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Abstract: Up to 30% of breast cancer (BC) patients will develop distant metastases (DM), for which
there is no cure. Here, statistical and machine learning (ML) models were developed to estimate the
risk of site-specific DM following local-regional therapy. This retrospective study cohort included
175 patients diagnosed with invasive BC who later developed DM. Clinicopathological information
was collected for analysis. Outcome variables were the first site of metastasis (brain, bone or visceral)
and the time interval (months) to developing DM. Multivariate statistical analysis and ML-based
multivariable gradient boosting machines identified factors associated with these outcomes. Machine
learning models predicted the site of DM, demonstrating an area under the curve of 0.74, 0.75,
and 0.73 for brain, bone and visceral sites, respectively. Overall, most patients (57%) developed
bone metastases, with increased odds associated with estrogen receptor (ER) positivity. Human
epidermal growth factor receptor-2 (HER2) positivity and non-anthracycline chemotherapy regimens
were associated with a decreased risk of bone DM, while brain metastasis was associated with
ER-negativity. Furthermore, non-anthracycline chemotherapy alone was a significant predictor of
visceral metastasis. Here, clinicopathologic and treatment variables used in ML prediction models
predict the first site of metastasis in BC. Further validation may guide focused patient-specific
surveillance practices.

Keywords: breast cancer metastasis; machine learning; prediction models; metastatic patterns

1. Introduction

As many as 30% of breast cancer (BC) patients will develop distant relapse following
primary treatment, and this is dependent on the stage and BC subtype [1]. Despite signifi-
cant progress in cancer therapies to improve cure rates and prolong survival, metastatic BC
portends poor prognostic outcomes; the median survival interval is estimated as early as
18 months from the time of progression [1–4]. Several clinicopathological characteristics
have been studied for their association with developing distant metastasis (DM) [5–11].
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Patients with triple-negative BC (TNBC) exhibit a greater prevalence of DM with the earliest
recurrences compared to those patients with human epidermal growth factor receptor-2
(HER-2)-enriched BCs [12]. In comparison, estrogen receptor-positive (ER+) BC demon-
strates prolonged latency periods for DM. Previous studies have shown the most common
first site of DM for ER+ BCs involves the bones, whereas ER-negative (ER−) BCs tend
to recur more often in the viscera, particularly the brain and lungs [13]. Despite known
factors for developing DM, there are limited models to predict the site of DM based on
clinicopathologic and treatment information [14]

The addition of adjuvant radiotherapy to breast conservation or mastectomy has
improved disease-free survival and local–regional recurrence risk in early-stage BC [15,16].
This is based on eliminating residual or microscopic disease following bulk excision of the
primary lesion and involved lymph nodes. However, a fraction of patients will develop
distant relapse even without local recurrence, and this mechanism is still poorly understood.
Several biological processes have been proposed, including linear, parallel and branching
models of metastatic dissemination [17]. Linear progression models describe a stepwise
pattern, whereas recent data favor parallel dissemination that confers early and immediate
changes in the tumor microenvironment, liberating tumor cells into circulation [17]. The
branched model describes tumor cell genomic alterations supporting distant coloniza-
tion [17]. In BC, metastatic lineage can be traced to the translocation of freed tumor cells
into lymphatic or circulatory vessels that evade detection [18]. Currently, the initialized
timing and likelihood of DM at a specific site remain unknown, and there is a need to better
characterize metastatic BC patterns in the clinic.

Machine learning (ML) in oncology has undergone tremendous growth, potentially
allowing for personalized care in BC [19,20]. ML in conjunction with a better understanding
of clinicopathological risk factors and current breast cancer therapies have the potential
to identify patients that require more intense clinical monitoring and further establish
individualized surveillance guidelines, including adaptive follow-up imaging. Here, we
report an analysis of BC clinicopathological characteristics using current systemic therapy
and radiation treatment regimens associated with the time to and first single site of DM
using statistical and ML methods.

2. Materials and Methods
2.1. Cohort and Dataset

The institutional research ethics board approved this study. This retrospective study
evaluated 416 BC cases at a single institution between February 2007 to August 2017.
This study aimed to evaluate the factors associated with the first site of DM; thus, all
patients included for analysis developed DM following standard treatments during a
10-year follow-up interval period.

Patient cases were screened for inclusion in the study using the institutional electronic
medical records (EMRs) system. All patients received upfront surgery and postoperative
radiotherapy. Selected patients received adjuvant systemic treatments according to the
discretion of the treating medical oncologist. Both male and female patients were included
in the initial data extraction. However, since male BC constitutes only 1% of all diagnoses,
there were limited case numbers with metastatic progression and these were subsequently
excluded from the final analysis. The age at diagnosis was retrieved for all women; patients
between 18 to 80 years of age were included in the study to permit follow-up after treatment
to diagnose DM. Once all exclusion criteria were implemented, the remaining analysis
cohort comprised 175 patients (Figure 1).

