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Abstract: Genome-wide association studies have discovered common genetic variants associated
with cognitive performance. Polygenic scores that summarize these discoveries explain up to 10% of
the variance in cognitive test performance in samples of adults. However, the role these genetics play
in cognitive aging is not well understood. We analyzed data from 168 cognitively healthy participants
aged 23–77 years old, with data on genetics, neuropsychological assessment, and brain-imaging
measurements from two large ongoing studies, the Reference Abilities Neural Networks, and the
Cognitive Reserve study. We tested whether a polygenic index previously related to cognition (Cog
PGI) would moderate the relationship between age and measurements of the cognitive domains
extracted from a neuropsychological evaluation: fluid reasoning, memory, vocabulary, and speed of
processing. We further explored the relationship of Cog PGI and age on cognition using Johnson–
Neyman intervals for two-way interactions. Sex, education, and brain measures of cortical thickness,
total gray matter volume, and white matter hyperintensity were considered covariates. The analysis
controlled for population structure-ancestry. There was a significant interaction effect of Cog PGI
on the association between age and the domains of memory (Standardized coefficient = −0.158,
p-value = 0.022), fluid reasoning (Standardized coefficient = −0.146, p-value = 0.020), and vocabulary
(Standardized coefficient = −0.191, p-value = 0.001). Higher PGI strengthened the negative relation-
ship between age and the domains of memory and fluid reasoning while PGI weakened the positive
relationship between age and vocabulary. Based on the Johnson–Neyman intervals, Cog PGI was
significantly associated with domains of memory, reasoning, and vocabulary for younger adults.
There is a significant moderation effect of genetic predisposition for cognition for the association
between age and cognitive performance. Genetics discovered in genome-wide association studies of
cognitive performance show a stronger association in young and midlife older adults.

Keywords: polygenic index; cognition; normal aging

1. Introduction

Cognitive performance is significantly influenced by genes, with approximately half
of the variance in general cognition attributed to genetic factors [1]. Apart from general
cognition, distinct cognitive domains are also influenced by genetics; mostly attention,
working memory, and declarative memory [2,3]. Pietropaolo and Crusio reported the two
main strategies to study genetics of human cognition; the candidate gene approach, and
the whole-genome approach [4]. Most of the existing literature focused on the genetics
of cognition and Alzheimer’s disease [5], has used the first approach, studying genes
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whose function has been shown to influence any neurobiological process involved in the
phenotype of interest. GWAS analyses have discovered large numbers of small-effect
variants [6]. In order to understand how these variants affect cognitive aging, there is a
need to follow-up with respondents with more detailed phenotyping. Thus, to address the
power problem, researchers have begun to combine GWAS discoveries into a single index.
Creation of Polygenic Indices (PGI) is the best method of applying this second approach [7].

In a previous study [8], we found that a Cognitive PGI (Cog PGI) was associated
with a summary score of cognitive performance in adults aged 23 to 77 years old. This
result remained significant even after including brain markers (cortical thickness, total gray
matter volume, and white matter hyperintensity) as covariates. The trajectory of changes in
cognition with aging varies by cognitive domain. For example, memory declines with aging
both in normal aging and neurodegenerative diseases [9], while language performance
remains stable or improves with age [10]. Therefore, in the current analysis we examined
the effect on age on the associations between Cog PGI and performance in discrete cognitive
domains (fluid reasoning, memory, vocabulary, and speed of processing), including brain
measures as covariates.

2. Methods
Participants

Participants were drawn from two ongoing studies at Columbia University Irving
Medical Center: the Reference Ability Neural Network (RANN) study and the Cognitive
Reserve (CR) study [11,12]. In the RANN Study, 12 cognitive neuroimaging tasks are
administered to healthy adults in order to identify the neural networks associated with
four reference abilities (memory, fluid reasoning, speed of processing, and vocabulary) and
investigate how these networks are affected by aging. CR was designed to help uncover
neural mechanisms that might underlie the cognitive reserve. Participants were required to
be native English speakers, right-handed, and have at least a fourth-grade reading level.
Screening was performed to ensure that participants had no neurological or psychiatric
conditions, cognitive impairment, or MRI contraindications. Older participants who met
diagnostic criteria for mild cognitive impairment (MCI) and dementia were excluded.
More detailed information about the studies can be found elsewhere [11,12]. Participants
included in the final sample had complete data on the polygenic risk scores, cognitive
performance in the four domains, and socio-demographic variables. For this study, we
considered 168 individuals aged 23–77 whose ethnicity was European-American only.

