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Abstract: Single nucleotide variants (SNVs) affecting the first nucleotide G of an exon (Fex-SNVs)
identified in various diseases are mostly recognized as missense or nonsense variants. Their effect on
pre-mRNA splicing has been seldom analyzed, and no curated database is available. We previously
reported that Fex-SNVs affect splicing when the length of the polypyrimidine tract is short or
degenerate. However, we cannot readily predict the splicing effects of Fex-SNVs. We here scrutinized
the available literature and identified 106 splicing-affecting Fex-SNVs based on experimental evidence.
We similarly identified 106 neutral Fex-SNVs in the dbSNP database with a global minor allele
frequency (MAF) of more than 0.01 and less than 0.50. We extracted 115 features representing
the strength of splicing cis-elements and developed machine-learning models with support vector
machine, random forest, and gradient boosting to discriminate splicing-affecting and neutral Fex-
SNVs. Gradient boosting-based LightGBM outperformed the other two models, and the length
and nucleotide compositions of the polypyrimidine tract played critical roles in the discrimination.
Recursive feature elimination showed that the LightGBM model using 15 features achieved the best
performance with an accuracy of 0.80 ± 0.12 (mean and SD), a Matthews Correlation Coefficient
(MCC) of 0.57± 0.15, an area under the curve of the receiver operating characteristics curve (AUROC)
of 0.86 ± 0.08, and an area under the curve of the precision–recall curve (AUPRC) of 0.87 ± 0.09
using a 10-fold cross-validation. We developed a web service program, named FexSplice that accepts
a genomic coordinate either on GRCh37/hg19 or GRCh38/hg38 and returns a predicted probability
of aberrant splicing of A, C, and T variants.

Keywords: first nucleotide of an exon; splicing-affecting variants; LightGBM model; FexSplice web
service program

1. Introduction

Pre-mRNA splicing is a fundamental process in eukaryotic gene expression that in-
volves the precise removal of introns and the joining of exons to generate mature mRNA.
Splicing is mediated by the spliceosome, a dynamic and highly regulated macromolecular
complex consisting of target pre-mRNA, small nuclear ribonucleoproteins (snRNPs), and
numerous other proteins. The spliceosome catalyzes splicing in two steps. In the first
step, the spliceosome is assembled on pre-mRNA, where the intron/exon and exon/intron
boundaries comprised specific cis-elements including the 5′ splice site (ss), 3′ ss, polypyrim-
idine tract (PPT), and branch point sequence (BPS) are recognized by trans-acting RNA-
binding proteins (RBPs) such as the snRNPs, heterogeneous nuclear ribonucleoproteins
(hnRNPs), and serine arginine-rich splicing factors (SRSFs) [1,2]. Single nucleotide varia-
tions (SNVs) that disrupt cis-acting splicing elements and compromise catalytic functions
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of trans-acting RBPs impair finely tuned alternative and constitutive splicing events [3].
Disruptions in splicing have been implicated in a wide range of diseases including cancer,
neurodegenerative disorders, and Mendelian disorders such as congenital myasthenic
syndromes [4].

The BPS and PPT are first recognized by SF1 and U2AF65, respectively [5]. Introns
with a long PPT do not require the binding of U2AF35 to the intron–exon boundary because
U2AF65 is able to bind to PPT strongly, which is called an AG-independent 3′ ss (Figure 1).
Conversely, introns with a short or degenerate PPT require the binding of U2AF35 to
the intron–exon boundary to reinforce the binding of U2AF65 to PPT, which is called
an AG-dependent 3′ ss. We previously reported that SNVs affecting the first nucleotide
G of an exon (Fex-SNVs) cause aberrant splicing at the AG-dependent 3′ ss’s but not
at the AG-independent 3′ ss’s [6], which has also been proven at the structural level by
others [7]. Serial mutagenesis to gradually increase the length of PPT revealed that a stretch
of pyrimidines in PPT needs to be 10 to 15 nucleotides or more to make the 3′ ss insensitive
to a Fex-SNV [6]. When the first nucleotide of an exon is not G in the reference sequence,
binding of U2AF35 to the intron–exon boundary is predicted to be weak, and such 3′ ss’s
are mostly AG-independent [8].
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Although the AG-dependence of the 3′ ss predicts the splicing effects of Fex-SNVs, 
there is no dependable rule to determine the AG-dependence of the 3′ ss. Several 
prediction tools such as SpliceAI [9] and Collapsed Isoform SpliceAI (CI-SpliceAI) [10] 
have been developed to predict the splicing consequences of SNVs. However, these tools 
were not optimized for predicting the splicing effects of Fex-SNVs. We previously 
developed web service programs of support vector machine (SVM)-based IntSplice 
(https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice_v1.0/) (accessed on 1 August 
2023) [11] and gradient boosting-based IntSplice2 (https://www.med.nagoya-
u.ac.jp/neurogenetics/IntSplice2/) (accessed on 1 August 2023) [12], both of which predict 
the splicing effects of intronic SNVs at positions −50 to −3, but do not cover Fex-SNVs. To 
address this challenge, we first curated a dependable dataset that comprised Fex-SNVs 
and their splicing effects by scrutinizing available articles, and developed a machine-

