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Abstract: Genetics researchers increasingly combine data across many sources to increase power
and to conduct analyses that cross multiple individual studies. However, there is often a lack of
alignment on outcome measures when the same constructs are examined across studies. This inhibits
comparison across individual studies and may impact the findings from meta-analysis. Using a
well-characterized genotypic (brain-derived neurotrophic factor: BDNF) and phenotypic constructs
(working memory and reading comprehension), we employ an approach called Rosetta, which
allows for the simultaneous examination of primary studies that employ related but incompletely
overlapping data. We examined four studies of BDNF, working memory, and reading comprehension
with a combined sample size of 1711 participants. Although the correlation between working memory
and reading comprehension over all participants was high, as expected (ρ = 0.45), the correlation
between working memory and reading comprehension was attenuated in the BDNF Met/Met
genotype group (ρ = 0.18, n.s.) but not in the Val/Val (ρ = 0.44) or Val/Met (ρ = 0.41) groups. These
findings indicate that Met/Met carriers may be a unique and robustly defined subgroup in terms
of memory and reading comprehension. This study demonstrates the utility of the Rosetta method
when examining complex phenotypes across multiple studies, including psychiatric genetic studies,
as shown here, and also for the mega-analysis of cohorts generally.

Keywords: data harmonization genetics; latent traits; missing data; brain-derived neurotrophic
factor; working memory; reading comprehension

1. Introduction

Comparisons of primary data across studies, as well as meta-analysis, have difficulty
effectively managing the variability measurement that naturally occurs across primary
studies [1–3]. This variability can be substantial, involving nonoverlapping constructs
across studies but also differences in measurement of the same constructs. Often, these
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differences can be subtle [4] but nevertheless meaningful, especially when making con-
clusions from a large literature for their theoretical or clinical applications. The resulting
lack of alignment of measurement across studies has the potential to distort meta-analytic
studies and can also force difficult decisions for researchers trying to conduct joint primary
analyses across multiple datasets [4].

For example, brain-derived neurotrophic factor (BDNF) has drawn particular attention
in the literature for its wide-ranging effects on the central nervous system, including
significant associations with schizophrenia [5–7], depression [8] and anxiety [9,10], mood
disorders [11,12], bipolar disorder [13,14], and cognition [15,16]. Subsequent work has
begun to elucidate the neurobiological and proteomic pathways of BDNF [17–21]. Most
of these studies focus on SNP rs6256, a functional single nucleotide polymorphism which
results in a valine to methionine substitution (val66met), leading to reduced mature BDNF
expression [22]. These statistical relationships often demonstrate moderator effects on
phenotypes or statistical interactions and perhaps even epistatic interactions as opposed to
main effects [8,23–25]. There are numerous meta-analyses of BDNF [5,8,16,26,27], which is
the preferred method of comparing results across studies.

Though highly useful and informative, meta-analysis has some limitations. First,
meta-analysis does not directly assess person-level variability, instead examining vari-
ability across the selected studies. More fundamentally, meta-analysis, as well as most
comparisons of primary data across studies, has difficulty effectively managing the variabil-
ity measurement that naturally occurs across primary studies [1–3]. This variability can be
substantial, involving nonoverlapping constructs across studies but also differences in mea-
surement of the same constructs. Often, these differences can be subtle [4] but nevertheless
meaningful, especially when making conclusions from a large literature for their theoretical
or clinical applications. The resulting lack of alignment of measurement across studies
has the potential to distort meta-analytic studies and can also force difficult decisions for
researchers trying to conduct joint primary analyses across multiple datasets [4].

In the case of BDNF, meta-analysis limitations impinge on clinical studies, especially
given that the relationships among BDNF and complex human traits appear to be mod-
erated effects as opposed to main effects. This is true for all meta-analyses that compare
the impact of gene variants across multiple studies. This is especially true when allelic or
genotypic frequencies are uncommon or rare. Single studies often have reduced power to
study uncommon and rare variants. When a variant is observed by independent research
groups, a method that best combines data across those groups is desirable.