Distant metastasis was radiologically confirmed under standard imaging protocols
using computed tomography (CT) of the chest, abdomen, pelvis and head, or magnetic
resonance imaging (MRI). Osseous metastatic involvement was also diagnosed using
conventional Tc-99 m scintigraphy (bone scan). Only patients with a single metastatic site
(i.e., bone, visceral or cranial lesion) at the time of progression were included for analysis
(i.e., synchronous metastatic diseases were excluded). Those with locally recurrent disease
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at the time of metastasis were also excluded. This approach was implemented to meet
the primary endpoint of modeling the first site of distant metastases using statistical and
ML measures. Medical imaging assessments for the presence of DM were performed and
reported by a board-certified radiologist. All data were extracted from EMRs.
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Figure 1. Flow chart displaying patient inclusion/exclusion criteria. Once patients with missing data
were removed from the original cohort (n = 416), the remaining patients were excluded in order of
clinical, treatment and pathological data. The final cohort for our study consisted of 175 patients.
Abbreviations: chemo—chemotherapy; IDC—intraductal carcinoma.

2.2. Clinicopathological Variables

Diagnostic information on the primary BC was collected, including laterality, Not-
tingham grade, biomarker status and histological type. Only patients with invasive ductal
carcinoma (IDC) were included for analysis. Other histological types, such as invasive
lobular carcinoma, were excluded due to variances in metastatic patterns and treatment
response profiles [21]. Patients who also presented with de novo metastatic disease or devel-
oped distant relapse during adjuvant therapy were excluded. A board-certified pathologist
specializing in BC completed all pathologic reviews.

Synoptic pathology information was collected from surgical specimens for each patient.
Final pathologic characteristics included type of surgery (lumpectomy vs. mastectomy),
tumor size, nodal status, Nottingham grade (G1-3), lymphovascular invasion (LVI) and
receptor status (ER, progesterone receptor (PR), and HER2). Staging information was
captured for each patient according to the American Joint Cancer Committee (AJCC), eighth
edition [22]. ER, PR and HER2 receptor status was assessed using immunohistochemistry
(IHC) in accordance with the American Society of Clinical Oncology (ASCO) and College
of American Pathologists (CAP) guidelines [23,24]. HER2-equivocal (2+) tumors were
evaluated with fluorescence in situ hybridization assay (FISH).

The proliferative marker Ki-67 was not assessed as this was not part of the clinical care
standard within the study period. Thus, the receptor status and tumor grade were used
to define the following BC subtypes based on previous methods [25]: specifically, luminal
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A-like (ER+, PR+, HER2−), luminal B-like (ER+, PR+/−, HER2+ or HER2-negative but
G3), triple-negative (ER-, PR-, HER2-), or HER2-enriched (ER-, PR-, HER2+).

2.3. Treatment Characteristics

All included patients underwent surgery and adjuvant radiotherapy. Patients who un-
derwent breast-conserving surgery (BCS) with pathologic node-negative disease received
whole-breast radiation (50 Gy/25 fx or 4256 Gy/16 fx or 40 Gy/15 fx) using a standard tan-
gential field technique. Those with node-positive disease at the time of surgery underwent
local–regional radiation, i.e., breast and nodal fields, including the internal mammary chain
nodes, at the discretion of the treating radiation oncologist. Post-mastectomy radiation
(PMRT) was administered to patients with high-risk characteristics (e.g., triple-negative phe-
notype, LVI-positive, or positive tumor margins) and those who demonstrated pathologic
T3 tumors (chest wall only) or node-positive disease (local, regional treatment).

Boost treatments (breast or chest wall radiotherapy) were administered based on close
(<1 mm) or positive resection margins, patients who were ≤50 years old, or those patients
with several high-risk clinicopathologic features for local recurrence (e.g., triple-negative
phenotype, ≤40 years of age, close or positive margins). Radiation treatments were adminis-
tered using 3D-conformal forward-planning techniques, or intensity-modulated radiotherapy.

