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Abstract: Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity.
There is no disease-modifying treatment currently available. Therefore, standardized, validated
outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review
of outcome measures and biomarkers for HSP to provide recommendations for future studies
and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science,
and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three
outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely
used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance
imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess
treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and
neurofilament light chain levels were the most promising biomarkers in terms of being able to
differentiate patients from controls and correlate with clinical disease severity. Overall, we found
variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We
highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing
biomarkers, and (3) inclusion of PROMs in HSP clinical trials.

Keywords: hereditary spastic paraplegia; outcome measures; biomarkers; clinical trials; scoping
review

1. Introduction

Hereditary Spastic Paraplegia (HSP) refers to a group of inherited neurodegenerative
conditions characterized by lower limb spasticity and weakness. HSP is rare, with a
prevalence of 0.3 to 5.5 per 100,000 people, depending on country [1–4]. HSP is associated
with significant disability and a negative impact on quality of life [5]. There are over
80 recognized HSP-associated genes with broad phenotypic variability [6–8]. Clinically,
HSP can be categorized into pure HSP—symptoms limited to weakness, spasticity, impaired
vibration sense in the lower limbs, and bladder dysfunction; and complex HSP—where
there are additional neurological and non-neurological manifestations [9]. The phenotypic
and genotypic heterogeneity of HSP and the rarity of the condition pose a challenge to the
development of suitable outcome measures and biomarkers.

Advances in genetic testing have led to the rapid discovery of genes associated with
HSP [10], accelerating the discovery of therapeutic targets. Patient-derived stem cell and
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animal models have identified potential drug treatment candidates targeting underlying
pathogenesis for specific HSP genotypes, such as noscapine for HSP-SPAST [11–15]. Cur-
rently, the rate of drug discovery is far outpaced by the rate of gene discovery for HSP and
a shift in HSP research to developing treatment options is required [10,16,17]. Outcome
measures and biomarkers that can measure the efficacy of therapeutic interventions in
clinical trials are needed to facilitate this.

The choice of appropriate outcome measures in interventional trials is critical to
demonstrating a meaningful treatment effect [18]. Initiatives such as COnsensus-based
Standards for the selection of health Measurement INstruments (COSMIN) and Core Out-
come Measures in Effectiveness Trials (COMET) aim to guide the selection of appropriate
outcome measures [19]. There is currently a lack of standardized outcome measures used in
HSP clinical trials, with recent reviews of interventional trials in HSP showing heterogene-
ity of outcome measures [17,20]. Inconsistency of outcome measures leads to an increased
risk of reporting bias due to post hoc selection of outcomes based on results rather than
the use of pre-specified primary outcomes [21]. Furthermore, use of different outcome
measures limits comparison and meta-analysis of results from different studies [21].

There are no current consensus guidelines for outcome measures in HSP clinical trials.
To address this, we performed a scoping review of outcome measures and biomarkers
in HSP to identify suitable outcome measures, provide recommendations for future HSP
clinical trials, and identify areas for further research.

2. Materials and Methods
2.1. Search Strategy

This study was conducted according to published guidelines for conducting a system-
atic scoping review [22,23]. Under the guidance of an academic librarian, we performed a
search in Embase, Medline, Scopus, Web of Science and the Central Cochrane databases
using the search terms “Hereditary Spastic Paraplegia”, “biomarker”, “outcome measure”,
and “patient reported outcome measure” (Appendix A). Additional studies were identified
by searching the references of the included articles and relevant review articles.

2.2. Selection Criteria

We kept the selection criteria broad to capture all possible outcome measures and
biomarkers. The inclusion criteria included studies involving patients with HSP of any age
and gender, and that included a description of the outcome measures or biomarkers for
HSP. Abstracts were included if novel outcome measures or biomarkers were described.

We excluded review articles, single-case reports, trial protocols with no published
results, abstracts with no novel outcome measures/biomarkers, and articles that did not
involve humans or human samples, did not include outcome measures/biomarkers, or
were not in English.

2.3. Screening of Search Results

The screening and data extraction process was conducted using Covidence, a web-
based collaboration software platform that streamlines the production of systematic and
other literature reviews [24]. The first author (S.F.S.) excluded all irrelevant results—studies
unrelated to HSP or not in English and duplicate studies. Authors S.F.S. and D.Y. inde-
pendently reviewed the abstracts according to the selection criteria for the first 50 results.
Authors S.F.S. and D.Y. independently reviewed the remaining abstracts, applying the
finalized exclusion criteria.

2.4. Data Extraction and Analysis

Authors S.F.S., D.Y., L.R., and F.J. reviewed two full texts each to test the data extraction
template. The template was modified by discussion at a team meeting. The team then
reviewed six full texts, each with each author reviewing the same three articles as two other
authors (~30% overlap) and met to resolve any discrepancies and standardize the extraction
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process. The rest of the studies were reviewed by one reviewer (D.Y., L.R., or F.J.) and
verified by a second reviewer (S.F.S.). At each stage, discrepancies were resolved through
a team meeting. The data were extracted using a standardized data extraction template,
including information on study characteristics, aim of study, participant characteristics,
characteristics of interventions, outcome measures, and ability of outcome measure to
(i) distinguish patients versus controls, (ii) demonstrate change over time; (iii) show re-
sponse to the intervention; and (iv) correlate with other measures. Study quality analysis
was not performed, as is usual for scoping reviews [22].

Data were analyzed descriptively to provide an overview of study characteristics and
outcome measures. Outcome measures were grouped according to the types of clinical
outcome assessments as defined by the U.S. Food and Drug Administration [25]:

1. Clinician-reported outcome measures (CROM): measurement of clinical signs or
findings performed by a health professional.

