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Abstract: Biomarker-based cancer identification and classification tools are widely used in bioinfor-
matics and machine learning fields. However, the high dimensionality of microarray gene expression
data poses a challenge for identifying important genes in cancer diagnosis. Many feature selection
algorithms optimize cancer diagnosis by selecting optimal features. This article proposes an ensemble
rank-based feature selection method (EFSM) and an ensemble weighted average voting classifier
(VT) to overcome this challenge. The EFSM uses a ranking method that aggregates features from
individual selection methods to efficiently discover the most relevant and useful features. The VT
combines support vector machine, k-nearest neighbor, and decision tree algorithms to create an
ensemble model. The proposed method was tested on three benchmark datasets and compared
to existing built-in ensemble models. The results show that our model achieved higher accuracy,
with 100% for leukaemia, 94.74% for colon cancer, and 94.34% for the 11-tumor dataset. This study
concludes by identifying a subset of the most important cancer-causing genes and demonstrating
their significance compared to the original data. The proposed approach surpasses existing strategies
in accuracy and stability, significantly impacting the development of ML-based gene analysis. It
detects vital genes with higher precision and stability than other existing methods.

Keywords: cancer detection; machine learning; gene data; feature selection; voting classifier;
gene analysis

1. Introduction

Cancer, a fatal disease caused by various metabolic abnormalities and inherited dis-
eases, is one of the leading causes of death [1–3]. WHO reported that cancer is the first
or second leading cause of death before age 70 in 112 of 183 countries and the third or
fourth in 23 others [4]. For the majority of the prevalent kinds of cancer, there is a lack
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of effective medical treatment [5]. The microscopic examination of a tissue sample is a
common conventional method for diagnosing cancer, but it is time-consuming, expensive,
and occasionally yields unreliable results [6,7]. Other conventional methods rely on the
anatomical existence of tumors or factors derived from clinical examinations, but they
may produce results that are not precise [8]. Finding the differences among tumor cells
requires very highly skilled expertise. This process can be tedious, time-consuming, and
quite expensive. These limitations of the general framework lead to the development of
additional tumor classification criteria. The recent advancement of the microarray era has
inspired the use of gene expression data to analyze genes and detect cancers simultane-
ously [9]. In gene expression profiles, using microarray facts mixed with computation
approach evaluation is considered the most recent technique and process for reliable cancer
capability research and can predict more accurate outcomes [10]. From a single data point,
microarray operations generate much gene expression data [11]. The abundance of genetic
data now makes it possible to track the expression patterns of thousands of genes at once
in various experimental settings. In addition, by handling all of the gene information at
once, we can analyze it efficiently and accurately [12]. This allows for quick detection and
precise therapy, guaranteeing effectiveness and minimizing adverse medication effects [13].
Yet, the high dimensionality and relatively small sample sizes are significant issues of
microarray data [14]. Additionally, most microarray cancer data are noisy and might not be
particularly helpful in the cancer identification process [15]. Today’s fundamental research
problem is identifying the most important cancer-related genes and categorizing cancer
types more accurately and reliably [16,17]. The chosen genes aid in illness comprehension,
improve cancer classification performance, and lower the cost of medical diagnostics [18].
Hence, to reduce the dimension and redundancy of gene expression data during the classi-
fication process using ML, feature selection (FS) is a crucial step. An effective and reliable
feature selection approach accelerates classifier learning and overall detection performance.

Many studies [19–21] used various data mining, statistical, and machine-learning-
based methodologies to examine and analyze the cancer classification challenge since gene
expression data typically include a large number of genes. As a result, ML algorithms
used to classify cancer have become widespread, attracting researchers’ attention as an
emerging approach. Machine learning refers to designing and implementing models
and algorithms that enable a system to acquire more knowledge-based intelligence based
on prior experience or train data [22–24]. For example, machine learning’s standard
classification approach involves teaching a classifier to identify patterns from training data
and using the trained classifier to categorize unseen samples.

Ensemble techniques merge two or more well-researched strategies to formulate a new
approach to obtain a better predictive performance [25–27]. Ensemble learning has been
used in numerous recent research studies to tackle various data mining tasks, including
outlier identification and classification, and to devise ensemble-based feature selection
techniques. Among previous studies, the MIMAGA-Selection method was introduced
in [25] as an ensemble FS approach that combines mutual information maximization (MIM)
and an adaptive genetic algorithm (AGA). The MIMAGA-Selection technique reduced the
leukaemia datasets’ dimension and eliminated redundant data. The authors [25] evaluated
the performance of the MIMAGA-Selection algorithm concerning classification accuracy
using the leukaemia dataset. In addition, they compared the accuracy (97.62% ) of their
feature selection approach with other existing methods, including a backpropagation
neural network, SVM, extreme learning machine (ELM), and regularized ELM. Likewise,
Akadi et al. [28] ensembled minimum redundancy maximum relevance (mRMR) and a
genetic algorithm to explore genes related to colon cancer. They applied naive Bayes
classifiers and SVM to validate this method, and the model achieved 66.13% accuracy.
Salem et al. [29] used a different feature selection method, combining information gain and
a genetic algorithm. Genetic programming was then applied to the colon cancer dataset for
analysis and gained 85.48% accuracy. Several methods have been proposed in previous
studies that have yielded positive results. However, for example, when limiting the number
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of selected features to a specific number of genes prior to building the classifier, the majority
of literature claimed good results, ignoring the significant number of remaining genes that
a single selector algorithm, such as PCA, recursive feature elimination, Pearson correlation,
or ridge regression, could have neglected.

Many studies claimed that fewer genes would improve classification accuracy. How-
ever, the accuracy level still needs improvement. Therefore, an effective ensemble approach
is required to be devised, which might enhance the performance of a classification model.
To the best of our knowledge, no prior study has applied the ensemble feature selection
method using a ranking mechanism based on the frequency of features.

To address the aforementioned issues and improve the accuracy of cancer detection,
we focus on selecting essential features utilizing multiple algorithms rather than a single al-
gorithm. Firstly, we proposed a rank-based ensemble feature selection method that extracts
significant features from preprocessed data using different feature selection approaches,
including FSMs: PCA, recursive feature elimination, Pearson correlation, ridge regression,
and variance threshold. The proposed rank-based ensemble feature selection method aggre-
gates features provided by individual FSMs and then ranks them based on the frequency
of occurrences of a feature being selected by those FSMs. Secondly, a voting classifier was
proposed to achieve higher accuracy using different ML classifiers, such as KNN, DT, and
SVM. Extensive experiments were conducted to show the proposed method’s effectiveness.
The results of our method were compared with those of the existing single ML algorithms
and several built-in ensemble classifiers. Compared to raw data and individual feature
selection methods, the experimental results demonstrate that the proposed voting classifier
gives a more accurate prediction by selecting the features provided by the rank-based
ensemble feature selection approach. In summary, the key contributions to this study are
listed below:

• We proposed an effective rank-based ensemble feature selection approach as well
as an ensemble voting classifier model that can perform cancer classification with
substantially high accuracy.