Figure 1. AG-dependent and AG-independent 3′ splice sites (ss’s). Introns with a short or degenerate
PPT require both U2AF65 and U2AF35 for the recognition of the 3′ ss, which is called the AG-
dependent 3′ ss. Introns with a long stretch of PPT strongly bind to U2AF65 and do not require
binding of U2AF35, which is called the AG-independent 3′ ss. The 3′ ss’s without a G at the first
nucleotide of an exon in the reference sequence are mostly AG-independent.

Although the AG-dependence of the 3′ ss predicts the splicing effects of Fex-SNVs,
there is no dependable rule to determine the AG-dependence of the 3′ ss. Several prediction
tools such as SpliceAI [9] and Collapsed Isoform SpliceAI (CI-SpliceAI) [10] have been
developed to predict the splicing consequences of SNVs. However, these tools were not opti-
mized for predicting the splicing effects of Fex-SNVs. We previously developed web service
programs of support vector machine (SVM)-based IntSplice (https://www.med.nagoya-
u.ac.jp/neurogenetics/IntSplice_v1.0/) (accessed on 1 August 2023) [11] and gradient
boosting-based IntSplice2 (https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2/)
(accessed on 1 August 2023) [12], both of which predict the splicing effects of intronic
SNVs at positions −50 to −3, but do not cover Fex-SNVs. To address this challenge, we
first curated a dependable dataset that comprised Fex-SNVs and their splicing effects by
scrutinizing available articles, and developed a machine-learning model, FexSplice, using
Light Gradient Boosting Machine (LightGBM) [13] dedicated to predicting the splicing
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effects of Fex-SNVs. We hope that FexSplice sheds light on frequently underestimated
splicing-affecting Fex-SNVs.

2. Materials and Methods
2.1. Fex-SNV Dataset

We scrutinized Fex-SNVs in the Human Gene Mutation Database (HGMD) Profes-
sional released in April 2020 [14], the ClinVar released on 15 March 2021 [15], and PubMed
including a recently published article on splicing variants [16]. We only collected Fex-SNVs
with G as the first nucleotide of an exon in the reference sequence.

For HGMD Pro, we chose disease-associated SNVs in the mutation categories of DM
(disease-causing mutation) and SM (splicing mutation). For ClinVar 2021 [15], we chose
disease-associated SNVs with CLNSIG = pathogenic. We thus identified 801 Fex-SNVs
according to the transcript annotations of Ensembl release 101 [17]. We first eliminated
Fex-SNVs in the first and last exons because these exons had no upstream and downstream
sequences, respectively, and some features could not be extracted from these exons. The
predicted amino acid substitutions of Fex-SNVs were annotated in HGMD Pro, ClinVar,
and the literature, but their effects on pre-mRNA splicing, if any, remained mostly unan-
notated except for the literature. We thus scrutinized the experimental details of available
articles to accurately annotate Fex-SNVs. A Fex-SNV was recognized as splicing-affecting
when aberrant splicing was demonstrated using RT-PCR of either the patient sample or a
minigene construct. If RefSeq [18] shows two or more splicing isoforms at a Fex-SNV, the
Fex-SNV was included when authors addressed which splicing isoform was affected by
the Fex-SNV. In contrast, when authors did not address the splicing isoforms, the Fex-SNV
was excluded from our dataset. These filtrations reduced the number of Fex-SNVs to
106 splicing-affecting and 5 neutral Fex-SNVs in HGMD Pro, ClinVar, and the literature
(Supplementary Table S1a).