3. Cognitive Tasks

Twelve measures from a battery of neuropsychological tests were selected to assess
functioning in four cognitive domains. Based on a principal axis factor analysis, the
composite scores for each of the four cognitive domains were determined by specific sets
of tasks. The score for fluid reasoning was determined by the following: Wechsler Adult
Intelligence Scale (WAIS-III) Block design task, WAIS-III Letter–Number Sequencing test,
and WAIS III Progressive Matrices. Processing speed was estimated from WAIS-III Digit
Symbol Subtest, Part A of the Trail Making Test, and the Stroop Color Naming tests. The
composite score for vocabulary was based on the vocabulary subtest from WAIS-R, the
Wechsler Test of Adult Reading (WTAR), and the American National Adult Reading Test
(AMNART). Lastly, Episodic memory was calculated from three sub-scores of the Selective
Reminding Task (SRT): Long-Term Storage sub-score (SRT LTS), Continuous Long-Term
Retrieval (SRT CLRT), and Last Trial (SRT Last). Z-scores were computed for participants,
on each summary score, based on the overall means and standard deviations. A higher
score indicates better cognitive performance.

The GWAS used for PGI calculation included participants of European ancestry, and
previous studies have shown that PGIs perform worse when applied to other ancestry
groups due to differences in Linkage-disequilibrium (LD) and allele frequencies between
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different populations. Thus, we restricted our analysis to self-reported European-American
participants.

4. PGI Calculation

Genotyping: A venous blood draw was taken for every participant during their ap-
pointment at Columbia University. DNA samples were obtained through whole-blood
extraction. Genotyping was performed using Omni 1M chips, based on Illumina proce-
dures. Genotype calling was performed using GenomeStudio v.1.0 (https://emea.support.
illumina.com/array/array_software/genomestudio/downloads.html, accessed on 1 June
2022). Quality control was applied to both DNA samples and SNPs. Specifically, samples
were removed from further analyses if they had call rates below 95%, sex discrepancies,
and relatedness (kinship coefficient more than 0.125). To account for population structure-
ancestry, we computed the top 20 Principal Components (PCs) of the whole sample using
Plink software 1.9 and we used the 20 PCs as covariates in our analyses [13].

GWAS imputation: GWAS data were imputed using the Haplotype Reference Consor-
tium (HRC v1.1) panel through the Michigan Imputation online server (Das, Forer et al.,
2016). The HRC is a reference panel of 64,976 human haplotypes at 39,235,157 SNPs con-
structed using whole-genome sequence data from 20 studies of predominantly European
ancestry [14].

Imputed dosages for a total of 6,280,331 SNPs with MAF > 0.05, HWE p-value > 10–6,
and a missing rate < 10% were used for PGI computation. PGI scoring was performed
using PRSice-2 software [15] following the clumping and thresholding (C + T) approach, as
previously described by the International Schizophrenia Consortium [16].

Polygenic Index: We composed the PGI from summary statistics from a recent GWAS
meta-analysis of cognitive performance including n = 269,867 participants, from 14 inde-
pendent European cohorts [8]. Different measures of intelligence were assessed in each
cohort but were all operationalized to index a common latent g factor, the general intelli-
gence factor or Spearman’s g, representing multiple dimensions of cognitive functioning.
The majority of the samples were adults, 18 to 60 years old (n = 204,228), and when the
participants were stratified according to age groups (children, young adults, older adults,
adults), results did not indicate any specific age-dependent effect, suggesting that the same
SNPs are significant across age-groups.

For the purposes of the current analysis, all SNPs were included, regardless of p-value
in the mass-univariate screen. In order to ensure that only independent markers were
included in the computed PGI, we conducted LD clumping using an R2 threshold of 0.1
and a 250 kb sliding window. Markers within the Major Histocompatibility Complex
(MHC) LD region on chromosome 6 (chr6:27–33 Mb, hg19) were also excluded from the
PGI due to the presence of complex patterns of long-range linkage disequilibrium within
this region. For each remaining SNP, we computed the weighted count of cognition-
associated alleles (0, 1, or 2), with the weights determined by the coefficient estimated in
the GWAS that corresponds to the effect allele. We then computed the average weighted
count across all SNPs to form the PGI. The PGI computation was performed using the
PRSice software [15]. For interpretation reasons, PGI values were normalized across our
sample by z-transformation.