2. Performance outcome measures (PerfOM): measurement with a standardized task, either
administered by a trained individual or undertaken by the patient without assistance.

3. Patient-reported outcome measures (PROM): measurement of patient-reported
health status.

Biomarkers were grouped according to the assessed modality:

1. Laboratory-based biomarkers;
2. Neuroimaging biomarkers;
3. Neurophysiology biomarkers;
4. Other biomarkers.

As other groups have previously published reviews of non-randomized interventional
clinical trials [17,20], we chose to perform further analysis of randomized controlled trials
(RCTs) to compare the outcome measures used, as RCTs are the study type with the highest
level of evidence for treatment effectiveness [26].

3. Results
3.1. Search Results

A total of 1930 search results were identified, and 1437 abstracts were screened after
duplicates were removed, of which 1222 were identified as irrelevant. The full texts of the
remaining results (n = 215) were assessed according to inclusion criteria. Ten more studies
were identified by searching the references of the included articles (Figure 1).

3.2. Study Characteristics

A total of 70 studies that met the inclusion criteria were identified. These studies were pub-
lished between 1991 and 2022; date limits were not set to include as many studies as possible.

The majority (78.6%) of the included studies were observational studies, and only
a quarter (25.7%) of studies were interventional studies. Most studies did not include
longitudinal data (75.7%), and over half did not include a control group (51.4%). Participant
genotype was predominantly mixed or unknown (65.7%), and sample sizes were small
(mean of 36.99 participants) (Table 1). A list of all studies with relevant details is included
as Supplementary Material S1.

We assessed each outcome measure for (1) the ability to differentiate patients versus
controls if a control group was included, (2) the ability to demonstrate disease progression if
longitudinal data were included, (3) the ability to demonstrate response to the intervention
if an intervention was assessed, and (4) any correlation with other biomarkers or outcome
measures. Although we report the number of studies that fulfilled the criteria for (1), (2)
and (3) to illustrate the available evidence for each outcome measure, it is important to note
that (1) in studies with multiple outcome measures, the control group was compared to the
patient group for some but not all outcome measures, (2) not all longitudinal studies were
designed to assess the ability of an outcome measure to measure disease progression, (3) an
outcome measure may not demonstrate a response to the intervention for many reasons
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including efficacy of intervention, duration of trial, and timing of the outcome measure
relative to the intervention.
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Figure 1. PRISMA flow chart [27].

Table 1. Descriptive findings.

Study Type Number of Studies (%)

Observational (total)

• Case series
• Cohort
• Case–control
• Cross-sectional

55 (78.6)

9
14
2
30

Diagnostic test accuracy 1 (1.4)
Non-randomized interventional studies 7 (10)
Randomized controlled trials 6 (8.6)

Study Characteristics N (%)

Longitudinal data presented 17 (24.3)
Control group included 34 (48.6)
Intervention 18 (25.7)

Participant Genotype N (%)

Single genotype 24 (34.3)
Mixed known and unknown genotypes 35 (50)
Unknown genotype 11 (15.7)

Participant Characteristics N (%)

Number of participants 37.0 people (range 2–239, SD 42.2)
Mean of mean ages (n = 64) 39.9 years (range 4.8–62, SD 14.9)



Genes 2023, 14, 1756 5 of 22

3.3. Clinical Outcome Assessments
3.3.1. Clinician Reported Outcome Measures

The Spastic Paraplegia Rating Scale (SPRS) was the most widely used CROM, reported
in twenty-seven studies (Table 2). Although 12/27 included studies control groups, a
comparison of SPRS scores in patients versus controls was performed in only two studies,
both showing significant differences [28,29]. It is important to note that SPRS values from
healthy controls are most relevant when comparing to pre-symptomatic HSP carriers rather
than for comparison to individuals with symptomatic HSP. 8/27 studies were longitudinal,
and only six of those studies showed disease progression over time with the SPRS (median
follow-up time 12–31 months) [30–35]. The SPRS was used as an outcome measure in 4/18
interventional studies and showed a response to the intervention in only one of the four
studies [36]. The SPRS was commonly used to correlate with other biomarkers or outcome
measures (21/27 studies) (see Supplementary Material S2).

Table 2. Clinician-reported outcome measures.

Outcome Measure Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

HSP-specific CROM

SPRS 27 12 (2) 8 (6) 5 (1)

SPATAX-EUROSPA disability score 4 1 (0) 1 (1) 1 (0)

CROM for other neurological disorders

SARA 3 1 (1) 1 (1) 0 (0)

ALSFRS-R 2 1 (0) 2 (1) 0 (0)

Unified Huntington’s Disease Rating
Scale Part IV 1 1 (0) 0 (0) 0 (0)

Multiple Sclerosis Impairment Scale 1 0 (0) 0 (0) 1 (0)

Generic CROM

Functional questionnaire score 1 0 (0) 0 (0) 1 (0)

Modified Rankin Scale 1 1 (0) 1 (0) 0 (0)

Disability Score (DIS) 1 0 (0) 0 (0) 1 (0)

Functional Independence Measure (FIM) 1 0 (0) 0 (0) 0 (0)
1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Number of studies that had longitudinal data (studies
where outcome measure was able to show disease progression); 4 Number of studies that included an intervention
(Studies where outcome measure showed a response to the intervention). Details of the included studies are in
Supplementary Material S2.

The SPATAX-EUROSPA disability score, another HSP-specific CROM, was less com-
monly used than the SPRS (Table 2). There were no control data and change over time was
studied in only one study showing disease progression in 3/31 patients included in the
study [32]. It was used in one interventional study [37] and did not show any significant
change with intervention.