• The rank-based ensemble feature selection approach selects the most influential and
relevant features that improve the cancer detection performance by utilizing several
feature selection techniques, namely PCA, recursive feature elimination, Pearson
correlation, ridge regression, and variance threshold.

• The ensemble classifier model was developed using an average weighted voting
classifier on several ML algorithms, including SVM, KNN, and DT, to enhance the
effectiveness of our model.

• Finally, the model was evaluated with three prominent cancer datasets. The perfor-
mance results show that our proposed method outperforms the existing works with
the selected features.

The remainder of the paper is arranged as follows: Section 2 provides a description
of microarray data and a review of the literature on ML-based cancer categorization.
Section 3 describes the proposed methodology, feature selection methods, and classification
algorithms adopted in the proposal. Section 4 presents the findings of the experiments
as well as a discussion. Finally, Section 6 concludes our research, its limitations, and
future efforts.

2. Preliminaries

As DNA microarray data are often quite large, it is vital to analyze them as soon as
possible. Clustering, gene recognition, classification, and gene regulatory network model-
ing are a few of the most important applications of DNA microarray data analysis. The
researchers utilized several machine learning and data mining approaches to implement
these. The challenge of gene identification has been solved using information theory [30].
The gene regulatory network modeling challenge has also been approached using Boolean
networks [31], Bayesian networks [32], and reverse engineering methods [33]. Fisher linear
discriminant analysis [34], decision tree, K-nearest neighbor, multi-layer perceptron [35–37],
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support vector machine [38,39], boosting, and self-organizing maps [40] are only a few
examples of ML techniques that have been employed in the past to classify gene expression
data. Several data mining techniques, such as ensemble classification [26], outlier identifica-
tion [41], and a few ensemble-based feature selection approaches [27], have used ensemble
learning in recent years. Next, a range of related works are discussed below that employed
various techniques for feature selection from the gene expression data.

Related Works

Machine learning is a popular topic for classifying cancer using microarray data.
Numerous algorithms and models are proposed and analyzed by researchers.

Khosro Rezaee et al. [42] proposed a methodology that combined the signal-to-noise
ratio, the Wilcoxon technique, and receiver operating characteristic in the feature selection
strategy to choose wrapper genes and rank them using the k-nearest neighbor algorithm.
Lymphoma, leukemia, and prostate cancer datasets were classified using stacked deep
neural networks and soft ensembling to find the most efficient gene subsets.

Matías Gabriel Rojas et al. [43] introduced two memetic micro-genetic algorithms. To
prevent altering the algorithm’s direction, the first strategy presents a new local search
method that affects fewer of the individuals’ genes. The second method adds a new local
search operator to execute a substantial variation in the structure of the exploited neigh-
borhoods, leading to a considerable perturbation over the chosen features of each solution.
Three classifiers, i.e., support vector machine, decision tree, and k-nearest neighbors, are
used for the classification of seven gene expression datasets.

Hongyu Pan et al. [44] reduced the search space for intricate feature selection issues
by using the ReliefF algorithm and Copula entropy as a prefiltering technique to rank
feature relevance at the beginning. A modified grey wolf optimization (GWO) algorithm
was proposed for feature selection, where a differential evolution algorithm was used to
expand the search space of standard GWO.

Amit Bhola et al. [9] gave an overview of numerous cancer categorization approaches
and compared and contrasted them in terms of classification precision, computing time,
and capacity to uncover knowledge about genomes. This comparison study used a total of
seven different categorization algorithms. Similarly, Sung-Bae Cho et al. [12] used three
datasets, i.e., leukemia, colon, and lymphoma cancer datasets, to rigorously assess the
performance of FSMs and ML classifiers, aiming to examine various features and classifiers.

AliReza Hajieskandar et al. [45] proposed the grey wolf algorithm, which was used
in the preprocessing phase to extract notable features, and deep learning was utilized
to improve the accuracy of detection of cancer using a deep neural network from three
datasets: LUAD (lung adenocarcinoma), STAD (stomach adenocarcinoma), and BRCA
(breast invasive carcinoma).

Lu Huijuan et al. [25] presented the MIMAGA-Selection method, which is a hybrid
FS method that combines mutual information maximization (MIM) and the adaptive
genetic algorithm (AGA). As compared with existing FS techniques, the MIMAGA-Selection
algorithm’s utility is proven by its classification accuracy rates. Similarly, Nimrita Koul
et al. [46] employed an ensemble FS approach to pick genes’ subsets from the colon cancer
dataset. They chose the best five, ten, twenty, and thirty genes using MI as the initial level
of gene classification and, as the second level of FS, kernel PCA. An RF classifier with four
depth was used to classify the data.

Wei Luo et al. [47] employed SVM to classify cancer. They developed a two-step
feature selection strategy that was mixed. To choose discriminatory traits, the first stage
employs a modified t-test approach. The second stage uses a modified t-test approach to
extract the main elements from the highest-ranking genes.

Murad Al-RajabI et al. [10] presented a framework for a two-stage multifilter hybrid
feature selection model for colon cancer classification. The model uses a combination of
information gain and a genetic algorithm to deal with feature selection. the next step is to
use the minimal redundancy maximum relevance (mRMR) strategy to filter and rank the
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genes. The data are further examined using correlated ML methods in the last phase. It
was found that DT, KNN, and NB classifiers showed promisingly accurate results using
the developed hybrid framework model.

Harikumar Rajaguru et al. [48] employed two ML algorithms, i.e., DT and KNN, for
the categorization of breast tumours. The Wisconsin Diagnostic Breast Cancer (WDBC)
dataset is used to verify these two machine learning techniques following feature selection
using principal component analysis. The two ML algorithms are compared using common
performance measures. The KNN classifier performs better than the DT classifier in the
classification of breast cancer according to the results of the comparison investigation.

In [49], Kesav Kancherl et al. suggested a model that made use of the recursive feature
elimination (RFE) approach, which is based on the support vector machine (SVM). They
achieved 87.5% accuracy.