5. Brain Measures

Structural MRI scan and image processing: MRI images were acquired on a 3.0 T
Philips Achieva Magnet. Each scan used a 240 mm field of view. The parameters for
EPI acquisition were TE/TR (ms) 20/2000; Flip Angle 72◦; In-plane resolution (voxels)
112 × 112; Slice thickness/gap (mm) 3/0; Slices 41. T1 scans for each participant were
reconstructed with the FreeSurfer (v5.1.0), which is a software for human brain imaging
analysis (http://surfer.nmr.mgh.harvard.edu, (accessed on 1 June 2022)). The accuracy of
FreeSurfer’s subcortical segmentation and cortical parcellation [17,18] has been reported to
be comparable to manual labeling. Each participant’s white and gray matter boundaries, as

https://emea.support.illumina.com/array/array_software/genomestudio/downloads.html
https://emea.support.illumina.com/array/array_software/genomestudio/downloads.html
http://surfer.nmr.mgh.harvard.edu


Genes 2023, 14, 1814 4 of 10

well as gray matter and cerebral-spinal-fluid boundaries, were visually inspected slice by
slice, and control points were added manually wherever there was a visible discrepancy.
Boundary reconstruction was repeated until we obtained satisfactory results for every
participant. The subcortical structure borders were plotted by the TkMedit visualization
tools and they were compared against the actual brain regions. In case of any discrepancies,
we corrected them manually.

Based on our previous publication [8], we selected three neural phenotypes for analysis
based on published associations with cognitive test performance: gray matter volume
(GM) [19], cortical thickness (CT) [20,21], and white matter hyperintensities (WMH) [22].
We used total gray-matter volume as reported by FreeSurfer. CT was computed as the
average of both hemisphere averages provided by standard FreeSurfer parcellation [17].
FreeSurfer’s subcortical segmentation and cortical parcellation have been shown to have
comparable accuracy to manual labeling [18,23]. Reconstructions were initially checked and,
manual control points and editing were used wherever needed. WMH was measured as
follows. First, WMH was segmented by the Lesion Segmentation Tool algorithm (LST) [24]
as implemented in the LST toolbox version 2.0.15 (June 2017) for Statistical Parametric
Mapping (SPM) (www.statistical-modelling.de/lst.html, (accessed on 1 June 2022)). Next,
in order to extract lobar WMH values, we registered the T1 sequence for each participant in
FreeSurfer and then co-registered the FLAIR sequence. We log-transformed global WMH
burden (log(WMH + 1)) derived from the FMRIB software 6.0 library [25]. The following
brain regions were characterized as the lobes in FreeSurfer: frontal, parietal, temporal,
cingulate, and occipital. Finally, the volumes of WMH in each of the five lobes were
automatically extracted, and their sum was used in the current study. One participant was
excluded because of technical problems while extracting the regional WMH map [26].

6. Statistical Analysis

We performed the analyses using the statistical package R, version 4.2.1 (https://
www.r-project.org (accessed on 23 June 2022)). Statistical significance was defined as a
p-value < 0.05 using a two-tailed test. We aimed to test the interaction effect of Cog PGI on
the relationship between age and each cognitive domain. This was accomplished using
linear regression models with the moderator (Cog PGI), age, and their interactions as
independent variables. For the models in which the interaction term was significant, the
interplay between Cog PGI and age on cognition was examined using the Johnson–Neyman
Technique for two-way interactions [27,28]. The Johnson–Neyman interval represents a
range of values of the moderator in which the slope of the predictor is significant vs.
non-significant at a specified level. All regression models controlled for the following
covariates: education, sex, and the first of 20 principal components to control for potential
population sub-structure. In a subsequent model, brain measures (gray matter volume,
cortical thickness, and white matter hyperintensities) were included as additional covariates.
All continuous independent variables were mean-centered and standardized.

7. Results

Table 1 presents a summary of baseline demographics and cognitive measures of
interest. The participants had an average of a bit over 16 years of education and had an
average estimated IQ of 120.28. The sample was majority female.

After adjusting for education, sex, and first PC, Cog PGI moderated the relation-
ship between age and cognitive ability for memory (β = −0.158, CI = [−0.292, −0.023],
p-value = 0.022), fluid reasoning (β = −0.146, CI = [−0.269, −0.024], p-value = 0.020), and
vocabulary (β = −0.191, CI = [−0.307, −0.076], p-value = 0.001) (Table 2). Figure 1 provides
a visual representation of the regression coefficients by examining the relationship between
age and cognitive ability at three values of Cog PGI (1 SD below the mean, mean, and
one SD above the mean). For memory, the negative relationship between age and mem-
ory strengthened with higher Cog PGI, meaning that higher values of Cog PGI showed
more decline in cognition for each unit increase in age. For fluid reasoning, the negative
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relationship between age and reasoning also strengthened with a higher Cog PGI. In other
words, the decline in reasoning due to age was greater as Cog PGI increased. On the other
hand, regarding vocabulary, as the level of Cog PGI increased, the positive relationship
between age and performance weakened. Age was positively associated with vocabulary
for lower Cog PGI, but there was almost no association for higher Cog PGI. Additionally,
we determined the age ranges in which Cog PGI had a significant association with cog-
nition using the Johnson–Neyman Technique. These are denoted by the shaded areas in
Figure 1. Higher Cog PGI was associated with better cognitive performance in memory
for young adults. Higher Cog PGI was associated with better cognitive performance in
fluid reasoning for young and middle-aged adults. Furthermore, Cog PGI had a positive
relationship with vocabulary for young and middle-aged adults.

