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Abstract: Leaf sheath blight disease (SB) of rice caused by the soil-borne fungus Rhizoctonia solani
results in 10–30% global yield loss annually and can reach 50% under severe outbreaks. Many disease
resistance genes and receptor-like kinases (RLKs) are recruited early on by the host plant to respond
to pathogens. Wall-associated receptor kinases (WAKs), a subfamily of receptor-like kinases, have
been shown to play a role in fungal defense. The rice gene WAK91 (OsWAK91), co-located in the major
SB resistance QTL region on chromosome 9, was identified by us as a candidate in defense against rice
sheath blight. An SNP mutation T/C in the WAK91 gene was identified in the susceptible rice variety
Cocodrie (CCDR) and the resistant line MCR010277 (MCR). The consequence of the resistant allele C
is a stop codon loss, resulting in an open reading frame with extra 62 amino acid carrying a longer
protein kinase domain and additional phosphorylation sites. Our genotype and phenotype analysis
of the parents CCDR and MCR and the top 20 individuals of the double haploid SB population
strongly correlate with the SNP. The susceptible allele T is present in the japonica subspecies and
most tropical and temperate japonica lines. Multiple US commercial rice varieties with a japonica
background carry the susceptible allele and are known for SB susceptibility. This discovery opens the
possibility of introducing resistance alleles into high-yielding commercial varieties to reduce yield
losses incurred by the sheath blight disease.

Keywords: rice; leaf sheath blight resistance; R. solani; transcriptome; WAK91; wall-associated kinase;
plant disease resistance; plant pathology; genomics; double haploid population

1. Introduction

The genetic arms race between pathogens and host plants has been an ongoing tug-
of-war for millennia. The “battles” are disruption of pathogen recognition, molecular
interactions, signaling, and information transmission on a subcellular level. One such battle
occurs between rice, an important crop that feeds 50% of the global population [1], and the
soil-borne pathogen R. solani, which causes leaf sheath blight disease (SB) [1–6]. Leaf sheath
blight is a major disease of rice that negatively affects crop yield and quality. Identified by
the lesions on the leaf sheath [7,8], SB causes leaves and tillers (secondary shoots) to undergo
early senescence, drying out, and tissue death. Ultimately, the significant loss in leaf area
due to infection affects the plant’s photosynthetic ability, reducing biomass and yield. No
known rice cultivars are fully resistant to leaf sheath blight disease [9–11]. Planting high-
production rice varieties susceptible to SB in the United States resulted in significant yield
losses [6] in a severe breakout season. In 2021, approximately 23% of the rice planting area
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in the United States was sprayed with fungicide [12], which incurs unsustainable economic
costs for farmers [13]. Spraying may also pose severe ecological constraints on animals and
microbiomes that coinhabit or frequently visit rice fields [14]. Classified as a soil-borne
basidiomycete fungus, R. solani is a destructive plant pathogen [15]. In addition to its
impact on rice, R. solani infects other important crops, such as soybean, barley, sorghum,
tomato, and maize [16]. Although R. solani rarely produces spores for mobility, its sclerotia
can survive in the soil for up to two years [17]. Flooding in paddy fields, as a standard
practice or natural occurrence combined with a highly humid environment, causes sclerotia
to spread and attach to the plant, causing the disease in susceptible varieties.

Currently, SB disease management relies heavily on fungicide spray [8]. This ap-
proach may not be the most sustainable due to potential resistance developing in R. solani
populations and pollution of agricultural resources [16]. For example, in 2012, a strain of
R. solani, resistant to the strobilurin class of fungicides used in rice farming, was isolated in
Louisiana, USA [18,19]. A more sustainable approach to disease management is to breed
genetic resistance to SB in commercial varieties. In this RNA-Seq-based transcriptome
study, we compared the two rice lines, a Louisiana variety, SB-susceptible Cocodrie (CCDR,
PI 606331) [20], and resistant MCR010277 (MCR, PI 641932) [21] (Figure 1A), examining
their response to R. solani infection at multiple time points, including Day 0 (untreated
control) and Days 1, 3, and 5 after inoculation.
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vs. Day 1, Day 3, Day 5. 

Bioinformatics analysis was used to profile variety- and time-point-specific differen-
tial expression of all rice genes, focusing on those found near known SB resistance QTL 
on chromosome 9 [22,23]. We aligned the transcriptome sequence reads to the reference 

Figure 1. Phenotype and gene expression comparison between the susceptible Cocodrie (CCDR) and
the resistant MCR010277 (MCR) rice lines across time points in response to the pathogen Rhizoctonia
Solani (strain LR172). (A) The rice leaf sheath blight disease response shown by the parent lines MCR
and CCDR, and the SB2-174 individual of the SB2 double haploid population. (B) The number of
differentially expressed genes between the two parent lines when compared to Day 0 vs. Day 1, Day
3 and Day 5 after infection. (C) Number of up- and downregulated genes shared between the time
points within each rice line. (D) The differential expression of four candidate genes overlapping the
major leaf sheath resistance QTL on chromosome-9 of rice. Rows are each of the four candidate genes
and columns are (L-R) CCDR Day 0 vs. Day 1, Day 3, and Day-5 and MCR Day 0 vs. Day 1, Day 3,
Day 5.