Ashok-Kumar Dwived et al. [50] used an artificial neural network (ANN). The ANN
was also contrasted with five other ML methods. This study reports a significant classi-
fication accuracy of 98% utilizing the ANN, with no error in the identification of acute
lymphoblastic leukemia and just one error in the identification of acute myeloid leukemia
using a ten-fold cross-validation and leave-one-out technique.

Hajar Saoud et al. [51] evaluated how well the Bayes network (BN), SVM, KNN,
ANN, DTC, and logistic regression performed in the diagnosis of breast cancer in order to
determine whether this particular cancer is a benign or malignant tumor. The algorithms
are simulated with the WEKA tool using the Wisconsin breast cancer dataset from the UCI
machine learning repository. With an accuracy of 97.28%, the Bayes network and support
vector machine (SVM) algorithms produced the best results.

Reinel Tabares-Soto et al. [13] presented an empirical study that encompasses different
kinds of machine learning and deep learning algorithms. To categorize the tumors, they
contrasted commonly used methods in standard machine learning and deep learning. They
used the “11-tumor database”. For feature selection, PCA was utilized. Applying PCA as a
feature selection method and logistic regression as a classifier, they were able to accurately
identify tumors 94.29% of the time.

Table 1 presents different approaches to applying feature selection methods and
classifiers.

Table 1. Summary of related works.

Authors Dataset Feature Selection Methods (FSMs) Classifier Accuracy Rate

Murad Al-RajabI et al. [10] Colon Information Gain,
Genetic Algorithm, mRMR DT, KNN, NB 94.00%

Sung-Bae Cho et al. [12]
leukemia
Colon
Lymphoma

Information Gain,
Euclidean Distance,
Mutual Information,
Cosine Coefficient,
Signal-To-Noise Ratio,
Pearson’s and Spearman’s
Correlation Coefficients

Multilayer Perceptron
KNN
SVM

97.1%
93.6%
96.0%

Reinel Tabares Soto et al. [13] 11-tumor
dataset PCA LR 94.29%

Huijuan Lu et al. [25] leukemia MIM-AGA

Support vector machine,
Backpropagation neural network,
Extreme learning machine,
Regularized extreme learning machine

97.62%

AliReza Hajieskanda et al. [45]
STAD
LUAD
BRC

Grey Wolf Algorithm DNN
99.37%
99.87%
99.19%

Wei Luo et al. [47]
Lymphoma
SRBCT
Ovarian

T-test Approach SVM 100.00%

Ricvan Dana Nindre et al. [52] Breast Cancer T-test Approach SVM 90.00%

Ashok-Kumar Dwived et al. [50] leukemia - ANN 98.00%

Argin Margoosian et al. [53] tumor MSVM-RFE Ensemble-based KNN
Ensemble-based NB

85%
94%

Kesav Kancherl et al. [49] Lung RFE SVM 87.50%

Hajar Saoud et al. [51] Breast Cancer - Bayes Network
SVM

97.28%
97.28%

Harikumar Rajaguru et al. [48] Breast Cancer PCA DT
KNN

91.23%
95.61%
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3. Methodology

The main principle of our study is depicted as a schematic diagram in Figure 1. In
summary, the proposed methodologies comprise the following steps.

Figure 1. The methodology process is illustrated in a workflow diagram. (1) Preprocessing was
performed on three datasets, namely leukaemia, colon, and 11-tumor datasets. (2) Using different
FSMs, such as PCA, recursive feature elimination, Pearson correlation, ridge regression, variance
threshold, and also proposed rank-based ensemble feature selection, significant features were ex-
tracted. (3) Dataset was split into 70:30 train and test datasets. (4) Reduced dataset was trained using
ML classifiers, including KNN, DT, SVM, and the proposed voting ensemble classifier. (5) Further
voting classifier was compared with built-in ensemble classifiers such as AdaBoost, gradient boost
and random forest classifier. (6) Using different performance matrices, such as accuracy and confusion
matrix, the performance of the model was assessed and analyzed.

1. For the preprocessing of three experimental cancer datasets that were used in this
study, namely leukemia, colon, and the 11-tumor dataset, unnecessary columns,
missing values, and duplicate rows were removed, followed by label encoding and
normalization.

2. Next, significant and relevant features were extracted from the preprocessed data
using different feature selection methods (FSMs), such as PCA, recursive feature
elimination, Pearson correlation, ridge regression, and variance threshold, as well as
our suggested rank-based ensemble feature selection method, by integrating multiple
feature selection approaches.



Genes 2023, 14, 1802 7 of 24

3. Then, the data split was conducted with a 70:30 ratio between the train and test
datasets, with the training dataset serving as a calibration dataset for the model’s
parameters and the test dataset serving as an evaluation dataset for performance.

4. Then, the reduced dataset was evaluated using appropriate classification assessment
metrics for a variety of ML classifiers, including KNN, DT, SVM, and proposed voting
classifiers.

5. We further compared the proposed voting classifier with the built-in ensemble classi-
fiers such as AdaBoost (AB), gradient boost (GB), and random forest (RF).

In the following subsections, the proposed methodologies are described in detail.

3.1. Data Acquisition and Preprocessing

Several microarray datasets from cancer gene expression research that have been
released are available, including leukemia, colon, prostate, breast, 11-tumor, lymphoma,
and lung cancer dataset, etc. Among them, we used 3 different cancer datasets in our
study, i.e., leukemia cancer, colon cancer, and the 11-tumor dataset. These benchmark
datasets have been used in several earlier studies and contain high-dimensional data since
the number of characteristics exceeds the number of samples [13]. After preprocessing the
data, we divided them into 70:30 train and test datasets, with the training dataset used
to calibrate the model’s parameters and the testing dataset used to evaluate performance.
Splitting comprises 50 samples for training and 22 samples for testing in the leukemia
dataset. Splitting comprises 43 training samples and 19 testing samples for the colon
dataset, and 121 training samples and 53 testing samples for the 11-tumor dataset.

Preprocessing is a crucial exploratory step for any analytical tasks, as it may be
inherently noisy. For this study, we conducted the preprocessing steps on the datasets,
including deleting extraneous columns, checking for missing values and duplicate rows,
and encoding labels in our experimental dataset. Some ML algorithms, such as SVM and
KNN, rely on the distance between the observations for accurate classification. Normalizing
the training data can enhance their performance considerably if the features represent
distinct physical units or come in wildly different scales. As a result, we have to preprocess
the data using scaling, which ensures that the values are within a reasonable range.