Table 1. Baseline characteristics of participants.

Characteristics N Mean (SD) Minimum Maximum

Age, years 168 56.90 (15.50) 23 77
Sex, N(%) 168

F 86 (51.19%) - -
M 82 (48.81%) - -

Education, years 168 16.45 (2.27) 12 22
Cognitive Domains (z−scores)

Memory 166 −0.02 (0.96) −2.36 1.60
Fluid Reasoning 168 0.22 (0.79) −1.39 2.05
Speed of Processing 168 0.10 (0.75) −1.69 2.10
Vocabulary 165 0.36 (0.69) −2.03 1.21

Brain Measures
Cortical Thickness 165 2.53 (0.12) 2.26 2.85

Total Gray Matter Volume 165 625,269.41
(59,112.66) 494,775.94 819,078.57

log(White Matter
Hyperintensity + 1) 160 4.74 (2.66) 0 9.50

Table 2. Regression results for associations between PGI and each cognitive domain cognition with
age moderation, adjusting for sex, education, and first PC. Standardized regression coefficients and
their 95% confidence intervals are reported.

(a) Memory (b) Fluid Reasoning

Predictors β CI p β CI p

Cog PGI 0.059 [−0.119, 0.237] 0.516 0.253 [0.090, 0.415] 0.003
Age −0.473 [−0.608, −0.338] <0.001 −0.478 [−0.601, −0.354] <0.001

Education 0.246 [0.108, 0.384] 0.001 0.142 [0.017, 0.267] 0.027
Sex [M] −0.327 [−0.593, −0.060] 0.017 0.108 [−0.138, 0.353] 0.388

PC 1 −0.070 [−0.244, 0.104] 0.427 0.044 [−0.115, 0.204] 0.586
Cog PGI x Age −0.158 [−0.292, −0.023] 0.022 −0.146 [−0.269, −0.024] 0.020

(c) Speed of Processing (d) Vocabulary

Predictors β CI p β CI p

Cog PGI 0.061 [−0.096, 0.219] 0.444 0.173 [0.017, 0.328] 0.030
Age −0.635 [−0.756, −0.515] <0.001 0.144 [0.028, 0.260] 0.015

Education 0.103 [−0.019, 0.225] 0.097 0.322 [0.204, 0.440] <0.001
Sex [M] −0.033 [−0.272, 0.205] 0.782 0.063 [−0.169, 0.294] 0.592

PC 1 0.110 [−0.045, 0.266] 0.161 0.029 [−0.122, 0.181] 0.701
Cog PGI x Age −0.088 [−0.207, 0.031] 0.148 −0.191 [−0.307, −0.076] 0.001

Note: Bold indicates a significant interaction effect between Cog PGI and age on the cognitive domains.
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Figure 1. The effect of age on cognitive abilities moderated by Cog PGI, adjusting for sex, education,
and first PC. The shaded area represents the Johnson–Neyman interval of ages where Cog PGI had a
significant association with cognition.

Once the brain measures were adjusted in the regression model, the interaction be-
tween age and Cog PGI on cognition was still observed (Table 3). Although the effect
size slightly decreased, Cog PGI significantly moderated the relationship between age and
cognitive ability in fluid reasoning, memory, and vocabulary. Adding the brain measures
in the model did not alter the overall patterns found in the relationship between age/Cog
PGI and cognition.
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Table 3. Regression results for associations between PGI and each cognitive domain, with age
moderation, adjusting for sex, education, first PC, and brain measures. Standardized regression
coefficients and their 95% confidence intervals are reported.