The present study addresses two goals. First, we employ a novel analytical approach
that uses a flexible platform to examine the relationships among gene variants and phe-
notypes across multiple studies using primary data. This method is called Rosetta [4]
and it is freely available as the rosettaR package v 0.1 for the R programming language
(https://github.com/cwbartlett/rosettaR (accessed on 23 June 2023)). We apply this
method to four datasets that had genotype data and our cognitive phenotypes of in-
terest to assess the effects of BDNF on complex cognition. Second, we compare the results
of meta-analysis to Rosetta and highlight the difference between the two approaches for
combining data. Overall, the current analysis examines five independent studies to further
define the relationships among BDNF, memory, and reading comprehension. This study
demonstrates the usefulness of the Rosetta approach, which not only provides a powerful
tool for examining genetic effects across different studies and multiple measurement do-
mains but is also applicable to nongenetic studies. This study also tests a hypothesis that is
important to the language genetics literature. Namely, we hypothesize that language and
reading measures are correlated within the Val/Val and the Val/Met BDNF groups but not
within the Met/Met group.

2. Materials and Methods

To combine data, we used a latent trait approach, which refers to a method that
analyzes an unobserved (latent) trait based on observable or measured behavioral responses.

https://github.com/cwbartlett/rosettaR
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This approach was used to create a set of analyzable traits that represent each underlying
phenotypic construct, where each latent trait is on the same scale within the construct
and across datasets. This approach, called Rosetta, allows for a joint analysis across all
datasets, often called a mega-analysis. While our focus is on psychiatric genetics and the
example dataset focuses within this domain (i.e., memory and reading comprehension),
we only used those data as a real-world example of how Rosetta can be applied to genetic
datasets with varied phenotypes across datasets. The use of latent factor modeling has
the advantage of (1) generating a common metric for the analysis of each construct that
we then used for a single mega-analysis and (2) reducing measurement error through
the combination of multiple measures of each construct. Each study was also analyzed
separately to assess patterns across the datasets.

Overview of the Rosetta method [4]: Rosetta is an analytical framework that utilizes
the underlying mathematics of confirmatory factor analysis (CFA) to process data. Differing
from traditional CFA, Rosetta does not perform hypothesis testing, instead employing the
same math to apply constraints for the linear combination of weights applied to phenotypes,
ultimately deriving a set of latent factors. The algorithm’s novelty lies in its ability to
handle partially overlapping datasets. Rosetta estimates correlations between all measures,
performing eigendecomposition for factor loadings and communalities. Structural equation
modeling (SEM) is then applied to maintain correlation constraints across datasets, ensuring
consistent factor equality across datasets. The resultant factor scores represent the same
underlying latent factor, where the datasets can be combined for comprehensive analysis.

As an overview of the study methods, we combined data from four independent studies
including measures for the behavioral constructs of working memory and reading compre-
hension along with genetic data for BDNF. To combine data, we used Rosetta to create a set of
latent traits for each underlying construct (i.e., memory and reading comprehension). Each
latent trait is on the same scale across datasets. Within each study, working memory and
reading comprehension were assessed with (partially) nonoverlapping measures (Table 1).
The use of latent factor modeling has the advantage of both generating a common metric
for the analysis of each construct that we used for a single mega-analysis and also reducing
measurement error through the combination of multiple measures of each construct. Each
study was also analyzed separately to assess patterns across the datasets. Table 1 shows
the specific measures, by study, for memory and reading comprehension included in the
respective latent factors. We tested the correlation of reading comprehension and memory
by BDNF genotypes (i.e., three genotypic groups). A permutation test was implemented to
assess if the observed pattern of correlations was significant.

2.1. Component Studies

We combined data from four independent studies including measures for the behav-
ioral constructs of working memory and reading comprehension along with genetic data
for BDNF. Within each study, working memory and reading comprehension were assessed
with (partially) nonoverlapping measures (Table 1). Table 1 shows the specific measures,
by study, for memory and reading comprehension included in the respective latent factors.

The Western Reserve Reading and Math Project (WRRMP) is an ongoing longitudinal twin
study consisting of a community-based sample of both monozygotic and same/opposite
sex dizygotic twins followed for over 10 years beginning at age 5 [28,29].

The New Jersey Language-Autism Genetic Study (NJLAGS) is a collection of nuclear and
extended families that segregate both autism and specific language impairment in each
pedigree [30,31].

The Biology of Language Study (BLS) is an ongoing study of the genetics of specific
language impairment conducted in 31 nuclear and extended pedigrees ascertained for
multiple family members with language impairment [32,33].