3.2. Proposed Rank-Based Ensemble Feature Selection Approach

Feature selection (FS) is a method for selecting the most important properties in any
predictive analysis to improve its performance. The primary goals of FS are to improve
predictive accuracy, remove unnecessary features, and minimize the time spent analyzing
the data. In that process, FS identifies the best subset of features that can be used to create
effective models of the phenomenon being examined. Thus, selecting relevant genes from
microarray data improves the accuracy of the cancer classification process. In this study, we
introduced a rank-based ensemble feature selection method that selects the most relevant
feature from different feature selection algorithms as shown in Figure 1.

We employed a variety of different feature selection methods, namely PCA, recursive
feature elimination (RFE), Pearson correlation (PC), ridge regression (RR), and variance
threshold (VRT), within the same dataset to select different subsets of the existing features.
Then, we aggregated the different subspace features selected by each of the selectors. Then,
the aggregated features were sorted according to their individual rankings. In any ensemble
scheme, the combination of partial results into a final output is a critical step in determining
success. It is common practice to combine the various features selected by the various
selectors. In our study, we applied three different approaches to select the N features from
all the aggregated features as follows:

• Ensemble-1 (E1): Select aggregated features with a frequency of occurrence greater
than one. That is the feature selected by at least two FS methods.

• Ensemble-2 (E2): Select aggregated features with a frequency of occurrence greater
than two. Thus, the feature is selected by at least three FS methods.
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• Ensemble-3 (E3): In the third approach, features selected by more than three FS
methods are chosen.

Algorithm 1 represents the overall procedure of the feature ensemble process. Initially,
the sub-feature sets S1, S2, S3 are set to 0. Then, for each of the selected features in the
aggregate feature, a rank is assigned. The number of feature selectors that select a particular
feature fi is set as the rank Ri of that feature.

Algorithm 1 Rank-based ensemble feature selection
Initialize each sub-feature set: S1 = 0, S2 = 0, S3 = 0.

1: for each feature fi ∈ {1, . . . , i} do
2: for each Feature Selector FSj ∈ {1, . . . , j} do
3: if fi == Selected then
4: Ri ← Ri + 1
5: end if
6: end for
7: end for
8: for each feature fi ∈ {1, . . . , i} do
9: if Ri ≥ 1 then

10: S1 ← S1 ∪ fi
11: end if
12: if Ri ≥ 2 then
13: S2 ← S2 ∪ fi
14: end if
15: if Ri ≥ 3 then
16: S3 ← S3 ∪ fi
17: end if
18: end for

This ranking process is depicted in lines 1–7 of Algorithm 1. Each of these features is
added to the sub-feature space S1, S2, or S3, depending on the importance of the features.
As the subset S1 contains the features that have been selected by at least one FS, the total
number of features in this subset exceeds that of any other. On the other hand, the subset
S3 contains a lower number of features. All these steps are described in lines 8–18.

3.3. Proposed Ensemble Voting Classifier for Cancer Detection

The ensemble voting classifier is an ML technique that learns from a group of models
and predicts an output class based on the output’s highest chance of being the desired class.
This classifier sums up the outcomes of each predictor that has been fed into the voting
classifier and guesses the output class with the most votes. As a second contribution, rather
than building multiple specialized models and evaluating their effectiveness, we created a
single ensemble classification model based on the ML classifiers, namely SVM, KNN, and
DT. This ensemble model is trained on the selected feature space described in the previous
subsection and evaluates its performance. Usually, the voting classifier can predict the
classification results based on the total number of votes cast for each predicted output. In
our ensemble model, we employed a weighted average (hard) voting classifier that is based
on the different weights of each classifier and combined the classification results of the base
classifiers to increase the performance and make a reliable prediction model. The weights
that we utilized in our ensemble models are 1, 2, and 3 based on the accuracy score of SVM,
KNN, and DT algorithms.

The voting ensemble classifier’s overall process is represented by Algorithm 2. Initially,
L is set to label tuples of each class with selected features, D is set to tuples for evaluation,
T is set to tuples for evaluation, and N is set to ML classifier. Then, for each ML classifier,
models are trained using labeled data. This process is depicted in lines 1–3. Then, for each
ML classifier, models are tested using testing data. This process is depicted in lines 4–6.
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Then, a weight is assigned to each ML classifier based on its accuracy value. This process
is depicted in lines 7–9. Eventually, for each set of test data, the predicted class is found
using each ML classifier and votes for classifiers are taken based on the weights assigned to
classifiers. At last, the output class is guessed based on the most votes. All these steps are
depicted in lines 10–15.

Algorithm 2 Majority voting ensemble classifier
Input:
- L: Labeled tuples for training of each class C with selected features.
- D: Set of tuples for evaluation.
- T: Set of tuples for testing.
- N: (ML1, ML2, ML3, . . . , MLN) Set of classifier ML algorithm.

1: for each ML classifier MLi ∈ {1, . . . , N} do
2: Train MLi using labeled data L
3: end for
4: for each ML classifier MLi ∈ {1, . . . , N} do
5: Test and evaluate MLi using testing data D
6: end for
7: for each ML classifier MLi ∈ {1, . . . , N} do
8: Assign weight of MLi based on the accuracy of MLi
9: end for

10: for each each test data ti ∈ {T} do
11: for each ML classifier MLi ∈ {1, . . . , N} do
12: Find the predicted class of ti
13: end for
14: Aggregate vote to ensemble based on the results
15: end for

3.4. Adopted Feature Selection Methods

Feature selection is used to either obtain a small number of features to avoid overfitting
or to prevent features from being redundant or irrelevant. Additionally, it is beneficial to
only include the most pertinent and practical data in machine learning training sets, which
significantly lowers expenses and data volume.

• Principal Component Analysis: In nature, cancer data sets have substantially large
dimensions. Hence, the number of features is reduced using the principal component
analysis (PCA) technique. PCA is an orthogonal linear transformation that converts
data to a new dimension system with the biggest variance of any projection of the data
falling on the first dimension (called the first principal component), the second-best
variance on the second dimension, etc. This method converts a set of observations of
possibly correlated variables into a set of uncorrelated variables known as principal
components via an orthogonal transformation [54]. The dimensions of various data
sets are reduced using this strategy.