(a) Memory (b) Fluid Reasoning

Predictors β CI p β CI p

Cog PGI 0.082 [−0.105, 0.269] 0.387 0.275 [0.104, 0.446] 0.002
Age −0.476 [−0.715, −0.236] <0.001 −0.503 [−0.719, −0.287] <0.001

Education 0.243 [0.099, 0.387] 0.001 0.119 [−0.011, 0.250] 0.072
Sex [M] −0.288 [−0.615, 0.040] 0.085 −0.058 [−0.359, 0.242] 0.702

PC 1 −0.096 [−0.276, 0.083] 0.291 0.023 [−0.142, 0.188] 0.784
Cortical

Thickness 0.081 [−0.120, 0.281] 0.427 −0.086 [−0.268, 0.096] 0.350

Total Gray
Volume −0.054 [−0.253, 0.145] 0.593 0.176 [−0.007, 0.359] 0.060

log(WMH + 1) 0.057 [−0.142, 0.257] 0.570 0.130 [−0.047, 0.306] 0.149
Cog PGI x Age −0.147 [−0.288, −0.007] 0.040 −0.128 [−0.256, −0.001] 0.049

(c) Speed of Processing (d) Vocabulary

Predictors β CI p β CI p

Cog PGI 0.068 [−0.102, 0.239] 0.429 0.202 [0.041, 0.363] 0.014
Age −0.655 [−0.871, −0.440] <0.001 0.273 [0.073, 0.472] 0.008

Education 0.091 [−0.039, 0.221] 0.167 0.312 [0.192, 0.432] <0.001
Sex [M] −0.035 [−0.334, 0.264] 0.818 −0.161 [−0.442, 0.120] 0.259

PC 1 0.099 [−0.065, 0.264] 0.235 −0.015 [−0.168, 0.138] 0.848
Cortical

Thickness 0.038 [−0.143, 0.220] 0.677 −0.055 [−0.229, 0.119] 0.536

Total Gray
Volume 0.021 [−0.161, 0.204] 0.817 0.238 [0.068, 0.408] 0.006

log(WMH + 1) 0.070 [−0.106, 0.246] 0.436 −0.004 [−0.166, 0.158] 0.959
Cog PGI x Age −0.096 [−0.223, 0.031] 0.138 −0.162 [−0.279, −0.044] 0.007

Note: Bold indicates a significant interaction effect between Cog PGI and age on the cognitive domains.

8. Discussion

We tested whether the polygenic index (PGI) moderated the relationship between
age and performance on neuropsychological tests of four specific domains of cognitive
functioning (memory, fluid reasoning, speed of processing, and vocabulary) in a sample
of adults ranging in age from 23 to 77. We found that the general-cognitive-ability PGI
was a moderator between age and three cognitive domains—memory, fluid reasoning, and
vocabulary. Higher levels of the PGI displayed a greater negative association between age
and performance in memory and fluid reasoning while higher levels of PGI weakened the
positive relationship between age and vocabulary. Furthermore, the association of PGI
with memory, reasoning, and vocabulary was stronger in younger adults and weaker in
older adults, suggesting that processes of cognitive aging disrupt the connection between
neuropsychological test performance and genetics, as represented by the PGI for general
cognitive ability PGI.

The stronger association of PGI with cognitive domains in younger and middle-aged
adults suggests that genetic influences on cognition may vary with age. It is possible that
age-related differences in the association between PGI and cognitive domains might reflect
underlying developmental processes. Cognitive abilities typically undergo significant
changes during early and middle adulthood, with different abilities peaking at different
stages. In particular, fluid reasoning tends to peak in early adulthood [29] while vocabulary
skills may continue to develop and improve throughout the lifespan [30]. Thus, the
observed stronger association between PGI and cognitive performance in younger and
middle-aged adults could reflect the influence of genetic factors during critical periods of
cognitive development.
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The link between PGI and cognitive performance was weaker in advanced ages, even
after adjusting for brain measures, suggesting that the contribution of other factors, such as
environmental/lifestyle factors, is more important in maintaining normal cognitive function
as we get older. Importantly, our cohort consisted of cognitively healthy individuals and
as such, the PGI effect on performance was not confounded by the appearance of age-
related disorders. However, our results could be because of a subclinical age-related
change, where cognitive symptoms are not distinct yet. There are a number of factors that
could explain the weaker association of PGI in older ages. First, other genes may become
more influential on cognition as we age. Secondly, as we grow age-related pathology
accumulates in the brain that may not surpass the critical threshold for appearance of
cognition-related disorder but still affect cognitive performance during normal aging [31].
Moreover, genetic variation influencing cognitive abilities may contribute to the lifelong
cultivation of cognitive reserve that may modify the relationship between brain pathology
and expected cognitive performance [32]. Thus, future longitudinal studies with available
neuroimaging data and cognitive evaluation should examine these hypotheses for further
insight into the etiology and causation of the link among cognition, genetics, and brain
aging. However, it could also be that the attenuated association in older people reflects a
kind of selection bias wherein people whose genes contribute to poor cognitive performance
are screened out.