For additional neutral Fex-SNVs, we extracted 1005 Fex-SNVs from dbSNP (build 151)
on GRCh37/hg19 [19]. The 1005 neutral Fex-SNVs were first filtered by a global minor
allelic frequency (MAF) greater than 0.01 and less than 0.5, which produced 156 neutral
Fex-SNVs. MAF > 0.5 indicates that the reference nucleotide is minor. To match the
numbers of splicing-affecting and neutral Fex-SNVs, we randomly selected 101 out of
156 neutral Fex-SNVs. In the selection, we attempted to exclude Fex-SNVs with similar
flanking sequences or neutral Fex-SNVs identified in the course of disease analysis. By
adding 5 neutral Fex-SNVs in HGMD Pro, ClinVar, and the literature stated above, we
obtained 106 neutral Fex-SNVs (Supplementary Table S1b).

2.2. Extraction of Features

We first extracted 115 features dictating the strength of splicing cis-elements, most
of which were used to predict the splicing effects of intronic SNVs (IntSplice [11] and
IntSplice2 [12]) (Supplementary Table S2). The 115 features included the followings. First,
the best BPS was searched for between Int−50 to Int−3 using the yUnAy motif [20]. The
position weight matrix score as well as the conserved branch point “A” nucleotide were
evaluated. Second, the length of PPT as well as the ratios of T, G, purines (A/G), and
pyrimidines (C/T) in PPT were evaluated. As GGG trinucleotides are frequently recognized
by splicing-suppressing hnRNP H and hnRNP K [21,22], the presence of GGG in PPT was
evaluated. Third, we previously observed that nucleotides at Int−7, Int−6, Int−5, and Int−3,
as well as Ex+2 and Ex+3, play critical roles in splicing [11]. We included these nucleotides
in our features. Fourth, SD-Score at the 5′ ss [23], MaxEntScan scores at the 3′ and 5′

ss’s [24], and Shapiro Senapathy scores [25] at the 3′ and 5′ ss’s were included as integrated
measures to evaluate the strength of constitutive splicing cis-elements. Fifth, RBPs exert
essential roles in both alternative and constitutive splicing events [26,27]. In our previous
machine-learning model, IntSplice [12], to predict the splicing effects of intronic SNVs, we
showed that the inclusion of RBP-biding sites markedly improved the performance. We
thus included the sum scores of SpliceAid2 [28] of 71 RBPs in our features. As we could not
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predict which specific feature best dictated the strength of splicing signals, we admitted
multicollinearity of features. Spearman’s rank correlation coefficients of all available pairs
of 115 features are indicated in Supplementary Figure S1.

2.3. Machine-Learning Models

We generated machine-learning models with SVM (LinearSVC) [29], random forest
(RandomForest) [30], and gradient boosting (LightGBM) [13]. For each model, we opti-
mized hyperparameters using grid search. Feature importance was obtained from each
modeling tools with default settings. We also eliminated features one by one using a
method of meta-transformer for selecting features based on importance weights [31] by
leave-one-out cross-validation (LOOCV). The performance of each model was evaluated
by the area under the receiver operating characteristic curve (AUROC), the area under
the precision recall curve (AUPRC), and seven statistical measures recommended by the
Human Mutation Guidelines (see a legend of Table 1 for details) [32,33]. As we included
all the identified splicing-affecting Fex-SNVs in our dataset, we did not create a separate
test dataset. Instead, we employed leave-one-out or 10-fold cross-validation.

3. Results
3.1. Generation of Models with LinearSVC, Random Forest, and LightGBM

In this study, we generated machine-learning models to predict whether a Fex-SNV
affecting the G nucleotide at the first nucleotide of an exon affects splicing or not. We first
created a curated dataset of Fex-SNVs that comprised 106 splicing-affecting and 106 neutral
Fex-SNVs (Supplementary Table S1). For each Fex-SNV, we extracted 115 features that
dictated the strength of splicing cis-elements (Supplementary Table S2). We then generated
three machine-learning models: LinearSVC [29], RandomForest [30], and LightGBM [13].
Each model was evaluated by AUROC and AUPRC (Figure 2), as well as seven statistical
measures (accuracy, precision, recall/sensitivity, specificity, F1 score, NPV, and MCC) using
10-fold cross-validation (Table 1). LightGBM produced the highest AUROC and the highest
scores in six out of the seven statistical measures except for specificity. The importance of
115 features by LightGBM were inspected using 10-fold cross-validation (Figure 3) and will
be discussed in detail in the Discussion section.