CROMs developed for other neurological conditions and generic functional CROMs
were also used to assess patients with HSP. The Scale for Assessment and Rating of Ataxia
(SARA) was used in three studies and showed a difference between patient versus controls
in 1/3 studies [38] and longitudinal change in 1/3 studies [39]. The Amyotrophic Lateral
Sclerosis rating scale revised (ALSFRS-R) was used in two studies [40,41], showing disease
progression in one but not the other, and was shown to correlate with serum and CSF
neurofilament heavy chain [40,41], though one paper included patients with ALS in their
analysis (Supplementary Material S2).
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3.3.2. Performance Outcome Measures

PerfOMs assessing motor function were widely used in the included studies, with
twenty-one different outcome measures identified. The most commonly reported motor
PerfOMs were the modified Ashworth Scale (MAS) (18 studies) and the 10 m walk test
(10MWT), 6 min walk test (6MWT) and their variations (14 studies) (Table 3). Compared to
CROMs, motor PerfOMs were more commonly used as outcome measures for interven-
tional studies—MAS in 13/18 interventional studies, 10MWT/6MWT/variations in 9/18
interventional studies. Conversely, motor PerfOMs were less commonly used to correlate
with other outcome measures or biomarkers, 2/18 studies for MAS and 3/14 studies for
10MWT and its variations (Supplementary Materials S2). Similar to the CROMs, there were
very little longitudinal data—3/18 for MAS, 1/14 for 10MWT and variations.

Table 3. Performance outcome measures.

Outcome Measure Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Motor Function PerfOMS

Modified Ashworth Scale 18 2 (0) 3 (1) 13 (11)

10MWT, 6MWT, 2MWT, 5MWT, 20MWT,
3-min endurance walk 14 3 (2) 1 (1) 9 (3)

Timed Up-and-Go test (TUG) 6 3 (2) 2 (2) 3 (1)

Medical Research Council muscle strength 4 0 (0) 0 (0) 2 (1)

Gross motor function measure (GMFM-66,
GMFM-88) 2 0 (0) 0 (0) 2 (1)

Gross motor function classification score
(GMFCS) 2 1 (0) 0 (0) 1 (0)

Falls Efficacy Scale-International (FES-I) 2 2 (1) 1 (0) 0 (0)

Berg balance scale 2 0 (0) 0 (0) 2 (1)

Composite cerebellar functional severity
score (CCFSw) 2 1 (1) 1 (0) 0 (0)

Nine-hole pegboard test, click test,
writing test, tapping test 2 1 (0) 0 (0) 1 (1)

Physiological Cost Index 2 1 (0) 1 (0) 2 (0)

Four-stage functional scale of motor
disability (4SMD or 4FMS) 2 0 (0) 0 (0) 0 (0)

Activities specific Balance Confidence
scale (ABC) 1 0 (0) 0 (0) 1 (0)

Modified version of Gillette Functional
Assessment Questionnaire 1 0 (0) 0 (0) 1 (1)

Walking Handicap scale 1 0 (0) 0 (0) 1 (1)

Lower extremity subclass of
Fugl–Meyer assessment 1 0 (0) 0 (0) 1 (0)

Ambulatory score (AMB) 1 0 (0) 0 (0) 1 (0)

AMBUS 1 0 (0) 1 (0) 0 (0)

Spasm Frequency Scale 1 0 (0) 1 (1) 1 (1)

Strength with microFET 2
hand-held dynamometer 1 0 (0) 0 (0) 1 (1)
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Table 3. Cont.

Outcome Measure Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Motor Function PerfOMS

Walking ability (landmarks of disability) 1 0 (0) 0 (0) 0 (0)

Cognitive Function PerfOMs

Montreal Cognitive Assessment 4 4 (0) 1 (0) 0 (0)

Wechsler Adult Intelligence
Scale—revised 3 1 (0) 1 (1) 0 (0)

Mini-Mental State Exam 2 2 (0) 0 (0) 0 (0)

Addenbrooke’s Cognitive Exam 1 1 (0) 1 (0) 0 (0)

CANTAB assessment 1 1 (0) 0 (0) 0 (0)

VLMT, FWIT, TMT A/B, FAB, d2-R, RWT * 1 0 (0) 1 (1) 0 (0)
1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Studies that had longitudinal data (studies where out-
come measure was able to show disease progression); 4 Studies that included an intervention (Studies where
outcome measure showed a response to the intervention); * VLMT—Verbal Learning and Memory Test, FWIT—
Farbe-Wort-Interferenz Test, TMT A/B—Trail Making Test Part A and B, FAB—Frontal Assessment Battery,
d2-R—revised d2 Test of attention, RWT—Regensburg Word Fluency Test. Details of the included studies are in
Supplementary Material S2.

PerfOMs measuring cognition were used in ten studies for descriptive purposes only
rather than to measure outcomes in interventional studies.

3.3.3. Patient Reported Outcome Measures

Most PROMs used assessed quality of life (12/17), while others assessed fatigue,
pain, and autonomic symptoms (Table 4). The most used PROM was the Short Form
Health Survey-36 (SF-36) and its derivative, SF-12, in seven studies, followed by EuroQoL-5
Dimensions (EQ-5D) in three studies. PROMs were not commonly used in interventional
studies (5/18 interventional studies). There was no longitudinal data for PROMs in the
included studies. The SF-36 and its derivatives, EQ-5D, Becks Depression Inventory
(BDI-V), Zung depression score, Brief Pain inventory, Modified Fatigue Impact Scale and
multidimensional fatigue inventory showed differences between patients and controls in
some but not all studies.

Table 4. Patient-Reported Outcome Measures.

