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Abstract: Processing quality is an important economic wheat trait. The marker-assisted selection
(MAS) method plays a vital role in accelerating genetic improvement of processing quality. In
the present study, processing quality in a panel of 165 cultivars grown in four environments was
evaluated by mixograph. An association mapping analysis using 90 K and 660 K single nucleotide
polymorphism (SNP) arrays identified 24 loci in chromosomes 1A, 1B (4), 1D, 2A, 2B (2), 3A, 3B, 3D
(2), 4A (3), 4B, 5D (2), 6A, 7B (2) and 7D (2), explaining 10.2–42.5% of the phenotypic variances. Totally,
15 loci were stably detected in two or more environments. Nine loci coincided with known genes
or QTL, whereas the other fifteen were novel loci. Seven candidate genes encoded 3-ketoacyl-CoA
synthase, lipoxygenase, pyridoxal phosphate-dependent decarboxylase, sucrose synthase 3 and a
plant lipid transfer protein/Par allergen. SNPs significantly associated with processing quality and
accessions with more favorable alleles can be used for marker-assisted selection.

Keywords: bread wheat; GWAS; mixograph; SNP array; wheat quality

1. Introduction

Dough rheological properties with significant effects on end-use products can be eval-
uated by mixograph [1,2]. Midline peak time (MPT), midline 8 min band width (MTxW),
mid-line peak width (MPW) and midline peak value (MPV) are related to processing qual-
ity [3,4]. Dough properties are highly variable among wheat cultivars [5,6] and processing
quality is a major breeding objective in wheat breeding programs [7,8].

Dough rheological properties are quantitatively inherited and largely controlled by
multiple minor genes [9–12]. It is difficult to evaluate dough rheological properties in
traditional breeding because they cannot be measured in the early segregating generations
of crosses due to limited quantities of seed. Moreover, measurement of mixograph-related
traits requires a professional grain chemistry laboratory. Marker-assisted selection (MAS)
could be a useful approach to improve wheat processing quality [7]. Dough strength is a
typical quantitative trait controlled by multiple minor genes. A number of studies have
been conducted which focus on identifying QTLs for mixographs and a series of QTLs for
mixograph-related traits [2,13–17] were reported mainly by bi-parental linkage mapping.
Barakat et al. [2] reported 108 loci for farinograph- and mixograph-related traits on all
21 wheat chromosomes in two double haploid (DH) populations. However, the short-
coming of the method is that only two alleles at any single locus can be evaluated in each
cross. Echeverry-Solarte et al. [17] reported 31 loci for mixograph-related traits by an RIL
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population developed from a cross of an elite wheat line (WCB414) and an exotic genotype
with supernumerary spikelets, and each explained 3.2–41.2% phenotypic variations.

The results of those studies were mainly based on relatively low numbers of simple
sequence repeat (SSR) or diversity array technology (DArT) markers [13,14] and were
difficult to apply in gene cloning and MAS. The development of the wheat 90 K [18],
660 K [19] and 55 K SNP genotyping assays [19,20] has made it possible to genotype large
populations with high-density SNPs. As a result, genome-wide association studies (GWAS)
have been extensively conducted to explore the extant allelic diversity concerning numerous
agronomic traits [21,22]. GWAS utilizes large amounts of markers distributed across the
entire chromosomes of a species genome to find marker–trait relationships using LD as
its basis, thereby uncovering significant positions. LD represents a naturally occurring
phenomenon within a group during selection and evolution processes whereby nonrandom
correlations occur among genes located at various sites within the same individual. If
the probability of one specific allele existing at two distinct locations exceeds random
expectations, then these two places exhibit LD. The process from unlinked imbalance to
balanced linkage occurs throughout LD attenuation. Species differences exist regarding
their distance of LD decay, with interspecific species such as maize and rapeseed exhibiting
much farther distances than intraspecific ones such as wheat and rice. The level of LD
also depends on factors including recombination, mutation, population structure, sample
size, selective pressure, genetic drift, founder effects, admixture rates, etc. Among them,
recombination and mutations play crucial roles in influencing LD levels [21–23].