Genes associated with cognition are highly expressed in the brain and are implicated in
nervous-related pathways and synaptic structure [33]. The expression profile of cognitive-
related genes is altered during aging and these changes may affect the overall functioning
of the brain and contribute to age-related changes [34]. Some genes involved in synaptic
plasticity, neurotransmission, and neuronal function may be downregulated, while oth-
ers associated with neuroprotection and repair mechanisms may be upregulated [34,35].
Likewise, the changes observed in the brain during aging could also interact with the
mechanisms of PGI, potentially modifying its impact on cognitive abilities.

The present study has significant strengths. First, it uses not only a general, short
cognitive scale for the cognitive evaluation of the participants, but it includes an extensive
neuropsychological battery. Thus, the categorization into cognitive domains is easier, which
provides specific information about the cognitive status of each participant. Further, the
use of brain measures was another strength of the study, since it provides insight into the
association between cognition and genetics in normal aging. However, the small sample
size of our study was the main limitation.

Understanding the influence of genetics on cognition in a domain-specific and time-
dependent manner is crucial in gaining insights into the mechanisms influencing cognitive
performance. Furthermore, the PGI holds the potential to serve as a valuable tool for iden-
tifying individuals who are at a heightened genetic risk of experiencing cognitive decline
as they grow older. Early identification of individuals more susceptible to age-related
cognitive disorders, may allow the implementation of preventive measures and targeted
interventions at an earlier stage. This may include lifestyle modifications, cognitive train-
ing, or the use of pharmacological interventions to potentially delay or mitigate cognitive
decline. Towards personalized medicine, the PGI could aid in developing personalized
treatment plans based on an individual’s genetic risk profile. This approach could allow for
tailored interventions and therapies that take into account an individual’s specific genetic
vulnerabilities, potentially leading to more effective and precise treatment outcomes [36].
Another important implication is in the field of clinical trials where the PGI could assist
in stratifying individuals based on their genetic risk and allow researchers to assess the
effectiveness of interventions and potential treatments across different risk groups [37].

Author Contributions: A.T.: study design, writing, review. M.G.: statistical analysis, writing, review.
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read and agreed to the published version of the manuscript.



Genes 2023, 14, 1814 9 of 10

Funding: This study was supported by the National Institute of Aging (K01AG051777, K99AG071930,
R01AG026158, R01AG038465, and R01AG062578).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Columbia University.

Informed Consent Statement: All participants have signed an informed consent.

Data Availability Statement: Data are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haworth, C.M.; Wright, M.J.; Luciano, M.; Martin, N.G.; de Geus, E.J.; van Beijsterveldt, C.E.; Bartels, M.; Posthuma, D.; Boomsma,

D.I.; Davis, O.S.; et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol.
Psychiatry 2010, 15, 1112–1120. [CrossRef]

2. Fricke-Galindo, I.; Pérez-Aldana, B.E.; Macías-Kauffer, L.R.; González-Arredondo, S.; Dávila-Ortiz de Montellano, D.; Aviña-
Cervantes, C.L.; López-López, M.; Rodríguez-Agudelo, Y.; Monroy-Jaramillo, N. Impact of COMT, PRODH and DISC1 Genetic
Variants on Cognitive Performance of Patients with Schizophrenia. Arch. Med. Res. 2022, 53, 388–398. [CrossRef]

3. Mollon, J.; Knowles, E.E.M.; Mathias, S.R.; Gur, R.; Peralta, J.M.; Weiner, D.J.; Robinson, E.B.; Gur, R.E.; Blangero, J.; Almasy,
L.; et al. Genetic influence on cognitive development between childhood and adulthood. Mol. Psychiatry 2021, 26, 656–665.
[CrossRef]

4. Pietropaolo, S.; Crusio, W.E. Genes and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 345–352. [CrossRef]
5. Riaz, M.; Huq, A.; Ryan, J.; Orchard, S.G.; Tiller, J.; Lockery, J.; Woods, R.L.; Wolfe, R.; Renton, A.E.; Goate, A.M.; et al. Effect of

APOE and a polygenic risk score on incident dementia and cognitive decline in a healthy older population. Aging Cell 2021, 20,
e13384. [CrossRef]

6. Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D.
Genome-wide association studies. Nat. Rev. Methods Prim. 2021, 1, 59. [CrossRef]

7. Becker, J.; Burik, C.A.P.; Goldman, G.; Wang, N.; Jayashankar, H.; Bennett, M.; Belsky, D.W.; Karlsson Linnér, R.; Ahlskog, R.;
Kleinman, A.; et al. Resource profile and user guide of the Polygenic Index Repository. Nat. Hum. Behav. 2021, 5, 1744–1758.
[CrossRef]