We next eliminated features one-by-one from the three models using LOOCV (Sup-
plementary Figure S2). Neither LinearSVC nor RandomForest reasonably improved the
balanced accuracy by eliminating features. In contrast, the balanced accuracy was maxi-
mized at 15 features with LightGBM. Elimination of features from 115 to 15 increased the
AUROC of LightGBM model from 0.84 ± 0.08 (mean and SD) to 0.86 ± 0.08 (Figure 2E,G
and Table 1). Similarly, elimination of features increased in all the seven statistical measures
of LightGBM model by approximately 2% (Table 1).

As expected, the feature importance values of the 15-feature-based LightGBM model
using 10-fold cross-validation (Supplementary Figure S3) were similar to those of the
115-feature-based model using 10-fold cross-validation (Figure 3). We herein refer to the
15-feature-based LightGBM model as FexSplice.

3.2. Comparison of FexSplice with SpliceAI and CI-SpliceAI

SpliceAI [9] predicts the positions of ss’s using the residual neural networks (ResNet)
trained with a 10 Kbp segment annotated in the GTEx database. CI-SpliceAI [10] is based
on the SpliceAI and retrained using a collapsed isoform set representative of all manually
annotated constitutive and alternative splice sites in GENCODE. SpliceAI [9] and CI-
SpliceAI [10] are also able to predict the splicing effects of Fex-SNVs. We calculated the
AUROC, the AUPRC, and seven statistical measures of SpliceAI and CI-SpliceAI with our
dataset (Supplementary Table S3). FexSplice was trained with our dataset, whereas SpliceAI
and CI-SpliceAI were not. Thus, statistical measures of SpliceAI and CI-SpliceAI cannot be
unbiasedly compared with those of FexSplice. Nevertheless, precision and specificity were
better in SpliceAI and CI-SpliceAI compared to those in FexSplice. This was at the cost of a
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much lower recall value of 0.22 in both SpliceAI and CI-SpliceAI compared to 0.78 ± 0.13
(mean and SD) in FexSplice. As SpliceAI and CI-SpliceAI were developed to identify ss’s
in a large number of candidates in the whole genome, they were likely to be designed to
reduce false positives. This may account for high precision and specificity values with low
recall values in SpliceAI and CI-SpliceAI.
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Figure 3. The top 30 features, ranked by their importance, are displayed along with associated median
and interquartile range values. This ranking is derived from the feature importance analysis using
10-fold cross-validation of a LightGBM model trained with 115 features. Bold letters with an asterisk
indicate 15 features that maximized the AUROC in recursive feature elimination (Supplementary
Figure S2), which were used to generate FexSplice.

Table 1. Comparison of nine statistical measures using 10-fold cross-validation of LinearSVC, Ran-
domForest, and LightGBM models with 115 features, as well as a LightGBM model with 15 features.

Model LinearSVC
(115)

Random
Forest (115) LightGBM (115) LightGBM (15)

Accuracy 1 0.64 ± 0.10 0.71 ± 0.07 0.75 ± 0.09 0.77 ± 0.07
Precision 2 0.64 ± 0.09 0.71 ± 0.07 0.77 ± 0.11 0.80 ± 0.12

Recall 3 0.65 ± 0.15 0.73 ± 0.12 0.74 ± 0.14 0.78 ± 0.13
Specificity 4 0.63 ± 0.11 0.70 ± 0.08 0.78 ± 0.13 0.77 ± 0.15

F1 score 5 0.64 ± 0.11 0.71 ± 0.08 0.75 ± 0.10 0.77 ± 0.07
NPV 6 0.65 ± 0.11 0.73 ± 0.11 0.76 ± 0.11 0.79 ± 0.11
MCC 7 0.29 ± 0.19 0.43 ± 0.15 0.52 ± 0.18 0.57 ± 0.15