To avoid false positives resulting due to any type of familiarity found amidst members
comprising studied collectives alongside similar concerns about establishing appropriate
mathematical formulas proves useful. General Linear Model (GLM), which was initially
introduced, only considers impacts stemming from social arrangements, henceforth caus-
ing some degree of inaccurate outcomes because GLM does not take enough measures
aimed towards controlling consequences originating via interactions caused jointly by kin
and societal constructs. In contrast, MLM has been developed more recently since this
methodology incorporates Q (population structure)-based assessments too—K (kinship);
therefore, it better manages situations arising out of overlapping ramifications exerted
either way by those concepts contributing toward finalized conclusions drawn downstream.
At current times, researchers have implemented applicable usage of all sorts of techniques
encompassing crop quantity features regularly utilizing mixed linier regression versions
(MLM) [21–23].

Association analysis is a quantitative genetic analysis method based on LD among
allelic variants at the same locus, using natural populations as research materials. By
investigating the association between group genotype data and phenotypic data, target
trait genes can be discovered. The advantage of this approach includes, firstly, that it
does not require constructing biparental populations like linkage analysis but uses existing
natural populations, high-generation crosses, local varieties and wild species instead to
significantly shorten study cycles and improve work efficiency [21]. Secondly, its use of
diverse sources for inheritance variation allows simultaneous detection of multiple alleles
at the same position with increased potential applicability across different breeding back-
grounds. Thirdly, because complexity exists in interspecific comparisons due to differences
in trait expression patterns within various breeds or germplasm pools, one sample may
serve several purposes during an assay. Fourthly, higher resolution occurs when utilizing
naturally occurring recombination events that are more informative than artificial ones
used by breeders. However, there also exist limitations such as low precision caused by
limited diversity levels, which leads to reduced accuracy compared to other methods in-
volving marker-assisted selection. Additionally, challenges include complicated sampling
histories from variable geographic locations along with concerns about confounding effects
related to family structure and environmentally driven influences upon gene frequencies.
Furthermore, rare variant discovery suffers lower sensitivity rates, resulting in possible loss
of important heritable variations. Combining both methods enables effective utilization
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of their respective strengths while addressing deficiencies encountered throughout each
process, ultimately improving overall effectiveness regarding efficient identification of key
hereditary factors underlying multifactorial characteristics [22,23]. Moreover, GWAS can
be performed much faster and at lower cost because it bypasses the time of developing
biparental populations [24,25]. GWAS has been used to conduct genetic analysis of a wide
range of agronomic traits and resistance to diseases [25,26], grain processing and end-use
quality [27,28], tolerance to abiotic stress [29], and yield-related traits [30,31].

The Yellow and Huai River Valleys Facultative Wheat Region (YHVFWR) is the largest
wheat production region in China. Breeding cultivars with superior processing quality
could be greatly enhanced using markers developed from single-nucleotide polymorphisms
(SNPs). In this study, SNPs associated with processing quality in a panel of 165 elite wheat
accessions mainly from the YHVFWR were used to (1) dissect the genetic architecture of
mixograph-related traits, (2) identify SNPs significantly associated with mixograp-related
traits and (3) search for candidate mixograph-related traits genes for further study.

2. Materials and Methods
2.1. Plant Materials and Field Trials

In the current investigation, a comprehensive collection consisting of 165 diversified
varieties was utilized; specifically, they were comprised of 143 germplasms sourced from
both the Yellow and Huai River Valley Facultative Wheat Region located across mainland
China while additionally integrating another 22 samples originating from different nations,
such as Italy (9); Argentina (7); Japan (4); Australia (1); along with one sample collected each
from Turkish territory. These hexaploid wheats represented all types found worldwide
based upon their geographical origin or agronomic performance. Furthermore, every
single variety had already received permission before being stored into the national seed
bank maintained by the Institute of Plant Industry affiliated with the Crop Science Society
of China.

The 165 accessions used in GWAS to identify the loci for quality traits assessed by mixo-
graph were grown at Suixi in Anhui province and Anyang in Henan in the 2012–2013 and
2013–2014 cropping seasons. Field trials were conducted in randomized complete blocks
design (RCBD). Agronomic management followed local practices. Each plot contained
three 2 m rows spaced 20 cm apart, and there were 3 replications.

2.2. Mixograph-Related Traits Evaluated and Statistical Analyses

Clean samples of at least 300 grains were tempered overnight to the 14%, 15% and
16% moisture contents normally used to mill soft, medium and hard types, respectively.
All samples were milled at 60% flour extraction using a Brabender Quadrumat Junior Mill
(Brabender Inc., Duisberg, Germany). Mixographs have several advantages, including
small sample amounts (usually 10 g, minimum 2 g), high daily processing samples, simple
operation and rich curve information. They are increasingly widely used in research on
the rheological properties of dough due to their excellent performance characteristics.
Mixograph measurements were taken with 10 g of flour per sample on a 14% moisture
basis using the National Manufacturing Mixograph (National Manufacturing, TMCO
Division, Lincoln, NE, USA), according to the AACC (2000) method 54-40A. BLUP across
environments was analyzed using the PROCMIXED function in SAS v9.3.