Adjuvant systemic therapy characteristics encompassed chemotherapy, endocrine
therapy and targeted therapy (e.g., trastuzumab for HER2+ BC). Chemotherapy regi-
mens were grouped as follows: anthracycline backbone alone (adriamycin [generic name:
doxorubicin]) and cyclophosphamide [AC]; 5-fluorouracil, epirubicin, cyclophosphamide
[FEC]); anthracycline–taxane backbone (AC followed by docetaxel [ACD]); AC followed
by taxol ([generic name: paclitaxel]) [ACT]; FEC followed by docetaxel [FECD]; FEC fol-
lowed by paclitaxel [FECT]; other (paclitaxel, docetaxel, capecitabine and docetaxel &
cyclophosphamide [TC]); unknown; or none. Moreover, endocrine therapies for patients
with hormone-positive BC included aromatase inhibitors and selective estrogen receptor
modulators (SERMs), unknown or none. Any patients who received nonstandard drug
therapy, neoadjuvant therapy or were involved in a clinical trial were excluded.

2.3.1. Clinical Endpoints

The outcome measures of the study were the first single site of distant relapse and
time to DM for each patient. Sites of metastases were classified as bone, brain and visceral.
Visceral disease included lung, liver, and organs of the mediastinum. Time to DM was
determined as the time (months) between initiating radiation therapy for the primary BC
and the diagnosis of DM.

2.3.2. Statistical Analyses

Descriptive statistics were calculated for all variables. Continuous measures were sum-
marized using the mean, median and standard deviations, whereas categorical measures
were summarized by frequency and percentages. The frequency and proportion of patients
were calculated according to clinicopathological characteristics in an overall analysis and
by outcome variable (Tables 1–3).

The classification outcome of the distant metastatic site (skeletal, brain, visceral) was
analyzed using logistic regression models. For skeletal and brain outcomes, bivariate
and multivariable modeling was carried out. For visceral metastases, a bivariate model
was developed given the limited number of cases, which did not allow for multivariable
modeling. Results of the logistic regression models were presented as odds ratios (OR) and
their associated 95% confidence intervals.

Prior to multivariable model development, the set of predictor variables of interest
was assessed for the presence of multicollinearity using tolerance statistics. A tolerance
value of <0.4 was used as the cut-off point to detect the presence of multicollinearity. In
such cases, only one member of a correlated set was retained for the multivariable model.
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Table 1. Clinicopathological characteristics including pre-surgical characteristics, surgical pathol-
ogy and adjuvant treatments. Chemotherapy treatments were grouped as follows: anthracycline
backbone alone (AC, FEC, FEC100), anthracycline–taxane backbone (ACD, ACT, FECD, FECT), other
(paclitaxel, docetaxel, capecitabine, TC) and unknown. Outcome variables of DM included the site of
DM and time to DM. Abbreviations: T stage—tumor size; N stage—nodal status; M stage—metastasis;
G1—Nottingham grade 1; G2—Nottingham grade 2; G3—Nottingham grade 3; SD—standard de-
viation; ER+—estrogen receptor-positive; PR+—progesterone receptor-positive; HER2+—human
epidermal growth factor-positive; LVI—lymphovascular invasion; NA—not available; TNBC—triple-
negative breast cancer.

Clinicopathological Characteristics Study Cohort (n = 175)

Pre-surgical Characteristics

Age

Mean Age ± SD (years) 55.6 ± 13.4

20–49 years 66 (38%)

≥50 years 109 (62%)

Laterality

Left 93 (53%)

Right 82 (47%)

Surgical Pathology Characteristics

Type of surgery

Lumpectomy 122 (69%)

Mastectomy 53 (30%)

T Stage

Mean size ± SD (mm) 31.52 ± 18.80

N Stage

N0 52 (30%)

N1 64 (37%)

N2 36 (21%)

N3 23 (13%)

Nottingham Grade

G1 12 (7%)

G2 56 (32%)

G3 106 (61%)

NA 1 (1%)

Receptor Status

ER+ 112 (64%)

PR+ 109 (62%)

HER2+ 34 (20%)

Subtype

Luminal A 99 (57%)

Luminal B 20 (11%)

HER2-Enriched 14 (8%)

TNBC 49 (28%)

LVI Status

LVI- 69 (39%)

LVI+ 92 (53%)

NA 14 (8%)
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Table 1. Cont.

Clinicopathological Characteristics Study Cohort (n = 175)

Adjuvant Treatments

Chemotherapy (n = 135 (77%))

Anthracycline backbone alone 9 (5%)

Anthracycline–taxane backbone 101 (58%)

Other 10 (6%)

Unknown 15 (9%)

Endocrine Therapy (n = 103 (59%))

Aromatase Inhibitors 43 (25%)

Tamoxifen 47 (27%)

Unknown 13 (7%)

Trastuzumab 23 (13%)

Table 2. Outcome variables: the site of distant metastasis, and time to distant metastasis, are shown
according to population breakdown. Sites of distant metastasis were classified as bone, brain and
visceral (lung, liver, organs of the mediastinum) and time is presented in years.