The Colorado Learning Disabilities Research Center (CLDRC) is an ongoing collection of monozy-
gotic and dizygotic twins ascertained for reading disability, attention-deficit/hyperactivity disor-
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der, and other learning disabilities [34]. Study name, sample sizes, and SNP-genotyping platform
for each component study can be found in the online supplement (Table S1).

Table 1. Measures grouped by latent factor and dataset.

Factor Measure WRRP NJLAGS BLS CLRDC

W
or

ki
ng

M
em

or
y

Fa
ct

or

CLEF Recalling Sentences X * X
CTOPP Nonword

Repetition X X X

Memory for Digits X
Digit Span X X X
Coris Block X

CTOPP Ellision X X X
Memory for Sentences X X

Backward Span (35)
Backward Span (58)
Backward Span (90)

Backward Span (Sum)

R
ea

di
ng

C
om

pr
eh

en
si

on
Fa

ct
or

Passage Comprehension
(Woodcock) X X

Reading Comprehension
PIAT X X

Gray Oral Reading Test
(Comprehension) ** X

M
at

h/
R

ea
di

ng
Fa

ct
or

WJ Word Attack X X X
WJ Word Identification X X X

WJ Applied Problems X
* X indicates a measure is in the given dataset. ** Measures unique to a study are italicized.

2.2. Statistical Analysis

We conducted all statistical analysis with the R statistical language v4.2.1 [35] in the
RStudio integrated development environment v2022.07.2 [36] with the standard libraries
unless otherwise noted. We assessed Hardy–Weinberg equilibrium for BDNF genotypes
per study using the standard χ2 test implemented in HardyWeinberg package v1.7.2 [37].
Assessing the equality of genotype frequencies across all studies was also conducted with
a χ2 test. To test the main effects of BDNF SNP rs6265, we conducted linear regression
analysis assuming an additive allelic effect. Since persons in the same family are correlated
observations, to account for familial relationships, we implemented a repeated sampling
across family units to maintain independence of observations while also adjusting for error
in estimates.

To combine datasets, we used the Rosetta method [4] to create two common latent
traits, one for working memory and one for reading comprehension. Rosetta creates latent
traits using the modified factor analytic method described elsewhere [4]. Briefly, Rosetta
processes datasets that have imperfectly matched measurements of the same underlying
constructs. In the usual application of Rosetta, the required correlation matrix input for the
factor analysis is calculated using all possible slices across the datasets to create a complete
pairwise correlation matrix while maximizing the sample size per slice. In the present case,
NJLAGS had a unique reading comprehension measure (i.e., a measure that appears only
in one study, see Table 1). In this case, an additional numerical procedure was included to
complete the pairwise correlation matrix. The matrix was numerically evaluated to assess if
it was positive definite (PD, a requirement for the linear algebra of factor analysis whereby
matrices must have eigenvalues > 0) at each iteration. The Frobenious distance between
the current matrix and the nearest PD matrix using Higham’s method was minimized [38],
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requiring convergence to be achieved in less than 500 iterations. The function was optimized
using the limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm
that is commonly applied in numerical statistics and implemented in the optim function
from the standard R stats package.

Rosetta allows the input of a preferred factor structure, if such information is known
from the literature. In Table 1, we show our chosen factor constituents by dataset. All
previously identified, highly related measures available in each dataset were included in
each factor. To help scale the reading comprehension factor for NJLAGS, we added an
additional related factor with overlap between datasets, including single-word reading and
math problem-solving.

Within each dataset, we analyzed correlations between the Rosetta output factors for
memory and reading comprehension stratified by genotype using the standard Pearson’s
product-moment correlation by genotype.

To assess the null hypothesis that all three BDNF-genotype subsets have the same
correlation as when all three genotypes are analyzed jointly, we performed a parametric
bootstrap analysis by dataset. Using the observed working memory and reading compre-
hension data, we randomly selected subjects without replacement to subgroups of size
equal to the original BDNF-genotype subsets. Correlations were calculated by subgroup
for each bootstrap replicate (in the same way as the original real analysis). The value of the
correlation by subgroup was collated into a file for further analysis in the next step, for a
total of 10,000 bootstraps (10,000,000 to assess all studies combined). Next, we calculated
the standard deviation of the three correlations per replicate to assess the distribution of
deviations assuming no effect of the genotype. The permutation subgroups were chosen
randomly without regard to any genetic information, which necessarily assumes the cor-
relation is constant between the subgroups. This empirical distribution can be used as
the basis for null hypothesis testing by comparing the observed difference in correlations
across genotypes with the distribution derived from the bootstraps. In this case, the p-value
represents how often a deviation equal to, or larger than, the observed deviation is expected
by chance if BDNF had no effect on the correlation between memory and reading. We used
p < 0.05 as the cut-off for significance.