• Recursive Feature Elimination (RFE): RFE is a popular method as it is simple to
implement and use and is effective in determining which features (columns) in a
train set are more or less helpful in determining the target variable. RFE assesses
the features by significance and returns the top-n features after removing the least
important ones, where n is the users’ input. To use it, the class with the estimator
argument is first set up by specifying the algorithm to use and the n_ f eatures_to_select
argument by specifying the number of features to select. To pick the features, the
class has to be suited to a training dataset using the f it() function after it has been
configured. In our study, we used the SVM algorithm as an estimator as well as setting
n_ f eatures_to_select to 5490 for the leukemia dataset, 1000 for the colon dataset, and
5500 for the 11-tumor dataset.
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• Pearson Correlation Coefficient: Pearson correlation and Spearman correlation are
both measures of association or correlation between two variables, but they serve
different purposes and have different strengths and weaknesses. The Pearson corre-
lation coefficient is preferred when the underlying assumption of the relationship is
considered to be linear. However, for the Spearman correlation, this assumption is
not mandatory, i.e., the variables could be non-linearly related. As we were interested
in finding a linear relationship, we used the former one, i.e., the Pearson correlation.
Moreover, the types of data that we were dealing with were continuous, which also
suits the Pearson correlation metric, whereas the Spearman correlation metric is suit-
able for ordinal, interval, or ratio data, which was not the case for us in this study.
Pearson correlation shows how closely two variables are related linearly. Features
with a strong association are more linearly dependent and hence affect the dependent
variable in a similar way. If there is a strong association between two traits, one of
them might be removed. Only metric variables are appropriate for PC. A correlation
coefficient r is a number that ranges from −1 to +1: near 0 means a low association (an
exact 0 implies no correlation); closer to 1 indicates a strong positive relationship; and
near −1 indicates a strong negative relationship. For feature X having values x and
classes C having values c, where X and C are viewed as random variables, Pearson’s
linear correlation coefficient is calculated as [55]:

r(X, C) = ∑n
i=1(xi − xi)(ci − ci)√

∑n
i=1(xi − xi)2 ∑n

j=1(xj − xj)2
(1)

In our study, we compared feature correlations and eliminated one of two features
with a correlation greater than 0.9 (leukemia and colon dataset) and 0.6 (11-tumor
dataset).

• Ridge Regression: Ridge regression is a prominent method for predicting data that
makes use of regularization. Overfitting is a problem that regularization aims to
solve. When there is a huge data collection with thousands of features and entries,
overfitting becomes an apparent problem. When the data contain features that are
certain to be more relevant and valuable, RR performs better. When a large number of
characteristics are included, it is commonly employed to create parsimonious models.
It applies L2 regularization, which entails adding a penalty equal to the square of the
coefficients’ magnitude. Thus, RR optimizes the following:

Objective = RSS + alpha× (total o f square o f coe f f icients) (2)

Here, RSS refers to the “Residual Sum of Squares”, which is nothing but the total of
the square of mistakes between the predicted and actual values in the training data set,
and alpha is the parameter that balances the degree of significance given to lessening
RSS vs. minimizing the total of the square of coefficients, where alpha can take various
values. In our study, we used alpha values of 0.3 (leukemia and 11-tumor datasets)
and 0.4 (colon dataset).

• Variance Threshold: A simple baseline technique for selecting features is the variance
threshold. It eliminates all features whose variance falls below a threshold value. All
zero-variance characteristics are removed by default; that is, characteristics that have
the same value across all samples. We feel that characteristics with a greater variance
include more important data. To apply the variance threshold feature selection method,
a variance threshold value (i.e., 0.1, 0.2 etc.) is chosen. The minimum variance that a
feature must have to qualify as informative is determined by this threshold. Choosing
the appropriate threshold value is crucial; a higher threshold retains only features
with higher variance, while a lower threshold retains more features. The choice should
align with the nature of the dataset. In our work, we have used different threshold
values for different datasets.
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3.5. Adopted ML Algorithm for Voting Classifier

We used three different classification algorithms. One of them, and the most popular
one, is k-nearest neighbors (KNNs). Another one is the support vector classifier (SVM),
which is a linear model that is quick to train, predict, and scale well across two datasets.
Also, we used a decision tree (DT) classifier, which is a constant data scaling model, unlike
linear approaches. To boost classification performance, we merged these classifiers with a
weighted voting classifier.

1. K-Nearest neighbors: For handling classification problems, the k-nearest neighbors
(KNNs) technique is a simple supervised ML algorithm. The KNN algorithm believes
that similar objects are close together. The KNN algorithm compares the k closest
data points in the training data set based on resemblance metrics to determine the
label of input data for a given new data [56]. In this system, the conclusion is selected
by a majority vote of its neighbors. Because it requires zero experience and builds
a fresh model for every experiment, this algorithm is one of the most efficient ML
algorithms available. If the number of instances in the input data set grows, testing
may become expensive. In our research, we only use one parameter in the model
creation. n_neighbors is set to 3, which means 3 neighborhood points are required for
classifying a given point.

2. Support Vector Machine: The support vector machine (SVM) was first presented
by [57]. SVM is a supervised learning algorithm that was first used for classification
and regression. The SVM creates hyperplanes that can be used for classification
to maximize the distance between classes. To put it another way, to make the gap
between the two categories as large as feasible, SVM translates training examples into
points in space. Following that, new examples are mapped into the same space and
categorized according to which side of the gap they land on. The kernel parameter
of SVM was set to ‘RBF’ (radial basis function) in our model. The RBF kernel works
by mapping the data onto a high-dimensional space by finding the dot products and
squares of all the features in the dataset and then performing the classification using
the basic idea of linear SVM.

3. Decision Tree Classifier: A decision tree is a supervised classifier that can be used
to solve regression and classification tasks. In this tree-structured classifier, internal
nodes reflect dataset properties, branches reflect decision rules, and each leaf node
delivers the judgment. In a decision tree, the process of deciding the class of a given
dataset begins at the tree’s root node. This method compares the values of the root
property to the values of the record (actual dataset) attribute, continues the branch,
and moves to the next node. The method compares the value of the property with
the values of the other sub-nodes before moving on to the next node. It continues in
this manner until it reaches the leaf node of the tree. The model is built using two DT
parameters, including randomstate, which is set to 0, and maximumdepth, which is set
to 2.

3.6. Built-In Ensemble Methods for Performance Comparison

To demonstrate the efficacy of the suggested voting ensemble classifier, the results of
the suggested voting ensemble classifier are compared with the following existing built-in
ensemble classifiers:

1. AdaBoost: Yoav Freund and Robert Schapire [58] proposed AdaBoost, or adaptive
boosting, as an ensemble boosting classifier in 1996. To enhance classification per-
formance, it mixes several classifiers. AdaBoost is an iterative ensemble creation
algorithm. By aggregating multiple low-performing learners, the AdaBoost classifier
builds a formidable classifier with substantially high precision. The main premise of
AdaBoost is to train the sample data and build the strength of the classifiers in each
step so that trustworthy predictions of unusual observations may be made. Using
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two AdaBoost parameters, the model is trained, including n estimators, which has a
value of 50, and randomstate, which has a value of 0.