AUROC 0.69 ± 0.08 0.79 ± 0.08 0.84 ± 0.08 0.86 ± 0.08
AUPRC 0.71 ± 0.08 0.82 ± 0.07 0.85 ± 0.08 0.87 ± 0.09

The number of features is indicated in parentheses. Mean and SD are indicated. 1 Accuracy, overall correctness of
the classifier: Accuracy = (TP + TN)/(TP + TN + FP + FN); 2 Precision (positive predictive value), correctness of
positive predictions: Precision = TP/(TP + FP); 3 Recall (sensitivity or true positive rate), classifier’s ability to
identify positive instances: Recall = TP/(TP + FN); 4 Specificity (true negative rate), classifier’s ability to identify
negative instances: Specificity = TN/(TN + FP); 5 F1 Score, balanced metric considering false positives and
negatives: F1 Score = 2 * (Precision * Recall)/(Precision + Recall); 6 NPV (negative predictive value), correctness
of negative predictions: NPV = TN/(TN + FN); 7 MCC (Matthews correlation coefficient), balanced measure
considering all values in the confusion matrix: MCC = (TP * TN − FP * FN)/((TP + FP) * (TP + FN) * (TN + FP) *
(TN + FN))1/2. TP (true positive) and FN (false negative) are the numbers of splicing-affecting Fex-SNVs that
were predicted to be splicing-affecting and neutral, respectively. FP (false positive) and TN (true negative) are the
numbers of neutral Fex-SNVs that were predicted to be splicing-affecting and neutral, respectively.
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3.3. Web Service of FexSplice

We developed a web service program, FexSplice, (https://www.med.nagoya-u.ac.
jp/neurogenetics/FexSplice) (accessed on 1 August 2023) (Figure 4). The FexSplice web
service accepts a genomic coordinate in either GRCh37/hg19 or GRCh38/hg38 and maps it
to all the annotated coding transcripts in Ensembl release 101. FexSplice analyzes all the
transcripts and generates three possible Fex-SNVs at the given coordinate. LightGBM auto-
matically generates a probability score for each Fex-SNV with 0.5 being the threshold. The
default threshold of 0.5 by LightGBM was used in FexSplice. Fex-SNVs with a probability
less than 0.5 are predicted to be splicing-insensitive, while those with a probability of 0.5 or
more are predicted to be splicing-affecting. When two or more transcripts exist at Fex-SNV,
FexSplice predicts the effects of splicing for all the relevant transcripts. Pre-processed
genome-wide FexSplice dataset was generated on GRCh37/hg19, and was converted to
the GRCh38/hg38 version using LiftOver [34], both of which are downloadable from the
FexSplice web site.
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Figure 4. An example output of the FexSplice web service (https://www.med.nagoya-u.ac.
jp/neurogenetics/FexSplice, accessed on 1 August 2023). G.57554424C>A on chromosome
18 (GRCh38/hg38) in FECH was previously reported to cause aberrant splicing [6]. The chro-
mosome number and genomic coordinate were entered into the FexSplice web service. Predicted
pathogenicity (abnormal in red letters and normal in black letters) and its probability were returned
for three possible Fex-SNVs. Pre-processed genome-wide FexSplice datasets on GRCh37/hg19
and GRCh38/hg38 are also available. For g.57554424C>A, SpliceAI predicted a moderate effect on
acceptor loss (∆ score = 0.45) and CI-SpliceAI predicted a minor effect on acceptor loss (∆ score = 0.24).

4. Discussion

Our study aimed to develop a model to predict the splicing effect of Fex-SNVs. We
scrutinized available articles and curated a dataset that comprised 106 splicing-affecting and
106 neutral Fex-SNVs (Supplementary Table S1). For each Fex-SNV, 115 features dictating
the strength of splicing signals were extracted (Supplementary Table S2). Evaluation of
the discrimination models by LinearSVC, RandomForest, and LightGBM using 10-fold
cross-validation showed that LightGBM produced the highest AUROC, the highest AUPRC,
and the highest scores in six out of the seven statistical measures (Table 1). Elimination of
the least important feature one-by-one using cross-validation showed that the performance
of LightGBM models became the best with 15 features (Supplementary Figure S2).