Outcome Measure Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Quality of Life PROMs

SF-36, SF-12, RAND 36-Item Health Survey 7 3 (2) 1 (0) 2 (1)

EQ-5D 3 3 (1) 0 (0) 0 (0)

Becks Depression Inventory (BDI-V) 2 2 (1) 0 (0) 0 (0)

Visual analogue score 2 0 (0) 0 (0) 2 (1)

Patient Health Questionnaire (PHQ-9) 1 1 (0) 0 (0) 0 (0)

Modified Goal Attainment Scale (mGAS) 1 0 (0) 0 (0) 1 (1)

International Consultation of Incontinence
Questionnaire (ICIQ)—LUTSqol 1 0 (0) 0 (0) 0 (0)
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Table 4. Cont.

Outcome Measure Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Cerebral Palsy QoL questionnaire (CPQoL) 1 0 (0) 0 (0) 1 (1)

Caregiver Priorities and Child Health Index
of Life with Disabilities (CPCHILD) 1 0 (0) 0 (0) 0 (0)

Zung depression score 1 1 (1) 0 (0) 0 (0)

ICIQ-Short Form 1 0 (0) 0 (0) 0 (0)

Hospital Anxiety and Depression Scale 1 0 (0) 0 (0) 1 (1)

Other PROMs

Brief pain inventory 3 2 (1) 0 (0) 1 (0)

Modified Fatigue Impact Scale (MFI) 2 1 (1) 0 (0) 1 (0)

Multidimensional fatigue inventory 1 1 (0) 0 (0) 0 (0)

Scale for Outcomes in Parkinson’s Disease
for Autonomic Symptoms (SCOPA-AUT) 1 0 (0) 0 (0) 0 (0)

Numeric rating scale for pain 1 0 (0) 0 (0) 1 (1)
1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Number of studies that had longitudinal data (Studies
where outcome measure was able to show disease progression); 4 studies that included an intervention (Stud-
ies where outcome measure showed a response to the intervention). Details of the included studies are in
Supplementary Material S2.

3.4. Biomarkers
3.4.1. Laboratory-Based Biomarkers

Serum and cerebrospinal fluid (CSF) neurofilament light chain (NfL) levels, and serum
and CSF 25- and 27-hydroxycholesterol (25- and 27-OHC) levels were the two most studied
biochemical biomarkers—included in six and four studies, respectively (Table 5). Serum
and CSF NfL levels were able to differentiate patient vs. control groups or historical control
values in all studies. Serum and CSF NfL levels were shown to correlate with SPRS scores
in two studies [29,42] but this correlation was not present in the other two studies [32,43]
(Supplementary Material S2). Plasma and CSF 25- and 27-OHC were significantly elevated
in individuals with HSP-CYP7B1 (SPG5) compared to controls or reported normative values
in all four studies [35,43–45]. In the few longitudinal studies, there was no change over
time in NfL levels [32] or 25- and 27-OHC levels [35,44]. NfL levels were not used as
outcome measures in any interventional studies; however, 25- and 27-OHC levels showed
a response to treatment with statins in interventional studies [35,44]. Other biochemical
markers reported, such as lipidomics, amino acid levels, mitochondrial DNA levels and cell
morphomics, were more commonly used as diagnostic biomarkers rather than to measure
disease progression or response to the intervention.

3.4.2. Neuroimaging Biomarkers

Magnetic resonance imaging (MRI) of the brain and spine, with or without volumetric
analysis, was used in seventeen studies, diffusion tensor imaging (DTI) in seven studies and
magnetic resonance spectroscopy (MRS) in four studies (Table 6). MRI brain and spine dif-
ferentiated patients vs. controls in six studies and showed longitudinal change in only one
study [46]. No imaging parameters were used as outcome measures for interventional stud-
ies. MRI findings were found to correlate with SPRS scores in 3/4 of the studies, and DTI
findings correlated with SPRS scores in 2/3 of the studies (Supplementary Materials S2).
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Table 5. Biochemical Biomarkers.

Biomarker Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Serum and CSF NfL 6 6 (5) 1 (0) 0 (0)

Serum and CSF 25-OHC and 27-OHC 4 3 (2) 2 (0) 2 (2)

Blood(plasma) and CSF amino acids 2 1 (1) 0 (0) 1 (0)

Lipidomics: fibroblast and plasma 1 1 (1) 0 (0) 0 (0)

Citrulline 1 0 (0) 0 (0) 0 (0)

Glycosylceramide profile 1 0 (0) 0 (0) 0 (0)

Neurofilament heavy chain: CSF and serum 2 1 (1) 1 (0) 0 (0)

Autophagy-related protein (ATG9A) ratio 1 1 (1) 0 (0) 0 (0)

CSF Aβ 1–42, total tau, phospho tau 1 1 (0) 0 (0) 0 (0)

Mitochondrial DNA levels; Muscle biopsy 1 1 (1) 0 (0) 0 (0)

Cell morphomics 1 1 (1) 0 (0) 1 (1)

Scanning electron microscopy of hair shafts 1 1 (1) 0 (0) 0 (0)
1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Studies that had longitudinal data (Studies where outcome
measure was able to show disease progression); 4 Studies that included an intervention (Studies where outcome
measure showed a response to the intervention). Details of the included studies are in Supplementary Material S2.

Table 6. Neuroimaging Biomarkers.

Biomarker Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

MRI brain and spine 17 8 (5) 4 (1) 1 (0)

DTI 7 7 (7) 2 (1) 0 (0)

MRS 4 3 (2) 1 (0) 0 (0)

Ioflupane Single Photon Emission
Computed Tomography (SPECT) 1 0 (0) 0 (0) 0 (0)

1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Studies that had longitudinal data (studies where outcome
measure was able to show disease progression); 4 Studies that included an intervention (Studies where outcome
measure showed a response to the intervention). Details of the included studies are in Supplementary Material S2.