3. Results

To examine the relationship between BDNF and assessments of working memory
and reading comprehension across the WRRMP, NJLAGS, BLS, and CLDRC studies, we
analyzed the genotype at SNP rs6256. To test if BDNF had a main effect on working
memory and/or reading comprehension, the Rosetta output for working memory and
reading comprehension factors were regressed onto BDNF rs6265 genotypes (Table 2).
Genotype quality control was conducted within each study (see Methods) and each of the
four studies—WRRMP, NJLAGS, BLS, and CLDRC—were in Hardy–Weinberg equilibrium
(p > 0.05). No regressions of either working memory or reading comprehension on rs6265
were significant either by dataset or in the mega-analysis of all datasets.

Next, to test whether our initial observation of a weak or absent correlation between
reading comprehension and working memory for BDNF Met/Met carriers in Canadian
families of Celtic ancestry could be replicated, we examined correlations between the four
studies. In all datasets, the individuals with the rs6265 genotype leading to homozygous
Met/Met lack a significant correlation between the reading comprehension and working
memory measures, while those measures are significantly correlated in individuals with
the other genotypes (just as in the analysis of all genotypes jointly). The results also hold
for all samples in the analysis (see All Samples in Table 3). Given the pattern of correlation
between working memory and reading comprehension for individuals with Val/Val and
Val/Met variants but not for individuals with Met/Met variants, we next sought to assess
how rarely this configuration occurs under the null hypothesis.
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Table 2. Regression of BDNF SNP rs6265 on cognitive traits.

Dataset Trait R2 p-Value

WRRP Reading Comprehension 0.0 0.30
Memory 0.0 0.45

NJLAGS Reading Comprehension 0.0 0.12
Memory 0.0 0.46

BLS Reading Comprehension 0.0 0.79
Memory 0.0 0.59

CLRDC Reading Comprehension 0.0 0.28
Memory 0.0 0.93

All Samples Reading Comprehension 0.0 0.92
Memory 0.0 0.06

Table 3. Correlations between latent traits for working memory and reading comprehension by
subset and genotype.

Sample Statistic All
Genotypes

Val/Val
C/C

Val/Met
C/T

Met/Met
T/T

WRRP Correlation 0.36 0.41 0.37 −0.14
N 290 177 96 17
p-value 4 × 10−10 9 × 10−9 2 × 10−4 0.57

NJLAGS Correlation 0.58 0.63 0.56 0.23
N 334 203 110 21
p-value 1 × 10−33 3 × 10−24 9 × 10−11 0.31

BLS Correlation 0.45 0.42 0.53 0.12
N 320 219 92 9
p-value 1 × 10−17 4 × 10−11 3 × 10−8 0.76

CLRDC Correlation 0.26 0.27 0.26 −0.09
N 767 506 228 33
p-value 1 × 10−13 1 × 10−10 6 × 10−6 0.61

All Samples Correlation 0.45 0.44 0.41 0.18
N 1711 886 434 71
p-value 3 × 10−85 1 × 10−41 1 × 10−18 0.13

Significant p-values are italicized.

Assuming no effect of rs6265 on the correlation of reading comprehension and working
memory, a permutation procedure can be used to derive an empirical null distribution.
Random subsets of subjects are expected to have the same correlation on average as the
dataset from which they were randomly selected. This assertion can be used to derive the
counterfactual for this study. If we assume that the rs6265 T/T genotype (corresponding
to Met/Met) has the same correlation as the other two genotypically defined groups, we
can calculate the probability that only one genotype out of the three would randomly have
a reduced correlation through parametric bootstrapping (results are shown in Table 4).
The permutation p-values by study all indicate that the pattern of correlations is rare (i.e.,
C/C and C/T groups are correlated but T/T is not) and even with Bonferroni correction
(p < 0.01), all four studies are significant. When assessing all samples combined, the
permutation test was likewise significant (p < 4 × 10−4).
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Table 4. Permutation tests by subset and combined.