Outcome Variables Study Cohort (n = 175)

Sites of Distant Metastasis

Bone Metastasis 99 (57%)

Brain Metastasis 55 (31%)

Visceral Metastasis 21 (12%)

Time to Distant Metastasis

≤1 year 22 (13%)

>1–≤2 years 40 (23%)

>2–≤3 years 33 (19%)

>3–≤4 years 21 (12%)

>4–≤5 years 22 (13%)

>5 years 37 (21%)

Table 3. Analysis of the outcome of days to first distant metastasis. A multivariate analysis was
conducted using Poisson regression models. All clinicopathological variables shown were signif-
icantly associated with time to distant metastasis (α = 0.05). Abbreviations: CI—confidence inter-
vals; ER+—estrogen receptor-positive; HER2—human epidermal growth factor 2; G1—Nottingham
grade 1; G2—Nottingham grade 2; G3—Nottingham grade 3; LVI—lymphovascular invasion; chemo—
chemotherapy; N0—nodal status 0 (0 positive nodes); N1—nodal status 1 (1–3); N2—nodal status 2
(4–9); N3—nodal status 3 (>10).

Contrast Estimate Results

Label Incidence Rate Ratio 95% CI p-Value

Age 0.99 [0.99, 0.99] <0.0001

Tumor size 0.99 [0.99, 0.99] <0.0001

ER+ 1.98 [1.96, 2.01] <0.0001

HER2+ 1.14 [1.12, 1.15] <0.0001

Grade 1 vs. 3 1.15 [1.13, 1.17] <0.0001

Grade 2 vs. 3 1.01 [1.00, 1.02] 0.0378

LVI 1.05 [1.04, 1.06] <0.0001

N1 vs. 0 0.69 [0.68, 0.69] <0.0001
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Table 3. Cont.

Contrast Estimate Results

Label Incidence Rate Ratio 95% CI p-Value

N2 vs. 0 0.86 [0.84, 0.87] <0.0001

N3 vs. 0 0.71 [0.70, 0.73] <0.0001

Anthracycline–taxane-based 1.57 [1.54, 1.60] <0.0001

Anthracycline-based 1.15 [1.14, 1.17] <0.0001

Other chemo 0.83 [0.81, 0.84] <0.0001

Poisson regression models were used to analyze the association between the clinico-
pathological characteristics and the number of days to metastasis. Results were presented
as incidence rate ratios and their associated 95% confidence intervals. All analyses were
conducted using SAS software Version 9.4 (SAS Institute, Cary, NC, USA) [26].

2.3.3. Machine Learning Classifiers

Several supervised ML models were considered for this study, including naive Bayes,
support vector machines (SVMs), k-nearest neighbors (K-NN), and gradient boosting
machines (GBM). Each model possesses its advantages and disadvantages in handling
medical data. For example, the naive Bayes is computationally fast and comprises simple
hyperparameter tuning but is limited in the assumption of independence between attributes,
which may reduce the predictive performance [27]. SVMs work well with linear and
nonlinear datasets but struggle with overlapping or noisy datasets that affect the accuracy
of building the hyperplane (decision boundary) [27,28]. K-NN algorithms are useful
in handling missing data within a sample. However, model performances are reduced
with highly dimensional datasets. K-NN algorithms also assume that the attributes are
equally weighted in importance, which may result in inaccurate estimates of the predicted
outcome [28].

Among the various ML algorithms, GBMs are attractive due to their versatility in
approaching classification or regression problems and handling both parametric and non-
parametric datasets. GBMs constitute an ensemble approach, using decision trees and
building upon weaker models to enhance the ensemble prediction [29,30]. A sequential
process of adding new weak learners at each iteration (i.e., boosting) is dependent on a loss
function and ultimately yields a more robust prediction estimate. Thus, GBMs are highly
flexible and customizable, attributing to their strengths to carry out prediction tasks. Newer
GBM models, such as the XGBoost, replace the sequential framework with a multi-threaded
approach, which enhances the computational speed to output a predicted outcome variable.
With these considerations, we approached our analysis using an XGBoost classifier based
on its flexibility to handle the various data types within the study cohort, the computa-
tional speed of the algorithm, and high potential of accurate predictions from the input
data frame.