2.3. Genotyping and Population Structure

Cultivars were genotyped by the 90 K SNP and 660 K SNP arrays by CapitalBio
(Beijing, China). The SNP chip genotyping procedure involves six steps: (1) sample whole-
genome amplification at approximately 1000 folds; (2) fragmentation treatment on the
diluted PCR product; (3) hybridization between segmented DNAs and chips; (4) single
base extension reactions at specific loci; (5) staining; and (6) scanning imaging. Due
to common wheat’s hexaploid nature, we use combinations of GeneStudio v2011.1 and
GeneStudio Polyploid Clustering V1.0 for genetic typing. First, raw image scans from gene
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expressions were read out through GeneStudio v2011.1; then, clustering based on ploidy
level was performed via GeneStudio Polyploid Clustering V1.0. Filter criteria followed four
standards: (1) eliminating markers without differences among parents; (2) homozygous
alleles assumed missing data; (3) removing marker datasets where more than 10 percentage
points of values have been removed; and (4) one particular variant site should meet either
condition that either one or two types account for no greater than 0.7 or equal to or larger
than 0.3, respectively.

The Chinese Spring (IWGSC v1.0) reference genome was used for GWAS. Popula-
tion structure, principal components analysis (PCA), NJ-tree and LD decay analysis were
reported in a previous study [25]. Population structure was assessed utilizing 2000 poly-
morphic SNP markers sourced from the 660 K SNP arrays. The analysis was conducted
using Structure v2.3.4 (http://pritchardlab.stanford.edu/struc-ture.html) (accessed on
5 July 2022). For each K value ranging from 2 to 12, five independent runs were executed
employing an admixture model. Each run consisted of 100,000 Markov Chain iterations
that were recorded, preceded by 10,000 burn-in periods. To anticipate the actual count of
subpopulations, an ad hoc quantity statistic denoted as ∆K, reliant on the rate of logarithmic
probability alteration between consecutive K values, was employed [25]. Broad-sense heri-
tability (hb

2) of mixograph-related traits was calculated as hb2 = σg2/(σg2 + σge2/r +σε2/re),
where σge2, σε2 and σg2 mean the genotype × environment interaction, residual error
variances and genotype, respectively. Of these, e and r were the number of environments
and the number of replicates per environment, respectively.

2.4. Association Mapping and the Identification of Candidate Genes

The mixed linear model (MLM, PCA + K) was used to avoid the spurious marker–trait
associations (MTAs) by Tassel v5.0 [27]. Both the kinship matrix and PCA were estimated
by Tassel v5.0. Markers with an adjusted −log10 (p-value) ≥ 3.0 were regarded as MTAs
because Bonferroni–Holm correction was too conservative. Manhattan and Q-Q plots were
drawn by the CMplot (R 3.6.5).

Candidate genes associated with loci consistently identified across two or more envi-
ronments were pinpointed. The ensuing procedures were undertaken to ascertain candidate
genes for noteworthy or steadfast quantitative trait loci (QTL). Firstly, a thorough search
was conducted to retrieve all genes located within the linkage disequilibrium (LD) block
vicinity surrounding the peak single-nucleotide polymorphism (SNP) (within a ± 3.0 Mb
range, based on prior LD decay analysis) of each significant QTL from the IWGSC V1.0
dataset. Subsequently, all accessible SNPs located within these genes were scrutinized.
Genes (excluding those encoding hypothetical proteins, transposon proteins and retro-
transposon proteins) harboring SNPs within coding regions, with the potential to induce
missense mutations, were designated as candidate genes. Given the substantial regulation
of processing quality traits by diverse phytohormones, as well as factors such as glycolysis,
signal transduction and cell growth, genes participating in these pathways were classified
as high-confidence candidate genes for processing quality traits. Flanking sequences of
significantly associated SNPs (including the LD decay interval of peak markers around
3.0 Mb) were used in BLASTx against the NCBI database and reference genome annotations
from IWGSC v1.0 was used to predict candidate genes.