We evaluated the importance of 115 features (Figure 3) and 15 features (Supplementary
Figure S2) both using 10-fold cross-validation and found that highly ranked features were
similar between the two models. As our features had multicollinearity (Supplementary
Figure S1), high feature importance did not exclusively represent essential features. Never-
theless, the following features were critical. First, among the 115 features (Figure 3), the
ratio of T nucleotides in PPT was ranked first and its importance was markedly higher
than the other features. The preference of T over C in PPT was previously reported [35,36].
Similarly, the ratio of G nucleotides in PPT was ranked fifth. A more deleterious effect of
G than A in PPT on binding to U2AF65 was also previously reported [37]. Additionally,
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three other features for PPT and four features for BPS are included in the top 30 features.
The importance of PPT in the discrimination models is in accordance with the notion
that the AG-dependent 3′ ss’s are vulnerable to Fex-SNV. Second, MaxEntScan::5′ss [24],
SD-score [23], and Shapiro Senapathy score at 5′ ss [25], all of which represented the
splicing signals at the 5′ ss, were ranked second, eleventh, and twelfth, respectively. Un-
expectedly, MaxEntScan::5′ss had a higher importance than MaxEntScan::3′ss, which was
ranked seventh. The importance of the splicing signals at the 5′ ss is likely to support
the exon-recognition model, in which an exon not an intron is recognized as a single unit
in pre-mRNA splicing [38]. Third, eight of the top 30 features were for the presence of
RBP-binding sites. RBPs exert essential roles in both alternative and constitutive splic-
ing events [26,27]. As indicated in Section 2.2, we previously showed that the inclusion
of RBP-biding sites markedly improved the performance of IntSplice, a tool to predict
the splicing effects of intronic SNVs [12]. Among the eight RBPs, ETR-3 (CELF2) and
MBNL1 were ranked eighth and tenth, respectively. Abnormal downregulation of MBNL
and upregulation ETR-3 are hallmarks of myotonic dystrophy, and their effects on pre-
mRNA splicing have been extensively studied [39]. However, myotonic dystrophy was
not included in either the title or the abstract of any article showing splicing-affecting
Fex-SNVs (Supplementary Table S1a). In addition, ETR-3-binding sequences according
to SpliceAid2 were observed in 18 out of 106 splicing-affecting and 21 out of 106 neutral
Fex-SNVs (p-value = 0.72 by Fisher’s exact test). Similarly, MBNL1-binding sequences
were observed in 21 out of 106 splicing-affecting and 27 out of 106 neutral Fex-SNVs
(p-value = 0.41). Thus, the high feature importance values of ETR-3 and MBNL1 were
unlikely to be accounted for by reporting bias of splicing-affecting Fex-SNVs. Although the
binding of hnRNP A1 was not included in the top 30 features, hnRNP A1 directly binds
to the 3′ ss of SMN2 exon 7 and suppresses its splicing [40]. However, RBPs are unlikely
to bind to the 3′ ss where core spliceosomal components assemble. Thus, the presence of
binding sites for RBPs is likely to represent that the splicing signals on and around the exon
are weak and that the binding of RBP(s) is required for the exon recognition. Fourth, exonic
features such as the exon length and the first-to-third exonic nucleotides played essential
roles. We unexpectedly observed that out of the 12 exonic and 12 intronic nucleotides in
the 115 features (Supplementary Table S2), four exonic nucleotides (T at Ex+1, A at Ex+1,
C at Ex+3, and G at Ex+2) were included in the top 30 features, whereas only one intronic
nucleotide (T at Int−5) was included. Aberrant splicing due to T at Ex+1 rather than A at
Ex+1 was previously reported [41]. Crystal structure of U2AF1 (U2AF35) bound to the 3′ ss
showed that a nucleotide at Ex+2 was not strictly recognized by U2AF1 and a nucleotide at
Ex+3 was not bound by U2AF1 [7]. Nevertheless, C at Ex+3 and G at Ex+2 were included
in the top 30 features. We previously showed that G at Int−3 was markedly detrimental
for pre-mRNA splicing, and A at Int−3 followed [11]. However, neither nucleotide was
included in the top 30 features, which was likely to be masked by multicollinearity of
115 features.

Comparison of FexSplice with SpliceAI and CI-SpliceAI showed that FexSplice outper-
formed the others in seven out of the nine statistical measures, although FexSplice should
be biased by overfitting to our dataset compared to the others. To fairly compare the perfor-
mance of different tools, models should be generated by an identical training dataset and
evaluated by an identical testing dataset, as we previously performed for InMeRF, a tool for
predicting the pathogenicity of missense SNVs [42]. We, however, did not recapitulate the
generation of models with SpliceAI and CI-SpliceAI. We suppose that the splicing effects of
Fex-SNVs have been underestimated in identifying pathogenic variants in human diseases.
We hope that FexSplice will help disclose yet unidentified splicing effects of Fex-SNVs, and
also understand the physiological mechanisms of the recognition of the 3′ ss’s.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14091765/s1, Figure S1: Heatmap of Spearman’s correlation coeffi-
cients of 115 feature values to indicate multicollinearity of features; Figure S2: Feature elimination of
LinearSVC, RandomForst, and LightGBM models. Figure S3: Feature importance of 15 feature-based
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LightGBM models using 10-fold cross-validation; Table S1a: 106 splicing-affecting Fex-SNVs; Table
S1b: 106 neutral Fex-SNVs; Table S2. 115 features to dictate the strength of splicing cis-elements; Table
S3. Comparison of nine statistical measures of FexSplice, SpliceAI, and CI-SpliceAI.
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