3.4.3. Neurophysiology Biomarkers

Motor evoked potentials (MEPs) and nerve conduction studies/electromyography
(NCS/EMG) were the most widely used neurophysiological markers, being used in ten
and nine studies, respectively (Table 7). Although MEPs were used as outcome measures
in three interventional studies, no changes in MEP results were demonstrated in response
to any of the interventions. NCS/EMG, somatosensory evoked potentials (SSEPs), visual
evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were mostly
used as descriptive measures with few studies using these measures to compare patients
versus controls, study longitudinal cohorts, or to evaluate interventions.

3.4.4. Other Biomarkers

We identified eight studies that utilized gait analysis—seven were laboratory-
based, and one was a mobile system [34] (Table 8). Four studies described the use
of an infrared multi-camera motion analysis system [28,47–49], one used pressure sen-
sors [50], and another two did not provide details of the gait analysis system used [51,52]



Genes 2023, 14, 1756 10 of 22

(Supplementary Material S1). Four interventional studies used gait analysis as an outcome
measure, with only two of those studies showing a response to the intervention [49,50]. Gait
analysis was able to differentiate patients with HSP from patients with spastic diplegia [47],
healthy controls [34,48] and pre-symptomatic HSP-SPAST carriers [28]. Gait parameters
also correlate with SPRS scores [28,34] (Supplementary Table S2).

Table 7. Neurophysiology Biomarkers.

Biomarker Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

MEPs 10 2 (1) 2 (0) 3 (0)

NCS/EMG 9 2 (0) 2 (0) 1 (0)

SSEP 5 1 (1) 0 (0) 0 (0)

VEP 2 0 (0) 0 (0) 0 (0)

BAEP 1 0 (0) 0 (0) 0 (0)
1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Studies that had longitudinal data (Studies where outcome
measure was able to show disease progression); 4 Studies that included an intervention (Studies where outcome
measure showed a response to the intervention). Details of the included studies are in Supplementary Material S2.

Table 8. Other Biomarkers.

Biomarker Studies 1
Control Group

(Patient vs. Control
Difference) 2

Longitudinal
(Disease

Progression) 3

Intervention
(Response to

Intervention) 4

Laboratory and mobile gait analysis 8 4 (4) 1 (1) 4 (2)

Spectral-domain optical coherence
tomography (SD-OCT) 4 0 (0) 2 (0) 0 (0)

Video-oculography and rotational
chair testing 1 1 (1) 0 (0) 0 (0)

Goniometer 2 0 (0) 0 (0) 1 (1)

Instrumented dynamic balance assessment 1 0 (0) 0 (0) 1 (1)

Urodynamic assessment 1 0 (0) 0 (0) 0 (0)

Video supported posturography 1 0 (0) 1 (0) 0 (0)

Protocol for Evaluation of Acquired Speech
Disorders (PADAF) 1 1 (1) 0 (0) 0 (0)

1 Total number of studies; 2 Number of studies that included a control group (Studies where outcome measure
showed a difference between patients and controls); 3 Studies that had longitudinal data (Studies where outcome
measure was able to show disease progression); 4 Studies that included an intervention (Studies where outcome
measure showed a response to the intervention). Details of the included studies are in Supplementary Material S2.

SD-OCT was investigated in four studies, with one study showing statistically signifi-
cant retinal nerve fiber layer (RNFL) thinning in patients compared to normative values
but no change over time (Table 8).

Video-oculography and rotational chair testing and speech assessment showed differ-
ences between patients vs. controls [53,54].

3.4.5. Genotype-Specific Biomarkers in HSP

We identified biomarkers that were specific to particular HSP genotypes (Table 9). The
most widely studied were serum and CSF oxysterols, 25- and 27-hydroxycholesterol (25-
and 27-OHC) levels, in HSP-CYP7B1 or SPG5. 25- and 27-OHC levels were significantly
elevated in the serum and CSF of patients compared to healthy controls. Plasma and serum
oxysterol levels were used as outcome measures in two clinical trials showing reduced
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levels with atorvastatin treatment but no clinical correlation [35,44]. Most genotype-specific
biomarkers were reported in single studies, with some studies (citrulline, lipidomics,
glycosylceramide profile, and scanning electron microscopy of hair shafts) having small
patient numbers (n ≤ 5).

Table 9. Genotype-specific biomarkers.

Biomarker Studies Genotype Finding

Serum hydroxycholesterols
[35,43–45] 4 HSP-CYP7B1 Higher 25- and 27-OHC levels in patients

compared to controls

Plasma citrulline [55,56] 2 HSP-ALDH18A1 Low citrulline levels in patients (n = 3 and n = 4)

Lipidomics [57] 1 HSP-PCYT2
Accumulation of plasma phosphatidylcholine

[O] etherphospholipids in patients (n = 3)
compared to controls (n = 20)

Glycosylceramide profile [58] 1 HSP-GBA2 Elevated glycosylceramide levels in affected
patient and carrier parent

ATG9A ratio (automated
high-throughput imaging) [59] 1 HSP-AP-4

Increase in ATG9A ratio (intracellular
distribution of ATG9A in trans-Golgi network

compared to the remainder of the cell) in patient
fibroblasts (n = 18) compared to asymptomatic

carriers (n = 14)

mtDNA levels [60] 1 HSP-SPG7
Reduced mtDNA levels from whole blood in

patients (n = 27) and carriers (n = 5) compared to
controls (n = 17).

Scanning electron microscopy of
hair shafts [61] 1 HSP-FAHN

Subtle to pronounced longitudinal grooves in
hair shafts from 4/4 patients and adhesive

plaques in 3/4 patients compared to controls.