3. Results
3.1. Genotyping and Population Structure Analysis

After filtering, 259,922 SNPs were used in GWAS of mixograph-related traits [25]. Pop-
ulation structure, neighbor-joining (NJ) tree and PCA analysis identified three subgroups
of accessions [25]; Subgroup I mainly originated from Shandong; Subgroup II included
cultivars mainly from Henan, Anhui and Shaanxi; and most Subgroup III cultivars were
from Henan (Figure S2) [25]. LD decay for the whole genome was about 8 Mb, with the
D genome 11 Mb, the A genome 6 Mb and the B genome 4 Mb (Figure S3) [25]. The SNP
density across the whole genome was about 18.5 SNPs/Mb [25].

http://pritchardlab.stanford.edu/struc-ture.html
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3.2. Phenotypic Evaluation

All mixograph-related traits showed continuous variation (Table S1; Figure S1). The
mean values of MPT, MPV, MPW and MTxW were 3.16 (1.52–6.49), 47.84 (36.3–63.76),
18.32 (10.19–26.75) and 6.29 (2.5–17.67), respectively. ANOVA revealed significant effects
(p <0.01) of genotypes, environments and genotype × environment interactions on each
processing-related quality trait (Table 1). Broad-sense heritability (h2) estimated for MPW,
MPV, MPT and MTxW was 0.75, 0.72, 0.69 and 0.71, respectively. MPT and MPW showed
significant (p < 0.01) and positive correlations with MTxW (r = 0.885 and 0.448), and the
MPV showed a significant (p < 0.01) and positive correlation with MPW (r = 0.867).

Table 1. ANOVA for mixograph-related traits in a panel of 165 wheat accessions.

Source of Variation df
MS

MPW MPV MPT MTxW

Genotypes 164 1.88 ** 46.3 ** 32.5 ** 20.3 **
Environments 3 0.42 ** 295.0 ** 896.3 ** 56.4 **
Replicates (nested in environments) 2 0.15 ** 6.1 ** 7.1 ** 3.2 **
Genotype*Environment 983 0.13 ** 3.8 ** 5.9 ** 2.1 **
Error 1425

** significant at p = 0.01. MPW: mixograph midline peak width; MPV: mixograph midline peak value; MPT:
mixograph midline peak time; MTxW: mixograph midline 8 min band width.

3.3. Genome-Wide Association Studies

Twenty-four loci associated with mixograph-related traits were detected. There were
nine loci for MPT distributed across chromosomes 1A, 1B, 1D, 2B, 3A, 3D, 4A, 5D and
7D explaining 10.6–42.5% of the phenotypic variances. A single locus affecting MPV was
located on chromosome 5D, explaining 13.4–16.8% of the phenotypic variance. Eight loci
for MPW on chromosomes 1B (2), 2A, 3B, 4A, 4B, 6A and 7B explained 10.2–15.8% of the
phenotypic variance. Twelve loci for MTxW were identified on chromosomes 1A, 1B (2),
1D, 2B, 3D (2), 4A (2), 7B and 7D (2), accounting for 10.5–27.3% of the phenotypic variances.
The 1A (506.9 Mb), 1B (553.6 Mb), 1D (407.9–416.5 Mb), 3D (191.1 Mb) and 7D (321.0 Mb)
loci showed pleiotropic effects on MPT and MTxW, whereas the 4A locus (610.1–621.6 Mb)
controlled both MPW and MPT (Tables 2 and S2, Figures 1 and S4).

Table 2. Mixograph-related traits identified in the wheat accession panel by association analysis.

Loci Trait Chr. Start (Mb)
R2 p-Value

Environments Favorable
Allele Reference

Min Max Min Max

qM1 MPT 1A 506.9 14.90% 23.70% 6.70 × 10−8 1.90 × 10−5 E1; E3; E4; E5 C
MTxW 1A 506.9 13.80% 15.90% 9.40 × 10−6 3.90 × 10−5 E1; E3; E5 T

qM2 MTxW 1B 13.5–14.5 10.80% 17.00% 7.20 × 10−7 6.40 × 10−5 E1; E4; E5 T
qM3 MPW 1B 130.6 10.30% 12.10% 1.70 × 10−5 7.40 × 10−5 E1; E4; E5 A [2]