Three gradient boosting machines (GBMs) with decision tree models were used to
predict the site of DM. The final ML models were developed and trained in the Python pro-
gramming language (3.8.10) using the Scikit-learn (0.23.2) and XGBoost libraries (1.4.0) [31].
Data were partitioned on the patient level into a training set (75%) and an independent test
set (25%) using a stratified K-fold approach [32]. Accordingly, 131 patients were used for
the training and validation of the models, and 44 patients were used as an unseen test set
for internal model validation. The missing values for LVI status (n = 14) and Nottingham
grade (n = 1) were imputed using the mode values of the training set. Continuous features
were scaled to zero and one using a min–max scaler before analysis. Scaling parameters
were calculated based on the values in the training set and applied to all samples. The
GBMs with decision trees were trained separately as a DM predictor for each site. A
five-fold cross-validation on the training set was used with hyperparameter tuning. The
hyperparameters were tuned as: (i) maximum depth of trees {‘max_depth’: 4}, (ii) maxi-
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mum number of boosting trees {‘n_estimators’: 500}, (iii) learning rate {‘eta’: 0.1}, (iv) L1
regularization term on weights {‘alpha’: 0.02}, (v) subsample ratio of the training instances
{‘subsample’: 0.9}, and (vi) negative-to-positive class ratio {‘scale_pos_weight’: 0.77}. The
contribution of each feature to the prediction model was calculated based on its importance
gain score. The features with the most significant contribution to the model that showed a
meaningful difference in importance gain score compared to the rest of the features were
identified in each cross-validation fold. A majority voting strategy was used to select the
features with the highest contribution to the prediction models, i.e., the selected features
in the optimal feature set were the ones identified in three or more folds out of five. A
class weighting strategy was utilized in the GBM models to address data imbalances in the
feature set [30]. The final prediction model for each DM site was trained with an associated
optimal feature set on the entire training set and evaluated on the independent test set
using accuracy, sensitivity, specificity and area under the receiver operating characteristic
(ROC) curve (AUC). A threshold value of 0.5 was used as the cut-off to calculate sensitivity
and specificity.

3. Results
3.1. Clinicopathological Characteristics

The clinicopathological characteristics of patients are presented in Table 1. The mean
age at diagnosis was 55.6 ± 13.4 years, with 66 patients (38%) under the age of 50 years.
The average tumor size was 31.5 ± 18.8 mm, with the largest proportion (n = 106 patients;
61%) of patients with pathologic T2 tumors. All patients had unifocal primary lesions.
Nodal status varied, with 30%, 37%, 21% and 13% of patients presenting with N0, N1,
N2 and N3 involvement, respectively. As for receptor status, 112 patients were ER+,
109 were PR+ and 34 were HER2+. Luminal A BC constituted the largest proportion
of patients (n = 99 patients; 57%). There were 20 patients with luminal B subtypes, 14
with HER2-enriched tumors and 49 women who presented with TNBC. Moreover, 77%
of the cohort received chemotherapy, 59% of patients underwent endocrine therapy and
23% were treated with anti-HER2-targeted therapy, trastuzumab. This cohort did not
include other targeted agents used, such as pertuzumab (HER2+), or immunotherapies,
including pembrolizumab.

The median follow-up period for all patients was 35 ± 29 months. Two outcomes for
subsequent classification were measured: (1) the first site of DM and (2) the time interval
between initial diagnosis and distant relapse (Table 2). The clinicopathological character-
istics of patients according to clinical outcome measures are presented in supplementary
Tables S1 and S2. There were 99 patients (57%) with bone DM, 55 women (31%) who de-
veloped brain DM and 21 (12%) cases identified with visceral DM. In addition, 22 patients
(13%) recurred at or before one year post diagnosis (after completing primary treatments),
40 (23%) in the second year, 33 (19%) in the third year, 21 (12%) in the fourth year, 22 (13%)
in the fifth year and 37 (21%) after more than five years. Furthermore, the distribution of
metastatic sites over time, the average time of metastasis to each site and site breakdown
according to BC subtype are displayed in supplementary Tables S3–S5.