3.5. Randomized Controlled Trials in HSP

We identified eight randomized controlled trials published over two decades
(Supplementary Material S3). Of note, 5/8 RCTs we reviewed were not included in previ-
ously published reviews.

Six studies used a crossover design, while two studies were parallel randomized
trials. Only two studies recruited patients with a single specific HSP genotype; the other
six included mixed and unknown genotypes. All studies had small sample sizes (range
8–49). Two studies did not define a primary outcome measure [37,62]. Four studies showed
a positive response to treatment. The outcome measures were heterogeneous, with no
consistency between studies despite six studies aiming to evaluate spasticity in response
to the intervention. The most common outcome measures used were the 10MWT and
modified Ashworth score, with two positive studies showing a significant improvement in
MAS with treatment [62,63]. Study durations were generally short—only one study had a
duration of more than 6 months [64]. There was no clear association between the duration
of the trial and response to the intervention.

4. Discussion

In this scoping review, we compiled a comprehensive list of outcome measures used in
HSP (Figure 2) and categorized them according to construct (Tables 2–8), with information
on key measurement properties. This is an important resource to inform the choice of
outcome measures for future clinical trials in HSP. We identified eighty-three outcome
measures highlighting the heterogeneity and inconsistency of outcome measures used. We
identify a need for standardized outcome measures and recommendations for use in clinical
trials, such as core outcome sets (COS) developed for other neurological conditions [19,65].
We identify common limitations of the included studies in this review (Figure 3) and list
the advantages and disadvantages of commonly used outcome measures (Table 10).
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Figure 2. Outcome measures for hereditary spastic paraplegia according to frequency reported
(Yellow 1–5 studies, Blue 6–10 studies, Red >10 studies). 4SMD or 4FMS—Four-stage functional scale
of motor disability; 6MWT var—Six minute walk test and variations; ABC scale—Activities-specific
Balance Confidence Scale; ACE—Addenbrooke’s Cognitive Exam; ALSFRS-R—Amyotrophic Lat-
eral Sclerosis Rating Scale Revised; AMB—Ambulatory score; AMBUS—Distance walked in meters
walked in 5 s without help; ATG9A ratio—Autophagy-related protein 9A ratio; BAEP—brainstem
auditory evoked potentials; BBS—Berg Balance Scale; BDI-V—Becks Depression Inventory;
BPI—Brief Pain Inventory; CANTAB—CANTAB cognitive assessment; CCFSw—Composite Cere-
bellar Functional Severity Score; Cognitive tests*—Verbal Learning and Memory Test, Farbe-
Wort-Interferenz Test, Trail Making Test Part A and B, Frontal Assessment Battery, revised
d2 Test of attention, Regensburg Word Fluency Test; CPCHILD—Caregiver Priorities and
Child Health Index of Life with Disabilities; CPQoL—Cerebral Palsy quality of life question-
naire; DIS—Disability score; DTI—diffusion tensor imaging; EQ-5D—EuroQoL 5 Dimensions;
FES-I—Falls Efficacy Scale-International; FIM—Functional Independence Measure; FMA-LE—Lower
extremity subclass of Fugl–Meyer assessment; GMFCS—Gross Motor Function Classification
Score; GMFM—Gross Motor Function Measure; HADS—Hospital Anxiety and Depression Scale;
ICIQ-LUTSqol—International Consultation of Incontinence Questionnaire lower urinary tract symp-
toms quality of life; ICIQ-ShortF—International Consultation of Incontinence Questionnaire Short
Form; Ioflupane-S—Ioflupane-single photon emission computed tomography (SPECT); Landmarks
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Dis—Landmarks of Disability; MAS—Modified Ashworth Scale; MEPs—motor evoked potentials;
MFI-20—Multidimensional Fatigue Inventory; MFIS—Modified Fatigue Impact Scale; mGAS—
Modified Goal Attainment Scale; MGFAQ—Modified version of Gillette Functional Assessment
Questionnaire; MMSE—Mini-Mental State Exam; MoCA—Montreal Cognitive Assessment; MRC—
Medical Research Council muscle strength; MRI—magnetic resonance imaging; MRS—magnetic
resonance spectroscopy; MRScale—Modified Rankin Scale; MSIS—Multiple Sclerosis Impairment
Scale; mtDNA—mitochondrial DNA load; NCS/EMG—nerve conduction studies/electromyography;
NfH—Neurofilament heavy chain; NfL—Neurofilament light chain; NPRS—Numeric rating scale
for pain; OHC—25 and 27 hydroxycholesterol; PADAF—protocol for evaluation of acquired speech
disorder; PHQ-9—Patient Health Questionnaire; SARA—Scale for Assessment and Rating of Ataxia;
scanning EM of hair shafts—scanning electron microscopy of hair shafts; SCOPA-AUT—Scale for Out-
comes in Parkinson’s Disease for Autonomic Symptoms; SD-OCT—spectral domain optical coherence
tomography; SF-36, SF-12—Short Form 36, Short Form 12; SPRS—Spastic Paraplegia Rating Scale;
SSEP—Somatosensory evoked potentials; TUG—Timed Up-and-Go test; UHDRS-IV—Unified Hunt-
ington’s Disease Rating Scale Part IV; VAS—Visual Analogue Score; VEP—visual evoked potentials;
Vestibular FT—video-oculography and rotational chair testing; WAIS-R—Wechsler Adult Intelligence
Scale-revisited; Walking HS—Walking Handicap Scale; Zung DS—Zung Depression Scale.
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Figure 3. Common limitations of studies of HSP outcome measures. * [66] A sample size of less
than fifty participants is defined as small in the COSMIN checklist. However, a smaller sample size
may be justified in the study design. For example, a randomized controlled trial of 14 patients with
HSP-CYP7B1 calculated an estimate of the effect size of treatment using a pre-specified biomarker to
determine the sample size required for adequate power [35].
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Table 10. Advantages and disadvantages of commonly used outcome measures for hereditary
spastic paraplegia.