MPT 1B 553.6 31.50% 37.70% 9.10 × 10−12 4.40 × 10−10 E1; E3; E4; E5 G
qM4 MTxW 1B 553.6 14.80% 27.10% 1.90 × 10−9 3.70 × 10−6 E1; E2; E3; E4; E5 G
qM5 MPW 1B 673.4–674.5 12.70% 13.90% 3.70 × 10−5 8.10 × 10−5 E2 A [28]
qM6 MPT 1D 407.9–416.5 12.60% 42.50% 1.40 × 10−13 9.80 × 10−5 E1; E2; E3; E4; E5 G [32]

MTxW 1D 407.9–416.5 10.80% 27.30% 8.30 × 10−10 9.40 × 10−5 E1; E2; E3; E4; E5 G
qM7 MPW 2A 191.9–199.6 12.50% 13.80% 3.50 × 10−5 9.00 × 10−5 E2 A [28]
qM8 MTxW 2B 4.6 10.60% 11.20% 6.30 × 10−5 9.40 × 10−5 E2; E3; E5 G [32,33]
qM9 MPT 2B 738.2–752.8 14.90% 18.20% 4.70 × 10−6 2.70 × 10−5 E4 G [2]
qM10 MPT 3A 709.6–710.7 12.90% 11.60% 4.20 × 10−5 9.70 × 10−5 E4 G
qM11 MPW 3B 561.0–579.3 13.00% 13.60% 4.00 × 10−5 7.80 × 10−5 E2 A
qM12 MPT 3D 191.1 22.70% 28.90% 3.60 × 10−10 1.70 × 10−8 E1; E3; E4; E5 A [33]

MTxW 3D 191.1 14.70% 17.30% 5.60 × 10−7 3.70 × 10−6 E1; E2; E3; E5 A
qM13 MTxW 3D 578.4 10.90% 11.70% 3.10 × 10−5 6.90 × 10−5 E1; E4; E5 A
qM14 MTxW 4A 12.4–12.6 12.60% 13.50% 8.20 × 10−6 9.50 × 10−5 E1; E2; E3; E5 A
qM15 MTxW 4A 89.9–90.4 10.50% 14.40% 4.60 × 10−6 8.10 × 10−5 E1; E5 A
qM16 MPW 4A 610.1–621.6 12.80% 14.40% 2.60 × 10−5 9.00 × 10−5 E2 G [2]

MPT 4A 621.2–667.7 14.60% 17.60% 4.30 × 10−6 4.90 × 10−5 E1; E4; E5 G
qM17 MPW 4B 12.9–25.8 10.20% 15.80% 1.30 × 10−6 7.70 × 10−5 E2; E3; E5 G
qM18 MPV 5D 3.6 13.40% 16.80% 8.20 × 10−7 9.50 × 10−6 E1; E3; E4; E5 C
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Table 2. Cont.

Loci Trait Chr. Start (Mb)
R2 p-Value

Environments Favorable
Allele Reference

Min Max Min Max

qM19 MPT 5D 454.1 10.60% 12.30% 2.30 × 10−5 8.50 × 10−5 E1; E3; E5 G
qM20 MPW 6A 23.4–26.9 12.70% 14.10% 3.70 × 10−5 9.60 × 10−5 E2 G
qM21 MTxW 7B 126.6 14.80% 18.20% 3.20 × 10−7 3.20 × 10−6 E1; E3; E4; E5 C
qM22 MPW 7B 551.9–557.4 12.50% 15.20% 2.00 × 10−5 9.90 × 10−5 E2 G
qM23 MTxW 7D 57.5 13.90% 22.30% 3.40 × 10−7 6.00 × 10−5 E2; E4; E5 C
qM24 MPT 7D 321 20.80% 25.10% 3.70 × 10−9 5.90 × 10−8 E1; E3; E4; E5 G

MTxW 7D 321 12.40% 17.80% 4.00 × 10−7 1.90 × 10−5 E1; E2; E3; E5 C [33]

MPW: mixograph midline peak width; MPT: mixograph midline peak time; MPV: mixograph midline peak value;
MTxW: mixograph midline 8 min band width. E1, E2, E3, E4 and E5 indicate Suixi 2013, Anyang 2013, Suixi 2014,
Anyang 2014 and the best linear unbiased prediction (BLUP), respectively.

Figure 1. Manhattan plots for mixograph-related traits in 165 wheat accessions by the mixed linear
model (MLM) in Tassel v5.0. MPT: mixograph midline peak time; MPV: mixograph midline peak
value; MPW: mixograph midline peak width; MTxW: mixograph midline 8 min band width.13SX,
13AY, 14SX, 14AY and BLUP indicate Suixi 2013, Anyang 2013, Suixi 2014, Anyang 2014 and the best
linear unbiased prediction (BLUP), respectively.

