitz, U.; Rasko, J.E.J. Towards resolution of

the intron retention paradox in breast cancer. Breast Cancer Res. 2022, 24, 100. [CrossRef] [PubMed]
33. Shiraishi, Y.; Okada, A.; Chiba, K.; Kawachi, A.; Omori, I.; Mateos, R.N.; Iida, N.; Yamauchi, H.; Kosaki, K.; Yoshimi, A. Systematic

identification of intron retention associated variants from massive publicly available transcriptome sequencing data. Nat. Commun.
2022, 13, 5357. [CrossRef] [PubMed]

34. Yu, C.; Li, Y.; Holmes, A.; Szafranski, K.; Faulkes, C.G.; Coen, C.W.; Buffenstein, R.; Platzer, M.; de Magalhães, J.P.; Church, G.M.
RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat
when compared to mice. PLoS ONE 2011, 6, e26729. [CrossRef]

35. Gonias, S.L.; LaMarre, J.; Crookston, K.P.; Webb, D.J.; Wolf, B.B.; Lopes, M.B.; Moses, H.L.; Hayes, M.A. α 2-macroglobulin and
the α 2-macroglobulin receptor/LRP. A growth regulatory axis. Ann. N. Y. Acad. Sci. 1994, 737, 273–290. [CrossRef]

36. Kurz, S.; Thieme, R.; Amberg, R.; Groth, M.; Jahnke, H.G.; Pieroh, P.; Horn, L.C.; Kolb, M.; Huse, K.; Platzer, M.; et al. The
anti-tumorigenic activity of A2M-A lesson from the naked mole-rat. PLoS ONE 2017, 12, e0189514. [CrossRef]

37. Lindner, I.; Hemdan, N.Y.; Buchold, M.; Huse, K.; Bigl, M.; Oerlecke, I.; Ricken, A.; Gaunitz, F.; Sack, U.; Naumann, A.; et al.
Alpha2-macroglobulin inhibits the malignant properties of astrocytoma cells by impeding β-catenin signaling. Cancer Res. 2010,
70, 277–287. [CrossRef]

38. Birkenmeier, G.; Müller, R.; Huse, K.; Forberg, J.; Gläser, C.; Hedrich, H.; Nicklisch, S.; Reichenbach, A. Human alpha2-
macroglobulin: Genotype-phenotype relation. Exp. Neurol. 2003, 184, 153–161. [CrossRef] [PubMed]

39. Galliano, M.F.; Toulza, E.; Jonca, N.; Gonias, S.L.; Serre, G.; Guerrin, M. Binding of alpha2ML1 to the low density lipoprotein
receptor-related protein 1 (LRP1) reveals a new role for LRP1 in the human epidermis. PLoS ONE 2008, 3, e2729. [CrossRef]

40. Elhamamsy, A.R.; Metge, B.J.; Alsheikh, H.A.; Shevde, L.A.; Samant, R.S. Ribosome Biogenesis: A Central Player in Cancer
Metastasis and Therapeutic Resistance. Cancer Res. 2022, 82, 2344–2353. [CrossRef]

41. Clarke, G.M.; Anderson, C.A.; Pettersson, F.H.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Basic statistical analysis in genetic
case-control studies. Nat. Protoc. 2011, 6, 121–133. [CrossRef] [PubMed]

42. Iles, M.M. The impact of incomplete linkage disequilibrium and genetic model choice on the analysis and interpretation of
genome-wide association studies. Ann. Hum. Genet. 2010, 74, 375–379. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.21873/anticanres.13915
https://doi.org/10.3389/fonc.2021.611038
https://www.ncbi.nlm.nih.gov/pubmed/33937022
https://doi.org/10.1002/jgm.3523
https://doi.org/10.1186/s12957-022-02830-9
https://www.ncbi.nlm.nih.gov/pubmed/36372883
https://doi.org/10.1007/s13402-023-00770-4
https://www.ncbi.nlm.nih.gov/pubmed/36689079
https://doi.org/10.1016/j.jbc.2022.101666
https://doi.org/10.1038/73163
https://doi.org/10.4049/jimmunol.180.5.3158
https://doi.org/10.1073/pnas.1900268116
https://doi.org/10.1186/bcr75
https://doi.org/10.1007/s13353-018-0444-7
https://www.ncbi.nlm.nih.gov/pubmed/29680930
https://doi.org/10.1186/s13058-022-01593-1
https://www.ncbi.nlm.nih.gov/pubmed/36581993
https://doi.org/10.1038/s41467-022-32887-9
https://www.ncbi.nlm.nih.gov/pubmed/36175409
https://doi.org/10.1371/journal.pone.0026729
https://doi.org/10.1111/j.1749-6632.1994.tb44318.x
https://doi.org/10.1371/journal.pone.0189514
https://doi.org/10.1158/0008-5472.CAN-09-1462
https://doi.org/10.1016/S0014-4886(03)00110-9
https://www.ncbi.nlm.nih.gov/pubmed/14637088
https://doi.org/10.1371/journal.pone.0002729
https://doi.org/10.1158/0008-5472.CAN-21-4087
https://doi.org/10.1038/nprot.2010.182
https://www.ncbi.nlm.nih.gov/pubmed/21293453
https://doi.org/10.1111/j.1469-1809.2010.00579.x
https://www.ncbi.nlm.nih.gov/pubmed/20597907

	Introduction 
	Results 
	Discussion 
	Conclusions 
	Materials and Methods 
	Study Subject 
	Genomic DNA Isolation and Genotyping 
	Statistical Analysis 

	References