3.2. Outcome Measures
3.2.1. First Site of Distant Metastasis

Odds ratio estimates for the association of clinicopathological characteristics with
bone, brain or visceral metastasis are shown in Figure 2. In multivariate analysis, the odds
of the first DM site being bone metastasis were significantly increased by ER positivity
(p < 0.0001; OR = 5.2, 95% CI 2.3–11.8) and N1 stage compared to N0 (p = 0.05, OR = 3.0, 95%
CI 1.4–6.4), as well as significantly decreased for patients positive for HER2 irrespective
of ER status (p = 0.04; OR = 0.4, 95% CI 0.2–0.98) and those that underwent the group of
“other” chemotherapy regimens, including paclitaxel, docetaxel and TC (p = 0.03; OR= 0.15,
95% CI 0.27–0.84). In contrast, ER+ patients had significantly lower odds of brain DM than
ER- (p = 0.0009; OR = 0.2, 95% CI 0.1–0.6), as did patients with N1 compared to N0 status
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(p = 0.03, OR= 0.4, 95% CI 0.15–0.97). In bivariate analysis, the chemotherapy regimens
grouped as “other” were the only significant predictor of visceral first DM site (p = 0.0001;
OR = 15.0, 95% CI 3.8–59.1).
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Figure 2. Odds ratios (OR) for bone, brain or visceral metastases according to clinicopathological
characteristics. Multivariate analyses were conducted to determine the ORs for developing bone (a)
or brain (b) metastasis according to clinicopathological characteristics. ER+ and N1 vs. N0 stage
were significantly associated with an increased risk of bone metastasis, whereas HER2+ and “other
chemo” were significantly associated with a decreased risk. ER+ was significantly associated with a
decreased risk of brain metastasis. (c) ORs for developing visceral metastasis were analyzed using
bivariate analysis, and no characteristics were significant. Abbreviations: chemo—chemotherapy;
N0—nodal status 0 (0 positive nodes); N1—nodal status 1 (1–3 positive nodes); N2—nodal status 2
(4–9 positive nodes); N3—nodal status 3 (greater than 10 positive nodes); HER2—human epidermal
growth factor 2; ER+—estrogen receptor-positive. (* indicates statistically significant, p = 0.05).

3.2.2. Time to Distant Metastasis

In a multivariate analysis using a Poisson regression model, all variables tested were
significantly associated with time to DM (Table 3). Each unit increase in age or tumor size,
as well as increased nodal stage (N) and Nottingham grade (G), demonstrated a decrease in
days to DM. In contrast, both ER+ and HER2+ patients showed greater latency periods to
DM compared to those with ER- and HER2- disease, respectively. Furthermore, the use of
anthracycline and anthracycline–taxane chemotherapies prolonged the time to metastasis.

3.3. Machine Learning Classification

The optimal feature sets and performance of the ML models developed for different
DM sites are presented in Table 4. The accuracies of prediction models on the training
and independent test sets range from 72% to 75% and from 70% to 75%, respectively. The
test sensitivity and specificity of the models are within the ranges of 60–72% and 68–77%,
respectively. The ROC curves obtained for the three models on the independent test set are
shown in Table 4. The test AUCs of the models were 0.75, 0.74 and 0.73 for predicting DM
in the skeletal, brain and visceral sites, respectively.
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Table 4. Results of distant metastasis prediction at different sites using clinicopathological features
on the training and test sets. The ROC curves of the test set for each corresponding site are dis-
played. The features included in each optimal biomarker are listed. Abbreviations: Acc—accuracy;
AUC—area under the curve; Sen—sensitivity; Spec—specificity; Tr—training; Val—validation;
Te—test; ER+—estrogen receptor-positive; PR+—progesterone receptor-positive; HER2+—human
epidermal growth factor 2-positive; T stage—stage of tumor size; N stage—stage of nodal status;
ROC—receiver operating characteristic.
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- Adjuvant tamoxifen
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- Adjuvant chemo
- Anthracycline–taxane

backbone (A.C.D., A.C.T.,
FECD, FECT)

- PR status
- HER2 status
- LVI status
- Mastectomy
- Adjuvant trastuzumab
- Aromatase inhibitors
- Adjuvant chemo
- OTHER chemo (paclitaxel,

docetaxel, capecitabine, TC)

- ER status
- LVI status
- Lumpectomy
- T stage
- N stage
- Nottingham grade
- Adjuvant trastuzumab
- Aromatase inhibitors

Tr Acc 0.72 0.75 0.73

Tr Sens 0.64 0.73 0.75

Tr Spec 0.73 0.78 0.72

Te Acc 0.70 0.75 0.70

Te Sens 0.60 0.71 0.72

Te Spec 0.72 0.77 0.68

Te AUC
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associated with the first site of DM and time interval in early-stage BC following local–
regional treatment. In correspondence to previous works, characteristics associated with 
a greater risk of metastasis overall include increased nodal stage, tumor size, Nottingham 
grade and presence of LVI [5–8,33]. Molecular and intrinsic subtypes, such as TNBC and 
HER2-enriched BCs, have also been shown to confer higher rates of distant relapse than 
luminal-type BCs [34]. Three separate GBMs, each comprised of several decision trees 
were developed in our study to predict each site of DM (bone, brain, visceral). GBMs were 
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the specific site of DM in our study, which agrees with previous studies; specifically, ER+ 
and HER2- BCs were significantly associated with an increased risk of bone as the first site 
of DM, whereas ER- BC was significantly associated with brain metastasis [13,36–38]. In-
terestingly, 71% of patients with visceral metastasis as their first DM site were under 50 
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4. Discussion