3.4. Candidate Genes

Seven candidate genes were identified for wheat progressing quality-related traits.
Three 3-ketoacyl-CoA synthase genes (TraesCS2B01G535700, TraesCS3A01G451100 and
TraesCS3D01G444000) were identified on chromosomes 2B (731.5 Mb), 3A (689.5 Mb) and
3D (553.2 Mb), and another gene encoding lipoxygenase (TraesCS4A01G359800) was de-
tected in the QTL (632.9 Mb) on chromosome 4A. Candidate genes for plant lipid transfer
protein/Par allergen (TraesCS4A01G021300), pyridoxal phosphate-dependent decarboxylase
(TraesCS1A01G329500) and sucrose synthase 3 (TraesCS3D01G184500) were identified on
chromosomes 4A (14.8 Mb), 1A (518.5 Mb) and 3D (170.2 Mb), respectively (Tables 3 and S3).
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Table 3. Candidate genes for mixograph-related traits.

Candidate Gene Chromosome Position (Mb) Annotation

TraesCS1A01G329500 1A 518.5 Pyridoxal phosphate-dependent decarboxylase
TraesCS2B01G535700 2B 731.5 3-ketoacyl-CoA synthase
TraesCS3A01G451100 3A 689.5 3-ketoacyl-CoA synthase
TraesCS3D01G444000 3D 553.2 3-ketoacyl-CoA synthase
TraesCS3D01G184500 3D 170.2 sucrose synthase 3
TraesCS4A01G021300 4A 14.8 Plant lipid transfer protein/Par allergen
TraesCS4A01G359800 4A 632.9 Lipoxygenase

4. Discussion

As a vital staple crop and an engine for advancing agricultural high-quality develop-
ment, particularly with regard to enhancing wheat quality, there exists an increased urgency
towards such efforts. Over the past several years, advancements have been achieved by
means of genetic modifications within the context of complicated wheat quality character-
istics. Nonetheless, owing to the challenges posed by the lack of accurate trait diagnosis
methods when it comes to wheat quality, studies on its underlying genetics are moving at a
snail’s pace, further impeding the overall wheat quality breeding processes. To address
these issues, researchers should explore the highly correlated marker systems linked to
various aspects of wheat quality via genealogical analyses so as to determine relevant
regions that could be employed later during wheat quality breeding—ultimately speeding
up the whole selection procedure.

The rheological properties of dough are an essential quality trait for wheat, determin-
ing not only its own processing qualities but also those of breads and cooked products
made using it. Currently, various instruments such as the farinograph, rheometer and
mixograph are primarily used to assess these traits. However, due to the relatively high
quantity of flour needed (normally exceeding 100 g) and the lengthy testing times involved,
these devices prove difficult to apply when confronted with numerous samples during
breeding generations. In contrast, the mixograph calls for less material and features shorter
test times than the aforementioned equipment. Furthermore, it displays highly significant
correlations with key parameters measured by means of the farinograph and rheometer,
while simultaneously demonstrating a strong connection with actual kneading times dur-
ing baking. Consequently, this tool is presently extensively implemented in both domestic
and international wheat breeding initiatives [13,14].

In this study, most of the 165 accessions mainly from Shandong and foreign cultivars
were classified into subgroup 1; subgroup 2 consisted of 54 accessions, mainly from Henan,
Anhui and Shaanxi provinces, whereas subgroup 3 mainly included the accessions from
Henan province. Thus, the MLM model with population structure and kinship matrix
settings was performed in this study to avoid spurious results [22]. The LD decay distance
for the whole genome of about 8 Mb indicated that the marker density was adequate for
the further association analysis [25].