Dataset N Permutation p-Value Avg
“val/val”

Avg
“val/met”

Avg
“met/met”

WRRP 290 0.0023 0.356 0.355 0.349
NJLAGS 334 0.0006 0.582 0.579 0.559
BLS 320 0.0112 0.453 0.448 0.415
CLRDC 767 <0.0001 0.263 0.268 0.321

ALL 1711 4 × 10−4 0.42 0.42 0.43

4. Discussion

This study was designed to demonstrate how Rosetta can be applied to a common
problem in consortium data analysis, namely, the situation where a researcher seeks a larger
sample size by combing datasets that do not have identical measurement strategies. This
situation is not unique to genetics, though this study includes a demonstration from that
domain. One goal of this work was to continue to adapt the rosettaR package to real-world
situations, such as the complication mentioned in the Methods section detailing how the
differing measurement strategies across studies can induce numerical complications, which
the rosettaR package can now handle. Working on real data also highlights a practical
matter, in that Rosetta scores are on a common scale so graphing all component studies on
one graph greatly highlights the effect being studied.

In terms of the types of data where Rosetta is likely to be helpful, its foundation is that
of latent trait analysis, so the same guidelines are practical to employ in this context [39].
(1) A sample size of at least 300 is often suggested, and in the context of genetics, this
is not an issue since larger samples are needed for almost all study designs. (2) The
correlation of phenotypes within each latent trait and also the correlation between latent
traits should be significant and replicable. Ideally, the average within correlations is greater
than 0.3 and between correlations may be lower. There are not strict cut-offs as each cluster
of phenotypes in a real setting will have other subtitles to consider, but it is clear that
the phenotypes across studies are not highly correlated; then, any analysis, including
both meta-analysis and Rosetta, would not be reasonable. (3) The correlation across the
phenotypes needs to be estimable from the data or leverage outside data such as published
norms. Unique situations where no measurement overlaps across any study would not
allow correlations to be calculated and would not allow Rosetta to be applied. Given these
general conditions, Rosetta may offer modeling advantages over meta-analysis.

With respect to BDNF, genotypes underlying Val/Val and Val/Met groups show
correlations between working memory and reading comprehension, but we found no
evidence for correlation in individuals with Met/Met variants in any single dataset, nor
in the combined dataset. Variants that mediate the correlation between gene transcription
traits have been observed previously [40] (often called relationship quantitative trait loci or
rQTLs [41]), but finding this genetic mechanism for modulating the relationship between
two human cognitive quantitative traits is novel. Further research is required to disentangle
BDNF-associated working memory as either (1) a support for reading comprehension in
general versus (2) a possible compensation mechanism for reading comprehension-related
deficits that is not available for persons that are Met/Met but is available for persons that
are Val/Val or Val/Met. This is a recessive pattern of inheritance, whereby the effect is only
seen with two copies of Met and no effect is seen with only one copy of Met.

Taken together, the conservative interpretation of our findings is that BDNF Met/Met
attenuates the correlation between reading comprehension and memory such that a corre-
lation was not detectable in our study, if indeed the correlation is greater than zero. Larger
studies using Rosetta to combine datasets, and possibly meta-analyses when the primary
data are not available, will be required to estimate BDNF Met/Met attenuation with greater
precision, or to conclude that the correlation is truly negligible (or zero). Our research
suggests that Met/Met carriers are a unique and robustly defined subgroup in terms of
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memory and comprehending written language. Further studies of this subgroup will eluci-
date the role of BNDF-associated memory in oral and written language learning. Though
more research will be needed to explain how BDNF-associated memory resolves between
reading comprehension and working memory, this study provides further evidence for
the existence of BDNF-dependent memory processes in human cognition, a topic that may
rapidly develop since animal models are already available.

5. Conclusions

This study demonstrates the versatile capabilities of Rosetta in assessing relationships
between gene variants and cognitive phenotypes across multiple studies, offering an inno-
vative approach to consolidating disparate datasets. Despite the complexities presented
by varying measurement strategies, Rosetta proves adept in handling these numerical
complications, allowing for the integration of all study components into one graph for
enhanced interpretation and one model for modeling flexibility. Given the appropriate
sample size and correlation conditions, Rosetta could serve as an alternative model to tradi-
tional meta-analysis, enhancing the scope of genetic studies and facilitating the exploration
of nuanced trait correlations [16].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14091748/s1, Table S1: component dataset characteristics.
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