This study provides an analysis of clinicopathological and treatment characteristics
associated with the first site of DM and time interval in early-stage BC following local–
regional treatment. In correspondence to previous works, characteristics associated with a
greater risk of metastasis overall include increased nodal stage, tumor size, Nottingham
grade and presence of LVI [5–8,33]. Molecular and intrinsic subtypes, such as TNBC and
HER2-enriched BCs, have also been shown to confer higher rates of distant relapse than
luminal-type BCs [34]. Three separate GBMs, each comprised of several decision trees
were developed in our study to predict each site of DM (bone, brain, visceral). GBMs were
selected as classifiers due to their tendency to outperform random forests or ensemble
models, as at each step the tree is trained to correct existing errors, enabling the model to
capture more complex patterns [35]. Receptor status remained a significant predictor of
the specific site of DM in our study, which agrees with previous studies; specifically, ER+
and HER2- BCs were significantly associated with an increased risk of bone as the first
site of DM, whereas ER- BC was significantly associated with brain metastasis [13,36–38].
Interestingly, 71% of patients with visceral metastasis as their first DM site were under
50 years old in our study. In alignment with these findings, Frank et al. (2020) found that
younger patients had a higher propensity for visceral DM [5].
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Adjuvant systemic treatment was associated with variable outcomes. Patients treated
with non-anthracycline-containing chemotherapy, including paclitaxel, docetaxel, capecitabine
and TC, were significantly associated with decreased odds of bone metastasis. In contrast,
there was an increased odds for visceral metastasis and time to DM. Other factors associated
with an earlier interval to DM include node positivity, increased tumor size and grade;
these findings align with a study by Colzani et al. (2014) [36]. Other studies have shown
contrasting outcomes related to a decrease in time to metastasis per unit increase in age;
specifically, younger patients had a greater risk of developing metastasis sooner than older
patients [36]. Moreover, we found that ER+ and HER2+ increased the time to metastasis,
whereas ER-negative BCs tended to metastasize earlier. This is supported by previous
findings that indicate a heightened risk of metastasis for ER- patients within the first two
years after diagnosis, compared to ER+ patients, who have an increased risk later on [36,38].

Previous studies have aimed to train ML models to predict the likelihood of survival
of BC patients [39–42]. More recently, however, there has been an increasing interest in
predicting the risk of metastasis as well, as it is a hallmark of ultimately fatal disease
progression. For example, Song (2021) conducted a study using image-based features of BC
tumors obtained from positron emission tomography/computed tomography (PET/CT)
to predict the risk of axillary lymph node metastases in patients diagnosed with IDC [43].
Moreover, Tapak et al. (2019) compared the performance of various ML techniques to pre-
dict the risk of metastasis in BC patients. Similar to our study, they used clinicopathological
characteristics as predictor variables for DM, including age, grade, stage, receptor statuses
and different surgical approaches [44]. However, the outcome variable was generalized
as the overall risk of DM occurrence. Our study is novel as we aimed to identify both the
site- and time-specific risks of DM, which can potentially guide more focused surveillance
and screening for at-risk patients. Current ASCO guidelines encourage clinicians to indi-
vidualize clinical follow-up for their patients. Asymptomatic low-risk BC patients may
undergo a modified surveillance program involving less frequent screening intervals [45].
This may hinder the early detection of metastatic spread or prevention of metastasis for
each patient, as metastases often remain undetected until symptomatic or in circumstances
where organ function is affected. This often presents in late-stage organ invasion and yields
poorer prognostic endpoints [46,47]. Despite the need to individualize follow-up care,
clinical decision support tools to guide practices are limited. Due to the lack of validated
assays, metastatic onset remains elusive in the oncology clinic. However, several reports
have yielded regression-based nomograms [14,48–52]. For example, Ye and colleagues [52]
used data from the Surveillance, Epidemiology, and End Results (SEER) program to build
an LR-based nomogram to predict bone metastases only in BC patients. Clinical factors
included age, grade, histologic type, surgery of breast lesions and BC subtypes. The model’s
performance corresponded with an AUC = 0.689 from the internal validation set. Similar to
our study, Lim et al. evaluated the risk of distant failure in BC patients following radiother-
apy. Their nomogram accounted for clinicopathologic variables associated with metastatic
relapse, and all distal sites were grouped together in the analysis. The prognostic model
was built from a Cox regression model with a concordance index of 0.812 [49]. There is no
current clinician-based “gold-standard” to compare if these models outperform routine
clinical judgement, but they demonstrate promise in the development of a practical patient
decision support tool.