4.1. Comparison with QTLs or Genes in Previous Studies

Dough strength constitutes a prototypical quantitative trait under the influence of
multiple minor genes. Numerous QTLs associated with mixograph-related traits have
been previously documented [13–17]. However, those studies were mainly based on sim-
ple sequence repeat (SSR) markers and not tightly associated with QTLs. In this study,
association analysis of mixograph-related traits was performed using high-density SNP
arrays. Barakat et al. [2] reported 108 loci for farinograph- and mixograph-related traits on
all 21 wheat chromosomes in two double haploid (DH) populations. Three loci on chromo-
somes 1B, 2B and 3B overlapped present loci on chromosomes 1B (13.5–14.5 Mb) for MTxW,
2B (738.2–752.8 Mb) for MPT and 3B (561.0–579.3 Mb) for MPW. Zhang-Biehn et al. [28]
have reported 11 loci for mixograph-related traits on chromosomes 1A, 1B, 1D, 2A, 5B, 6A
and 6D in a panel of 462 advanced breeding lines; three overlapped SNPs were present
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in 1B locus (553.6 Mb) for MPT and MTxW, 1D (407.9–416.5 Mb) for MPT and MTxW,
and 6A (23.4–26.9 Mb) for MPW. The locus for MPT and MTxW on chromosome 1D
(407.9–416.5 Mb) was in the same position as Qmlt.tamu.1d identified by Yu et al. [32], who
also reported Qgcd.tamu.7B, which overlapped with the present locus for MPW on chromo-
some 7B (551.9–557.4 Mb). Zhou et al. [33] reported two loci for mixograph-related traits
on chromosomes 4A and 7B that coincided with the present 4A (621.2–667.7 Mb) for MPT
and 7B (321.0 Mb) loci for MPT and MTxW. However, due to the fact that most genetic
analyses of wheat quality traits have been conducted using traditional SSR and DArT
markers, which lack specific physical locations and cannot be directly compared with the
SNP information employed in this study, we are limited to the following inferences: among
the 24 loci for mixograph-related traits, nine were reported previously; the remaining loci
may be novel.

4.2. Candidate Gene Analysis

Candidate gene TraesCS1A01G329500 on chromosome 1A encoding a pyridoxal phosphate-
dependent decarboxylase involved in nitrogen metabolism affects the amount and compo-
sition of dough development and gluten matrix [34]. TraesCS4A01G021300 on chromosome
4A in an LD decay with a nonspecific lipid transfer protein (LTP) gene promotes the inter-
membrane transfer of lipids that plays an important role in dough mixing. Lipids not
only influence the dough capacity, but also interact with glutenin and gliadin proteins [35].
TraesCS3D01G184500 on chromosome 3D encodes sucrose phosphate synthase III (SPS III),
which plays an important role in the sucrose metabolic pathway in plants [36,37]. SPS
III is an important enzyme involved in the metabolism of sugars in plant cells. Its main
function is to convert glucose and fructose into sucrose and, at the same time, produce a
phosphate group. Fructose 6-phosphate and UDP glucose are catalyzed by sucrose phos-
phate synthase to form sucrose 6-phosphate, which is catalyzed by sucrose phosphatase
to form sucrose. Within the LD decay of a locus on chromosome 4A (632.9 Mb), there
was (TraesCS4A01G359800, LOX 2) encoding lipoxygenase 2 that catalyzes bound fatty
acids [38,39]. Previous studies showed that lipids form complexes with amylose and LOX
2 acts on the complex formed by starch and lipids to increase the solubility of starch [40].
TraesCS2B01G535700 on chromosome 2B (731.5 Mb), TraesCS3A01G451100 on chromosome
3A (689.5 Mb) and TraesCS3D01G444000 on chromosome 3D (553.2 Mb) encode 3-ketoyl
COA synthases involved in the fatty acid biosynthesis pathway [41]. Previous studies
indicated that interaction between lipids and proteins has a significant impact on the rheo-
logical properties of dough. Further experiments are needed to verify the functions of the
candidate genes due to the complexity of metabolic pathways and genetic backgrounds.

While conventional wheat breeding practices have contributed to the enhancement
of processing quality, the efficacy of early-generation selection remains limited. Addi-
tive effects have been discerned between traits associated with processing quality and
advantageous alleles recognized through genome sequence variations. The accumulation
of multiple favorable alleles, such as those pinpointed in this investigation, holds the
potential to enhance processing quality-linked traits. Loci with stable effects across envi-
ronments should be more appliable in MAS, such as those on chromosomes1A (506.9 Mb),
1B (553.6 Mb), 1D (407.9–416.5 Mb) and 7D (321.0 Mb), showing pleiotropic effects on MPT
and MTxW, along with the 4A (610.1–621.6 Mb) locus with pleiotropic effects on MPW and
MPT. The loci that have been confirmed through conventional linkage mapping or GWAS
in prior research could serve as subjects for subsequent investigations. Finally, accessions
with superior processing quality-related traits and larger numbers of favorable alleles, such
as Aca 601, Klein Jaba l1, Shanyou 225, Jishi 02-1, Sagittario, Klein Flecha, Wanmai 33,
Sunong6, Libero Mantol, ProINTA Colibr 1 and Nidera Baguette 20, are recommended as
parental lines for breeding cultivars with superior quality-related traits by MAS (Table 4).
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Table 4. Accessions could be used for wheat processing quality improvement.