Outcome Measure Advantages Disadvantages

SPRS

HSP-specific.
Validated against other measures of disability.
Cross-cultural validation [67,68].
Longitudinal measurement [30,33,35,69].

Not validated in a pediatric cohort.
Inter-rater reliability only measured between two
raters from same center [67].
Requires 10 m space and stairs to measure
walking time.

SPATAX-EUROSPA
disability score HSP-specific. Not validated.

Does not measure pain, bladder or bowel function.

Modified Ashworth
scale

Accessible.
Moderate reliability [70].

Potential for inter-rater variation particularly for
lower limb assessment [70].
Variation depends on when test is performed
(e.g., the timing of anti-spasticity medication).

6MWT, 10MWT, TUG
and variations Accessible.

Not suitable for patients who are unable
to mobilize.
Potential variation depending on hallway lengths
used due to time taken to change directions [71].

SF-36

Validated [72].
Published population norms [73].
Some versions easily accessible.
Cross-cultural validity [73,74].
Demonstrated worse QoL in patients with HSP
compared to controls [74,75].

Generic and does not address HSP-specific aspects
of QoL.

EQ-5D

Validated [76].
Easily accessible.
Cross-cultural validity [76].
Published population norms.

Generic and does not address HSP-specific aspects
of QoL.
Not as widely used as SF-36 in HSP population.

Serum and CSF
neurofilament light
chain (NfL)

Able to distinguish patients vs. controls,
pre-symptomatic and symptomatic patients
[29,77,78].

Non-specific, elevated in other conditions such as
ALS, Alzheimer’s dementia, Parkinson’s Disease [79].
CSF collection requires an invasive procedure with
potential adverse effects, such as a
low-pressure headache.

27 and 25
hydroxycholesterol
(OHC)

Specific to SPG5 (HSP-CYP7B1).
Decrease in serum and plasma 27-OHC levels in
response to atorvastatin [35,44].
Good diagnostic biomarker.

Biochemical response to treatment not reflected in
clinical benefit as measured with SPRS.
Role as prognostic or monitoring biomarker yet to
be determined.

MRI brain and spine

Accessible.
Volumetric analysis showed atrophy in certain
parts of the brain or spine in patients with HSP
[29,31,43,80].

Heterogenous findings between and
within genotypes [81].

DTI

Abnormal in patients vs. controls (see
results section).
Correlate with other outcome measures [82–84].
Imaging can be performed with most
MRI machines.
Able to identify axonal damage not seen on MRI.

No longitudinal data.
Requires analysis by experienced personnel.

MEPs

Able to measure upper motor neuron
abnormalities seen in HSP [85].
Lower limb CMCT abnormal in 78% patients
with HSP [86].

Inconsistent findings across various studies [86].
Requires specialized equipment and
technical expertise.
Some patients may find MEP studies
uncomfortable.
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Table 10. Cont.

Outcome Measure Advantages Disadvantages

NCS/EMG Majority of patients with HSP-SPG11 have
axonal neuropathy [31,33]. Inconsistent findings across various studies.

Gait analysis

Able to differentiate patients vs. controls
(see results).
Able to demonstrate response to intervention
[49,50].
Correlate with SPRS scores [28,34].
Mobile gait analysis system able to show disease
progression over time [87].

Require expensive equipment.
Data analysis can be complex depending on
parameters used.
Not suitable for participants who are unable
to walk.

Retinal nerve fiber layer
with OCT Abnormal in 39% of patients with HSP [88].

No change in RNFL over time.
No clinical correlation with SPRS.
Inconsistent findings [88].

4.1. Recommendations for Future Research
4.1.1. Choice of Outcome Measure

This scoping review is the first comprehensive reference of outcome measures available
for HSP according to outcome/construct. Based on our findings, we propose that a COS
include a CROM—SPRS, PROM—SF36, and an objective biomarker—DTI, gait analysis or
serum/CSF NfL.

We recommend the SPRS as it was the most commonly used CROM in HSP-related
studies, has undergone psychometric testing in a cohort of individuals with HSP [67], has
demonstrated cross-cultural validity [68], has been tested for responsiveness in longitudinal
and interventional studies [30,33,35,62,64,69,89], and is a disease-specific outcome measure.
In addition, it includes an assessment of motor function, and therefore, a performance
outcome measure (PerfOM) for motor function is not required. However, we note that
SPRS was not designed for use in the pediatric population, and therefore, we identify a
need for a validated pediatric HSP-specific CROM.

We recommend the SF-36 as the most suitable PROM as it was commonly used in
HSP-related studies, is well-validated in healthy controls and other conditions [72], has
cross-cultural validity in the HSP population [73,74], and correlates with disease severity
as measured with the SPRS [75,90,91] and gait analysis [34]. However, we note that the
SF-36 is a generic QoL measure and may not be sensitive to smaller changes in HSP-
specific symptoms, such as spasticity and bladder function, that are likely key targets for
intervention in future HSP trials [92]. Therefore, we identify a need for an HSP-specific
QoL scale to address the need for more sensitive tools, particularly when evaluating small
changes in response to treatment in a slowly progressive condition. These findings are
echoed by a recent study of CROMs and PROMs in HSP, identifying the SPRS as a suitable
CROM to measure disease progression and the need for an HSP-specific PROM [89].