2. Random Forest: Random forest [59] is an ensemble classifier that comprises several
decision trees and outputs a class, which is the mode of the class’s output by individual
trees. RFs generate a large number of classification trees without the need for trimming.
Each class in each classification tree receives a set number of votes. The algorithm
selects the category with the most votes from all of the trees. A random forest is an
efficient approach for large datasets. However, it is more time-consuming than other
methods. It can effectively estimate missing values, making it useful for datasets with
a large number of missing values. With the exception of the Gini impurity, the RF trees
used a number of DT parameters at default settings. However, two DT parameters
are used to create the model. The maximumdepth is set to 2, and the randomstate is
random, which is set to 0.

3. Gradient Boosting: Gradient boosting is an ML approach that can be used for regres-
sion and classification, among other applications. It provides a forecasting model in
terms of a group of poor estimation techniques, the most frequent of which are deci-
sion trees [60]. If a decision tree is a poor responder, the resulting strategy is known as
gradient-boosted trees, and it generally beats random forest [61]. A gradient-boosted
tree model is built in the same way as other boosting methods, but it varies in how it
can optimize any differentiable loss function. Like the RF tree, gradient boosting uses
a number of DT parameters at default settings. However, two DT parameters are used
to create the model, including maximumdepth with a value of 2, and the randomstate
is random, with a value of 1.

3.7. Evaluation Metrics

We employed different performance matrices to evaluate our hypotheses, which are
described below:

1. Accuracy Score: Accuracy measures how properly the classifier anticipates the
classes [62]. The average number of samples is correctly classified by the classifier.
The average fraction of correctly predicted samples out of total samples is

Accuracy =
Correctly Predicted Data

Total Testing Data
× 100% (3)

2. Confusion Matrix: The confusion matrix is a technique for assessing performance
in the form of a table that incorporates information about both actual and expected
classes. It is a two-dimensional matrix, with the rows representing the actual class and
the columns representing the predicted class. Figure 2 shows the confusion matrix.
For two or more classes, the matrix depicts actual and anticipated values. The expla-
nation of the terms of TP, FP, TN, and FN are:

• The total number of correct outcomes or forecasts where the actual class was
positive is known as true positive (TP).

• The total number of incorrect results or forecasts where the actual class was
positive is known as false positive (FP).

• The total number of correct outcomes or predictions where the actual class was
negative is known as true negative (TN).

• The total number of incorrect outcomes or forecasts where the actual class was
negative is known as false negative (FN).

3. AUROC Curve: The area under receiver operator characteristics (AUROCs) curve is
a graphical representation of a binary classifier’s performance across various classifi-
cation thresholds. It plots the true positive rate (sensitivity) against the false positive
rate (specificity) at different threshold settings. The curve’s shape offers a wealth
of information, including what we care about most for an issue, the expected false
positive rate, and the expected false negative rate. To be precise, lower false positives
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and higher true negatives are shown by lower values on the x-axis of the plot, and
higher values on the y-axis of the figure show higher true positives and lower false
negatives.

Figure 2. Confusion matrix.

4. Experimental Results Analysis

Nine separate datasets were created for each initial dataset during the FS. No FSM is
used in the first dataset; PCA is used in the second dataset; RFE is used in the third dataset;
PC is used in the fourth dataset; RR is used in the fifth dataset; VRT is used in the sixth
dataset; and an EFSM method is used in the remaining three datasets. Datasets were split
into 70 percent training data and 30 percent validation or testing data to train and evaluate
the performance of the models in each experiment. Several ML algorithms were employed
to compare the performance, including SVM, KNN, DT, and voting classifiers.

4.1. Dataset Description

1. Leukemia cancer dataset: The leukemia cancer dataset contains 72 samples with
7132 gene expression microarrays, where 47 samples have acute lymphoblastic
leukemia (ALL) and 25 samples have acute myeloid leukemia (AML). This dataset is
a binary dataset, where the classes are numbered from 0 to 1, each signifying a differ-
ent type of cancer. The gene expression measurements were taken from 63 samples
of bone marrow and 9 samples of peripheral blood. High-density oligonucleotide
microarrays were used to evaluate gene expression levels in these 72 samples [12].
The frequency of the number of classes in our test dataset is shown in Table 2.

2. 11-tumor dataset: The 11-tumor dataset contains 174 samples with 12,533 gene ex-
pression microarrays, where 27 samples have ovary cancer, 8 samples have bladder
cancer, 26 samples have breast cancer, 23 samples have colorectal cancer, 12 samples
have gastroesophageal cancer, 11 samples have kidney cancer, 7 samples have liver
cancer, 27 samples have prostate cancer, 6 samples have pancreas cancer, 14 samples
have adenocarcinoma cancer, and 14 samples have lung squamous cell carcinoma
cancer. The classes are numbered from 0 to 10, each signifying a different type of
cancer. This dataset is a multiclass dataset. The “11-tumor dataset” is freely available
online at [13]. The frequency of the number of classes in our test dataset is shown in
Table 2.

3. Colon cancer dataset: The colon cancer dataset contains 62 samples of colon epithelial
cells taken from colon cancer patients with 2000 gene expression microarrays, where
40 samples are colon cancer samples, i.e., abnormal samples, and 22 samples are
normal. Although the original data contained 6000 gene expression levels, 4000 were
deleted due to the lack of confidence in the measured expression levels [12]. Using
high-density oligonucleotide arrays, every sample was obtained from cancerous and
normal healthy regions of the colons of the same patients. This dataset is a binary
dataset. The classes are numbered from 0 to 1. The frequency of the number of classes
in our test dataset is shown in Table 2.
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Table 2. Dataset distribution.

Dataset Cancer Type Class Number of Patients

Leukemia ALL 0 47
AML 1 25

11-tumor Ovary 0 27
Bladder/Ureter 1 8
Breast 2 26
Colorectal 3 23
Gastroesophageal 4 12
Kidney 5 11
Liver 6 7
Prostate 7 26
Pancreas 8 6
Adenocarcinoma 9 14
Lung Squamous Cell Carcinoma 14 14

Colon Abnormal 0 40
Normal 1 22

4.2. Rank-Based Ensemble Feature Selection Process

The number of features selected by different feature selection methods, such as prin-
cipal component analysis (PCA), recursive feature elimination (RFE), Pearson correlation
coefficients (PCs), ridge regression (RR), variance threshold (VRT), and our suggested
rank-based ensemble feature selection method, such as ensemble 1 (feature selected by at
least two feature selection methods), ensemble 2 (feature selected by at least three feature
selection methods), and ensemble 3 (feature selected by more than three feature selection
methods), is presented in the following Table 3.