Cultivar BLUP-MPT BLUP-MPV BLUP-MPW BLUP-MTxW

Aca 601 5.6 50.0 26.7 17.7
Klein Jabal 1 6.5 50.4 20.6 17.2
Shanyou 225 4.6 54.0 24.4 16.6
Jishi 02-1 6.0 52.8 22.5 16.0
Sagittario 5.1 50.6 23.4 15.6
Klein Flecha 5.6 49.5 23.4 15.3
Wanmai 33 6.3 51.9 21.5 15.1
Sunong 6 6.2 48.4 18.9 14.8
Libero 5.6 44.2 18.4 14.8
Mantol 5.5 47.3 19.5 14.5
ProINTA Colibr 1 5.2 51.4 21.2 14.4
Nidera Baguette 20 5.0 47.2 21.6 13.4
Barra 6.3 44.0 15.1 13.2
Aca 801 5.4 48.3 23.8 13.0
Jimai 20 4.0 50.6 23.5 12.8
Nidera Baguette 10 5.8 42.4 15.3 12.5
Shanmai 94 4.6 52.9 22.8 11.8
Kitanokaori 4.0 49.4 17.6 11.5
Xinong 979-005 4.3 52.5 25.2 11.4
Norin 67 3.0 54.6 23.5 11.1
Shanmai 509 6.1 44.0 16.4 11.0
Zhoumai 26 5.6 41.6 14.5 10.8
Jinan 17 3.5 52.6 25.7 10.6
Sunstate 4.4 45.3 16.7 10.6
Zhoumai 19 4.3 49.5 19.5 10.3
Gaocheng 8901 4.9 52.4 19.2 10.3
Shannong 981 3.2 63.8 30.4 10.2
Genio 3.5 48.4 23.5 10.1
Shiyou 17 4.5 47.2 17.7 9.9
Jining 16 4.6 49.1 18.8 9.7

5. Conclusions

A GWAS for mixograph-related traits was conducted on a panel of 165 varieties using
the wheat 90K and 660K SNP arrays. In total, 15 of the 24 loci identified were novel. Seven
candidate genes for mixograph-related traits were predicted. SNPs in genes associated
with favorable mixograph traits can be converted to selection markers that can be used in
the early generations of breeding.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14091816/s1, Figure S1. The histogram for the progressing
quality-related traits in 165 wheat accessions. MPT: mixograph midline peak time; MPV: mixograph
midline peak value; MPW: mixograph midline peak width; MTxW: mixograph midline 8 min band
width. 13SX, 13AY, 14SX, 14AY and BLUP indicate Suixi 2013, Anyang 2013, Suixi 2014, Anyang
2014 and the best linear unbiased prediction (BLUP), respectively. Figure S2. Population structure
for the 165 wheat accessions [25]. a Delta K for structure analysis; b population structure analysis; c
neighbor-joining (NJ) tree; d principal components analysis (PCA) plots. Figure S3. LD decay for
the 165 wheat accessions LD [25]. Figure S4. Q-Q plot for the progressing quality-related traits in
165 wheat accessions. MPT: mixograph midline peak time; MPV: mixograph midline peak value;
MPW: mixograph midline peak width; MTxW: mixograph midline 8 min band width. 13SX, 13AY,
14SX, 14AY and BLUP indicate Suixi 2013, Anyang 2013, Suixi 2014, Anyang 2014 and the best
linear unbiased prediction (BLUP), respectively. Table S1. The details for mixograph-related traits
in 165 wheat accessions. MPT: mixograph midline peak time; MPV: mixograph midline peak value;
MPW: mixograph midline peak width; MTxW: mixograph midline 8 min band width. E1, E2, E3,
E4 and E5 indicate Suixi 2013, Anyang 2013, Suixi 2014, Anyang 2014 and the best linear unbiased
prediction (BLUP), respectively. Table S2. Marker–trait associations for mixograph-related traits in
165 wheat accessions. Table S3. GO annotation for the candidate genes.
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