Diffusion tensor imaging, gait analysis, and neurofilament light chain levels are
promising objective biomarkers likely to be suitable for use in clinical trials. However,
further studies are needed to establish the sensitivity and specificity of these biomarkers
in HSP, including longitudinal studies. Biomarkers identified through knowledge of
disease pathways in specific HSP genotypes can aid in the diagnosis and measurement
of treatment response. Abnormal plasma and CSF 25- and 27-OH levels are seen in
individuals with HSP-CYPB1 (SPG5) and responded to treatment with statins [35,44]. More
recently, two groups used different approaches to differentiate individuals with HSP-SPAST
(SPG4) from healthy controls by analyzing peripheral blood mononuclear cells. Our group
demonstrated reduced levels of acetylated α-tubulin seen on flow cytometry [93], while
another group showed increased distance between cell and nucleus centroids on automated
image analysis [94]. Both studies used surrogate markers of microtubule dysfunction based
on the known role of spastin in regulating microtubule dynamics in HSP-SPAST. These
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findings highlight the need for further research to identify genotype-specific biomarkers
that are more likely to be sensitive and specific for particular HSP genotypes. For the
evaluation of existing outcome measures or the development of new outcome measures,
we recommend referring to published guidelines [19] to ensure validity and reliability.
Development of a COS for HSP should be informed by published recommendations, COS-
STAD, to ensure that the included outcome measures meet minimum standards [95].

4.1.2. Recommendations for Trial Design

Recommendations for HSP clinical trial design will improve the quality and consis-
tency of reporting of evidence to strengthen conclusions drawn from clinical trials. We
identify a need for larger sample sizes in HSP studies, a particular challenge when studying
rare conditions. International, multi-center collaborations are a potential solution to sample
size challenges and have the added benefit of cross-cultural applicability of study results.
It is important for outcome measures chosen to be available in different languages, relevant
in different populations, and feasible for use in low-resource settings. Biomarkers that can
be collected at recruitment sites and analyzed in a central facility are ideal for multi-center
trials to improve the standardization of data. Although studies of single HSP genotypes
are ideal for consistency within target populations, this may not be feasible when trying to
attain large sample sizes. Therefore, a grouping of HSP genotypes or other neurodegenera-
tive disorders according to similar underlying disease pathophysiology may allow for more
efficient research of targeted therapeutic agents. Clinical trials for HSP may require longer
periods of treatment and follow-up to demonstrate significant treatment effects, particularly
in the more slowly progressive genotypes, such as HSP-SPAST. Using a combination of
multiple outcome measures and biomarkers can account for phenotypic variability, even
within the same genotype. It may improve the chance of detecting a treatment effect signal
in heterogeneous patient cohorts.

4.1.3. Study Limitations

A limitation of this study was the use of the search terms “outcome measure” and
“biomarker”, which inevitably missed relevant studies [19]. When planning our study
design, we considered the volume of search results from individual searches for each
outcome, e.g., spasticity, mobility, neuroimaging, etc. and deemed that approach unfeasible.

Systematic reviews on specific outcome measures have been published previ-
ously [81,86,96,97] and provide information on the utility of these outcome measures.
Due to the nature of a scoping review, we were unable to perform qualitative analysis of
each outcome measure to assess validity and reliability. Therefore, a systematic review
specific to an outcome measure is required to answer this question. Our review identifies
outcome measures that require further validation and provides an overview of the currently
available literature surrounding the identified outcome measures.

5. Conclusions

In this scoping review, we present a critical assessment of currently available outcome
measures for use in HSP clinical trials. We discuss the benefits and limitations of commonly
used outcome measures and propose areas for further research. Given the emergence of
multiple candidate HSP therapies in recent years [35,44,98], there is an urgent need for
further development of a core set of validated and standardized outcome measures for use
in HSP clinical trials to test the efficacy of these therapies.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes14091756/s1; Supplementary Material S1: List of the included
studies in scoping review; Supplementary Material S2: Table of HSP outcome measures and biomark-
ers; Supplementary Material S3: Comparison of Randomized controlled trials in HSP.
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Appendix A

All database searches performed on 9 August 2022.

Embase search
Embase Classic <1947 to 1973>
Embase <1974 to 9 August 2022>

1. spastic paraplegia/or spastic para*.mp. 11219
2. hereditary motor sensory neuropathy/or hereditary spastic parap*.mp. 13564
3. 1 or 2 21406
4. pharmacological biomarker/or biomarker*.mp. or biological marker/ 660089
5. patient-reported outcome/or outcome assessment/or “outcome measure*”.mp. or

“quality of life”/ 1469067
6. 4 or 5 2095172
7. 3 and 6 1267
8. remove duplicates from 7 1256

Medline search
Ovid MEDLINE(R) ALL <1946 to 9 August 2022>

1. Spastic Paraplegia, Hereditary/or “spastic para*”.mp. 6979
2. Spastic Paraplegia, Hereditary/or “hereditary spastic para*”.mp. or Paraparesis,

Spastic/ 2875
3. biomarker*.mp. or Biomarkers, Pharmacological/or Biomarkers/ 719216
4. “outcome measure”.mp. or Outcome Assessment, Health Care/ 147938
5. “patient reported outcome measure”.mp. or Patient Reported Outcome Measures/ 13303
6. 1 or 2 7101
7. 3 or 4 or 5 873824
8. 6 and 7 199

Scopus search
TITLE-ABS-KEY ((“hereditary spastic parap*” OR “spastic parap*”) AND (biomarker* OR
“outcome measure*”))
210 results
Web of Science search
(“hereditary spastic parap*” OR “spastic parap*”) AND (biomarker* OR “outcome measure*”)
230 results
Central Cochrane Database
EBM Reviews—Cochrane Central Register of Controlled Trials <July 2022>

1. “hereditary spastic paraplegia”.mp. or Spastic Paraplegia, Hereditary/ 35
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