Table 3. Selected features.

Feature Selection Method
Number of Selected Features

Leukemia Dataset
(7132)

11-Tumor Dataset
(12,533)

Colon Dataset
(2000)

PCA 22 25 24
Recursive feature elimination 5490 5500 1000
Pearson correlation 6991 5611 1011
Ridge regression 3714 6342 1033
Variance threshold 2357 5585 980
Ensemble 1 6580 7528 1354
Ensemble 2 3919 3460 674
Ensemble 3 933 821 139

4.3. Experimental Results

As we stated earlier, the leukemia cancer dataset contains 72 samples with 7132 gene
expression microarrays, the colon cancer dataset contains 62 samples with 2000 gene expres-
sion microarrays, and the 11-tumor cancer dataset contains 174 samples with 12,533 gene
expression microarrays. At first, the classification capabilities of different individual feature
selection methods and classification algorithms were inspected for the classification of three
benchmark datasets. Table 4 and Figure 3 present the results of these inspections. From this,
in the leukemia dataset, we find that the voting classifier improves accuracy for RFE, PC,
and VRT, while the DT classifier has the highest classification accuracy. In the colon dataset,
the voting classifier improves accuracy for RR and VRT, while the SVM classifier has the
highest classification accuracy. In the 11-tumor dataset, the voting classifier improves
accuracy for RFE, PC, RR, and VRT, while the SVM classifier has the highest classification
accuracy.
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Table 4. Comparison of FSMs and classifiers using accuracy.

FSMs
Leukemia Dataset Colon Dataset 11-Tumor Dataset

SVM KNN DT Voting SVM KNN DT Voting SVM KNN DT Voting

Without FSM 72.73 90.91 86.36 95.45 84.21 84.21 78.95 89.47 13.21 84.91 67.92 90.57
PCA 81.82 81.82 90.91 90.91 89.47 89.47 73.68 89.47 60.38 84.91 50.94 84.91
RFE 68.18 81.82 90.91 95.45 84.21 84.21 89.47 89.47 69.81 71.69 67.92 86.79
PC 72.73 90.91 90.91 95.45 89.47 78.95 84.21 89.47 13.21 83.02 50.94 84.91
RR 81.82 77.72 90.91 86.36 89.47 78.95 68.42 94.74 64.15 67.92 58.49 75.47
VRT 68.18 86.36 90.91 95.45 84.21 78.95 78.95 89.47 13.21 86.79 73.58 90.57
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Figure 3. Comparison of FSMs and classifiers using accuracy.

Secondly, feature subsets selected by the proposed rank-based ensemble feature se-
lection method are classified using different individual classifiers and proposed voting
classifiers. Here, the classification accuracy value is treated as the primary objective to
demonstrate the effectiveness of the proposed rank-based ensemble feature selection meth-
ods. The accuracy value of this experiment is shown in Table 5 and Figure 4. It is observed
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that the voting classifier is better than others for our proposed ensemble E1 and E2 in the
leukemia dataset, E2 and E3 in the colon dataset, and E1, E2, and E3 in the 11-tumor dataset.
It can be observed that rank-based ensemble feature selection provides higher results than
a single feature selection algorithm for E2 in the leukemia dataset (100%) and for E1 in the
11-tumor dataset (94.34%). It can also be observed that SVM performs worse than other
classifiers. Yet, despite being trained on a significantly smaller feature set, our proposed
rank-based ensemble feature selection improves accuracy for the SVM classifier by E3 in
both leukemia and 11-tumor datasets. For all datasets, we assigned weights of 1, 2, and 3
based on the accuracy score of each ML algorithm.
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Figure 4. Comparison of FSMs and classifiers using accuracy.
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Table 5. Result analysis for rank-based ensemble feature selection using accuracy.

Ensemble-Based Feature Selection

Classifiers Leukemia Dataset Colon Dataset 11-Tumor Dataset

E1 E2 E3 E1 E2 E3 E1 E2 E3

Voting 95.45 100 86.36 89.47 94.74 84.21 94.34 92.45 84.91
SVM 68.18 68.18 86.36 89.47 84.21 78.95 13.21 69.81 75.47
KNN 86.36 86.36 77.27 84.21 84.21 63.16 84.91 75.47 69.81
DT 86.36 90.91 81.82 78.95 73.68 78.95 56.6 58.49 56.6

Eventually, to analyze the performance of the proposed voting classifier using rank-
based ensemble feature selection, we compared the proposed voting classifier with built-in
ensemble classifiers such as AdaBoost, gradient boosting, and random forest. We analyzed
the performance of each classifier using accuracy, precision, recall, and f1-score values.
The results of this experiment are presented in Figures 5–7. Our proposed voting classifier
improves E2 and E3 in the colon dataset and E1, E2, and E3 in the 11-tumor dataset. Hence,
the voting classifier outperforms other classifiers. Table 5 also shows that the applied voting
classifier provides an accuracy rate of 100% and 97% for E2 in leukemia and colon cancer
datasets, respectively, and 94% for E1 in the 11-tumor dataset.
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Figure 5. Comparison of voting and built-in ensemble classifiers using accuracy, precision, recall, and
f1-score in the leukemia dataset.
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Figure 6. Comparison of voting and built-in ensemble classifiers using accuracy, precision, recall, and
f1-score in the colon dataset.

Feature Selection Techniques

P
er

fo
rm

an
ce

 S
co

re
 (i

n 
%

)

0

25

50

75

100

Ensemble 1 Ensemble 2 Ensemble 3

Voting Classifier AdaBoost Gradient Random Forest

(a) Accuracy

Feature Selection Techniques

P
er

fo
rm

an
ce

 S
co

re
 (i

n 
%

)

0

25

50

75

100

Ensemble 1 Ensemble 2 Ensemble 3

Voting Classifier AdaBoost Gradient Random Forest

(b) Precision

Feature Selection Techniques

P
er

fo
rm

an
ce

 S
co

re
 (i

n 
%

)

0

25

50

75

100

Ensemble 1 Ensemble 2 Ensemble 3

Voting Classifier AdaBoost Gradient Random Forest

(c) Recall

Feature Selection Techniques

A
cc

ur
ac

y 
S

co
re

 (i
n 

%
)

0

25

50

75

100

Ensemble 1 Ensemble 2 Ensemble 3

Voting Classifier AdaBoost Gradient Random Forest

(d) F1-score

Figure 7. Comparison of voting and built-in ensemble classifiers using accuracy, precision, recall, and
f1-score in the 11-tumor dataset.