8. Tsapanou, A.; Mourtzi, N.; Gu, Y.; Habeck, C.; Belsky, D.; Stern, Y. Polygenic indices for cognition in healthy aging; the role of
brain measures. Neuroimage Rep. 2023, 3, 100153. [CrossRef]

9. Small, S.A.; Stern, Y.; Tang, M.; Mayeux, R. Selective decline in memory function among healthy elderly. Neurology 1999, 52, 1392.
[CrossRef]

10. Shafto, M.A.; Tyler, L.K. Language in the aging brain: The network dynamics of cognitive decline and preservation. Science 2014,
346, 583–587. [CrossRef]

11. Habeck, C.; Gazes, Y.; Razlighi, Q.; Steffener, J.; Brickman, A.; Barulli, D.; Salthouse, T.; Stern, Y. The Reference Ability Neural
Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults. Neuroimage 2016,
125, 693–704. [CrossRef]

12. Stern, Y.; Habeck, C.; Steffener, J.; Barulli, D.; Gazes, Y.; Razlighi, Q.; Shaked, D.; Salthouse, T. The Reference Ability Neural
Network Study: Motivation, design, and initial feasibility analyses. Neuroimage 2014, 103, 139–151. [CrossRef]

13. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al.
PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575.
[CrossRef] [PubMed]

14. McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.;
et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016, 48, 1279–1283. [CrossRef]

15. Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [CrossRef]
16. Prive, F.; Vilhjalmsson, B.J.; Aschard, H.; Blum, M.G.B. Making the Most of Clumping and Thresholding for Polygenic Scores. Am.

J. Hum. Genet. 2019, 105, 1213–1221. [CrossRef] [PubMed]
17. Desikan, R.S.; Segonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman,

B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
interest. Neuroimage 2006, 31, 968–980. [CrossRef]

18. Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness,
S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33,
341–355. [CrossRef]

19. Yoon, Y.B.; Shin, W.G.; Lee, T.Y.; Hur, J.W.; Cho, K.I.K.; Sohn, W.S.; Kim, S.G.; Lee, K.H.; Kwon, J.S. Brain Structural Networks
Associated with Intelligence and Visuomotor Ability. Sci. Rep. 2017, 7, 2177. [CrossRef]

20. Ehrlich, S.; Brauns, S.; Yendiki, A.; Ho, B.C.; Calhoun, V.; Schulz, S.C.; Gollub, R.L.; Sponheim, S.R. Associations of cortical
thickness and cognition in patients with schizophrenia and healthy controls. Schizophr. Bull. 2012, 38, 1050–1062. [CrossRef]

https://doi.org/10.1038/mp.2009.55
https://doi.org/10.1016/j.arcmed.2022.03.004
https://doi.org/10.1038/s41380-018-0277-0
https://doi.org/10.1002/wcs.135
https://doi.org/10.1111/acel.13384
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/s41562-021-01119-3
https://doi.org/10.1016/j.ynirp.2022.100153
https://doi.org/10.1212/WNL.52.7.1392
https://doi.org/10.1126/science.1254404
https://doi.org/10.1016/j.neuroimage.2015.10.077
https://doi.org/10.1016/j.neuroimage.2014.09.029
https://doi.org/10.1086/519795
https://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/ng.3643
https://doi.org/10.1093/gigascience/giz082
https://doi.org/10.1016/j.ajhg.2019.11.001
https://www.ncbi.nlm.nih.gov/pubmed/31761295
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1038/s41598-017-02304-z
https://doi.org/10.1093/schbul/sbr018


Genes 2023, 14, 1814 10 of 10

21. Tuladhar, A.M.; Reid, A.T.; Shumskaya, E.; de Laat, K.F.; van Norden, A.G.; van Dijk, E.J.; Norris, D.G.; de Leeuw, F.E. Relationship
between white matter hyperintensities, cortical thickness, and cognition. Stroke 2015, 46, 425–432. [CrossRef] [PubMed]

22. Kloppenborg, R.P.; Nederkoorn, P.J.; Geerlings, M.I.; van den Berg, E. Presence and progression of white matter hyperintensities
and cognition: A meta-analysis. Neurology 2014, 82, 2127–2138. [CrossRef] [PubMed]

23. Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [CrossRef]
24. Schmidt, P.; Gaser, C.; Arsic, M.; Buck, D.; Förschler, A.; Berthele, A.; Hoshi, M.; Ilg, R.; Schmid, V.J.; Zimmer, C. An automated

tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012, 59, 3774–3783. [CrossRef]
[PubMed]

25. Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. Fsl. Neuroimage 2012, 62, 782–790. [CrossRef]
26. Moura, A.R.; Lee, S.; Habeck, C.; Razlighi, Q.; Stern, Y. The relationship between white matter hyperintensities and cognitive

reference abilities across the life span. Neurobiol. Aging 2019, 83, 31–41. [CrossRef] [PubMed]
27. Lin, H. Probing Two-way Moderation Effects: A Review of Software to Easily Plot Johnson-Neyman Figures. Struct. Equ. Model.