Existing clinical decision support tools are used to predict the risk of BC recurrence
and the putative benefit of adjuvant systemic treatment. A substantial body of work
has focused on exploiting genomic signatures, yielding assays such as Oncotype DX
(Genomic Health, Redwood City, CA, USA) [53], Mammaprint (Agendia BV, Amsterdam,
The Netherlands) [54], EndoPredict (Myriad Genetics Inc., Salt Lake City, UT, USA) [55]
and PAM50/Prosigna (NanoString Technologies, Seattle, WA, USA) [56]. The selection of
candidate genes was based on hormone receptor expression, HER2 signaling, proliferative
markers and clinical validation in patients with a low nodal burden [53–56]. These assays
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are limited to ER+ patients, who have distinct metastatic and relapse patterns compared to
triple-negative and HER2-positive BCs.

Risk stratification according to the specific site of DM may enable disease-specific
surveillance practices and treatments. This could involve modifications in the frequency of
surveillance imaging, ascertain the indication for additional diagnostic tests and enhance
future research in the early prediction of DM through serum markers. There is a growing
interest in circulating tumor cells (CTCs) as a measure of metastatic risk in BC. Published
data report that elevated CTCs in the bloodstream are associated with an increased risk of
DM and, therefore, a poorer prognosis [47,57,58]. In addition, previous studies reported
that elevated concentrations of serum biomarkers, including cancer antigen 15-3, carcinoem-
bryonic antigen and cancer antigen 125, are associated with DM [34,59]. Future statistical
and ML models could potentially guide routine CTC and serum biomarkers for specified
high-risk groups and enable earlier detection of DM [60,61].

The limitations of this study include a small number of subjects and grouping “visceral
DM” from several subsites. The patient cohort was derived from a single institution, which
limits the generalizability of our findings and would benefit from an external validation
cohort. Furthermore, time to DM was measured as the time elapsed between the initiation
dates of radiation treatment for the primary BC and diagnosis of DM.

5. Conclusions

Identifying which BC patients are at higher risk of DM and, more specifically, the sites
and time points of interest is critical for stopping its spread early and possible prevention
of DM altogether. While validation is needed, and the limitations of this study must be
addressed, our promising findings and predictive models proposed can serve as a basis to
guide future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14091768/s1, Table S1: Clinicopathological characteristics
of patient cohorts grouped by site of first distant metastasis. Sites of distant metastasis were classified
as bone, brain and visceral (lung, liver, organs of the mediastinum). Chemotherapy treatment
was grouped as follows: anthracycline backbone alone (AC, FEC, FEC100), anthracycline–taxane
backbone (ACD, ACT, FECD, FECT), other (paclitaxel, docetaxel, capecitabine, TC) and unknown.
Abbreviations: T stage—tumour size; N stage—nodal status; M stage—metastasis; G1—Nottingham
grade 1; G2—Nottingham grade 2; G3—Nottingham grade 3; SD—standard deviation; ER+—estrogen
receptor-positive; PR+—progesterone receptor-positive; HER2+—human epidermal growth factor
2-positive; TNBC—triple-negative breast cancer; LVI—lymphovascular invasion; NA—not available.
Table S2: Clinicopathological characteristics of patient cohorts grouped by time in years until first
distant metastasis. Chemotherapy treatment was grouped as follows: anthracycline backbone alone
(AC, FEC, FEC100), anthracycline–taxane backbone (ACD, ACT, FECD, FECT), other (paclitaxel,
docetaxel, capecitabine, TC) and unknown. Abbreviations: T stage—tumour size; N stage—nodal
status; M stage—metastasis; G1—Nottingham grade 1; G2—Nottingham grade 2; G3—Nottingham
grade 3; SD—standard deviation; ER+—estrogen receptor-positive; PR+—progesterone receptor-
positive; HER2+—human epidermal growth factor 2-positive; TNBC—triple-negative breast cancer;
LVI—lymphovascular invasion; NA—not available. Table S3: Distribution of first distant metastatic
sites over time. Sites of distant metastasis were classified as bone, brain and visceral (lung, liver,
organs of the mediastinum). Abbreviations: DM—distant metastasis. Table S4: Average time in
months to first distant metastasis for each site. Sites of distant metastasis were classified as bone,
brain and visceral (lung, liver, organs of the mediastinum). Table S5: Frequency of metastatic sites
and average times to metastasis according to subtype. Sites of distant metastasis were classified as
bone, brain and visceral (lung, liver, organs of the mediastinum). Subtypes were grouped as follows:
Luminal A (ER+, PR+, HER2-), Luminal B (ER+, PR+/−, HER2+), HER2 Enriched (ER-, PR-, HER2+),
TNBC (ER-, PR-, HER2-).
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