Figure 8 shows the confusion matrix for the best results for all datasets, where we can
obtain high true positive and negative rates and low false positive and negative rates. It can
be observed that the proposed E3 FSM can predict all ALL and AML samples with no errors
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in the leukemia dataset, whereas the proposed E2 FSM has just one incorrect classification
in the colon dataset and the proposed E1 FSM has just a few incorrect classifications.

(a) Leukemia Dataset (b) Colon Dataset

(c) 11-Tumor Dataset

Figure 8. Confusion matrix with best results for different datasets.

Figure 9 shows the AUROC curve of the testing dataset for SVM, KNN, DT, and voting
classifiers with the highest performance for the leukaemia, colon, and 11-tumor datasets.
Also, it provides us with AUC values for models. The higher the AUC values, the better
the model’s performance at distinguishing between the positive and negative classes. The
AUC scores for the SVM, KNN, DT, and voting classifier in the leukaemia dataset are 0.50,
0.862, 0.895, and 1.0. In the colon dataset, the AUC scores for the SVM, KNN, DT, and
voting classifier are 0.90, 0.90, 0.742, and 0.962, respectively. In the 11-tumor dataset, the
AUC scores for the SVM, KNN, DT, and voting classifier are 0.766, 0.836, 0.724, and 0.932,
respectively. As the AUC score for the voting classifier is the maximum score in terms of all
datasets, it is better than others.
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(a) Leukemia Dataset (b) Colon Dataset

(c) 11-Tumor Dataset

Figure 9. AUROC curve with best results for different datasets.

5. Discussion

Cancer classification using gene expression data is still an active area of research,
where a number of proposed methods have yielded satisfactory results.

Earlier, several research studies suggested procedures to select genes and optimize
classification accuracy. Some of these techniques used the memetic micro-genetic [43] and
ReliefF algorithm and Ccpula entropy as a prefiltering method and a modified gray wolf
optimization algorithm for feature selection [44], while others utilize the signal-to-noise
ratio, Wilcoxon method, and receiver operating characteristic to select genes and a stacked
deep neural network as a classifier [42]. All of the techniques employ gene selection to
enhance classification accuracy. However, the rank-based ensemble technique for feature
selection and classification has been an unexplored option.

Our proposed methodology can choose a subset of informative features and provide
an accurate prediction using the selected features. It is noteworthy that prior algorithms
had already chosen the feature but had omitted considering the bare minimum of genes that
were truly beneficial. Our simulation research examined the effectiveness and prediction
accuracy of the proposed model under several scenarios. We applied the proposed method
to some public gene expression data and the results show that the proposed method can
appropriately classify various samples based on gene expression. Finally, we compared the
proposed voting classifier with built-in ensemble classifiers to examine their performance.
For each classifier, we analyzed the performances using accuracy, precision, recall, and
f1-score values. We find that our proposed voting classifier outperforms other classifiers.

6. Conclusions

Cancer is one of the major causes of death for living beings, necessitating early de-
tection, diagnosis, and medication to keep the disease under control. ML algorithms are
potential tools for detecting cancer and its type from complex datasets like microarrays.
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This paper presents an ensemble-based methodology for cancer classification based on
three publicly available benchmark datasets, i.e., leukemia, colon, and 11-tumor. We exam-
ined three ML algorithms and six feature selection approaches, including our proposed
methodology. The proposed ensemble feature selection method integrates several feature
selection techniques, namely PCA, recursive feature elimination, Pearson correlation, ridge
regression, and variance threshold, to find the most relevant features and improve cancer
detection performance. Furthermore, the proposed ensemble weighted average voting
classifier was built with the help of a combination of SVM, KNN, and DT machine learning
algorithms to enhance the effectiveness of our model. The performance of these approaches
in terms of widely used classification performance metrics was evaluated. The proposed
model (Table 6) performed the best, with a classification accuracy of 100%, 94.74%, and
94.3% in the voting classifier for leukemia, colon, and 11-tumor datasets, respectively.
Consequently, the proposed approach has an excellent overall performance for the three
datasets compared to the related research, as discussed in the results analysis section. The
proposal’s experimental results will help researchers to choose the optimal classification
approach for specific bioinformatics challenges. However, the proposed approach has some
limitations. We did not take into account any oversampling or undersampling techniques
for data balancing. Additionally, we did not tune the parameters of our models and we
did not explore sophisticated deep-learning-type models in our research. Therefore, future
studies will focus on resolving these limitations, i.e., evaluating the performance of the pro-
posed algorithm while taking into account the oversampling and undersampling strategies,
assessing the performance of the proposed algorithm while using different kinds of more
robust data, and testing the impact of different parameters on the proposed algorithms.

Table 6. Comparison of proposed model.

Dataset Reference Methodology Accuracy

Leukemia [50] Artificial neural network 98%

[12]

Pearson’s and Spearman’s correlation coefficients,
Euclidean distance, cosine coefficient, MI, IG, and
signal-to-noise ratio as FSM and multilayer perceptron,
KNN, and SVM as classifier

97.1%

[25] A hybrid FSM that incorporates mutual information
maximization and adaptive genetic algorithm 96.96%

[63] Hybrid deep learning based on Laplacian score-CNN 99%

[43] Two novel memetic micro-genetic algorithms for feature
selection, KNN, SVM, and DT as classifier 96%

[42] Soft ensemble feature selection approach based on
stacked deep neural network 96.6%

Proposed methodology 100%

Colon [12]

Pearson’s and Spearman’s correlation coefficients,
Euclidean distance, cosine coefficient, MI, IG, and
signal-to-noise ratio as FSM and multilayer perceptron,
KNN, and SVM as classifier

93.6%

[25] A hybrid FSM that incorporates mutual information
maximization and adaptive genetic algorithm 89.09%

[64] PCA as FSM and genetic algorithm and ANN as classifier 83.33%

[29] IG and standard genetic algorithm as FSM and genetic
programming as classifier 85.48%

[43] Two novel memetic micro-genetic algorithms and KNN,
SVM, and DT as classifier 89%

Proposed methodology 94.74%

11-Tumor [13] PCA as FSM and logistic regression as classifier 94.29%

[44] ReliefF algorithm and copula entropy as FSM based on
modified gray wolf optimization 89.75%

Proposed methodology 94.34%
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