A Multidiscip. J. 2020, 27, 494–502. [CrossRef]
28. Bauer, D.J.; Curran, P.J. Probing Interactions in Fixed and Multilevel Regression: Inferential and Graphical Techniques. Multivar.

Behav. Res. 2005, 40, 373–400. [CrossRef] [PubMed]
29. Yu, F.; Ryan, L.H.; Schaie, K.W.; Willis, S.L.; Kolanowski, A. Factors associated with cognition in adults: The Seattle Longitudinal

Study. Res. Nurs. Health 2009, 32, 540–550. [CrossRef] [PubMed]
30. Yoon, J.A.; Kim, D.Y.; Sohn, M.K.; Lee, J.; Lee, S.G.; Lee, Y.S.; Han, E.Y.; Joo, M.C.; Oh, G.J.; Han, J.; et al. Factors associated with

improvement or decline in cognitive function after an ischemic stroke in Korea: The Korean stroke cohort for functioning and
rehabilitation (KOSCO) study. BMC Neurol. 2017, 17, 9. [CrossRef]

31. Walhovd, K.B.; Fjell, A.M.; Espeseth, T. Cognitive decline and brain pathology in aging--need for a dimensional, lifespan and
systems vulnerability view. Scand. J. Psychol. 2014, 55, 244–254. [CrossRef]

32. Pietzuch, M.; King, A.E.; Ward, D.D.; Vickers, J.C. The Influence of Genetic Factors and Cognitive Reserve on Structural and
Functional Resting-State Brain Networks in Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 30. [CrossRef]

33. Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Nagel, M.; Awasthi, S.; Barr, P.B.; Coleman, J.R.I.;
et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.
Nat. Genet. 2018, 50, 912–919. [CrossRef] [PubMed]

34. Lupo, G.; Gaetani, S.; Cacci, E.; Biagioni, S.; Negri, R. Molecular Signatures of the Aging Brain: Finding the Links between Genes
and Phenotypes. Neurotherapeutics 2019, 16, 543–553. [CrossRef]

35. Ham, S.; Lee, S.V. Advances in transcriptome analysis of human brain aging. Exp. Mol. Med. 2020, 52, 1787–1797. [CrossRef]
36. Cross, B.; Turner, R.; Pirmohamed, M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front.

Genet. 2022, 13, 1000667. [CrossRef]
37. Gao, Q.; Daunt, P.; Gibson, A.M.; Pither, R.J.; for the Alzheimer’s Disease Neuroimaging Initiative. Utility of Polygenic Risk

Scoring to Predict Cognitive Impairment as Measured by Preclinical Alzheimer Cognitive Composite Score. JAR Life 2022, 11, 1–8.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1161/STROKEAHA.114.007146
https://www.ncbi.nlm.nih.gov/pubmed/25572411
https://doi.org/10.1212/WNL.0000000000000505
https://www.ncbi.nlm.nih.gov/pubmed/24814849
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2011.11.032
https://www.ncbi.nlm.nih.gov/pubmed/22119648
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neurobiolaging.2019.08.024
https://www.ncbi.nlm.nih.gov/pubmed/31585365
https://doi.org/10.1080/10705511.2020.1732826
https://doi.org/10.1207/s15327906mbr4003_5
https://www.ncbi.nlm.nih.gov/pubmed/26794689
https://doi.org/10.1002/nur.20340
https://www.ncbi.nlm.nih.gov/pubmed/19606423
https://doi.org/10.1186/s12883-016-0780-3
https://doi.org/10.1111/sjop.12120
https://doi.org/10.3389/fnagi.2019.00030
https://doi.org/10.1038/s41588-018-0152-6
https://www.ncbi.nlm.nih.gov/pubmed/29942086
https://doi.org/10.1007/s13311-019-00743-2
https://doi.org/10.1038/s12276-020-00522-6
https://doi.org/10.3389/fgene.2022.1000667
https://doi.org/10.14283/jarlife.2022.1

	Introduction 
	Methods 
	Cognitive Tasks 
	PGI Calculation 
	Brain Measures 
	Statistical Analysis 
	Results 
	Discussion 
	References