Bioinformatics analysis was used to profile variety- and time-point-specific differential
expression of all rice genes, focusing on those found near known SB resistance QTL on
chromosome 9 [22,23]. We aligned the transcriptome sequence reads to the reference rice
genome to identify variety-specific synonymous and nonsynonymous SNPs and indels
(insertions and deletions) and additionally probed their putative consequences on tran-
script structure, regulation, and protein function in silico. The select set of SNP markers



Genes 2023, 14, 1673 3 of 17

identified in the differentially expressed candidate genes in the major SB-resistance QTL
region on chromosome 9 was confirmed by sequencing. The SNP markers were further
used for genotyping the resistant and susceptible individuals derived from a biparental
(CCDR ×MCR) doubled haploid (DH) population of 197 individuals.

We observed clear gene expression and phenotype differences in response to R. solani
infection in the two rice parental lines. Our findings also reveal SNP markers in the
differentially expressed plant defense response genes. Based on the gene expression data,
genotyping, and phenotyping, we present strong evidence supporting a rice Wall Associated
Kinase 91 (WAK91, OsWAK91) gene as a potential breeding target for developing SB-resistant
breeding lines.

2. Materials and Methods
2.1. Plant Material and Inoculation

We planted the susceptible variety Cocodrie (CCDR, PI 606331) [20] and the sheath
blight-resistant rice line MCR010277 (MCR, PI 641932) [21] in pots placed in a mist chamber
in a greenhouse located at the Louisiana State University (LSU) campus in Baton Rouge,
LA, USA. Temperatures inside the mist chamber ranged from a minimum of 27 ◦C at night
to a maximum of 37 ◦C during the day. Natural daylight was used, with a day length of
approximately 11 h 30 min. Humidity was maintained at 80–90% using a Vicks cool mist
humidifier of 1.2 gallons capacity programmed to function for two hours every six hours.
We constructed the chamber frame with 3

4 inch PVC pipe and covered it with extra light
plastic (0.31 mm) (Painter’s Plastic sheet). The chamber dimensions were 1.32 m wide by
2.70 m in length and 1.42 m in height, for a total capacity of 48 pots per chamber, each
containing three plants.

Plants were inoculated 50 days after germination with a Potato Dextrose Agar PDA
medium disc (0.8 cm diameter) containing R. solani (strain LR172) mycelia. Discs were
placed at the base of the stem and between the leaf blade and leaf sheath on the main
culm of each plant. Leaf samples approximately 2 cm in length were collected from the
control untreated (day 0) and inoculation sites 1, 3, and 5 days after treatment and placed
immediately in liquid nitrogen until transferred to a −80 ◦C freezer for storage.

2.2. RNA Extraction and Sequencing

Frozen leaf samples from the CCDR and MCR lines collected at LSU were shipped
to Oregon State University on dry ice and stored at −80 ◦C—until further processing.
Poly(A)-enriched mRNA libraries were prepared from total RNA extracted from the leaf
samples using RNA Plant Reagent® (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA,
USA), RNeasy kits (Qiagen LLC, Germantown, MD, USA), and RNase-free DNase (Life
Technologies Inc., Carlsbad, CA, USA). The concentration and quality of the poly(A)-
enriched mRNA were determined using an ND-100 spectrophotometer (Thermo Fisher
Scientific Inc., Carlsbad, CA, USA) and Bioanalyzer 2100 (Agilent Technologies Inc., Santa
Clara, CA, USA), respectively. TruSeq RNA Sample Preparation kits (Illumina Inc., San
Diego, CA, USA) were used to construct sequencing libraries. An Illumina HiSeq 3000
(Illumina Inc., USA) at the Center for Genome Research and Biocomputing, Oregon State
University (CGRB, OSU), was used to sequence the 150 bp Paired End cDNA libraries.

2.3. Sequence Quality Control and Read Alignments

The program Sickle v1.33 was used to filter all reads based on read quality. Reads
under the phred score of 30 and with read length under 150 bp were rejected. FASTQ
files containing quality-trimmed and filtered reads were generated, yielding high-quality
MCR and CCDR reads. Any reads showing alignment to the pathogen R. solani AG1-IB
isolate (NCBI accession #GCA_000832345.1) were also filtered out. Quality-filtered reads
were aligned to the reference Oryza sativa japonica cv Nipponbare (IRGSP v1.0) genome
and annotation [24]. Reads from each biological replicate were aligned with the alignment
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software program STAR v.2.4.1a [25]. The resulting sequence alignment files were converted
to binary alignment files (BAM), sorted coordinately, and indexed using SAMTools v.13 [26].

2.4. Differential Gene Expression (DGE)

The program DESeq2 (v 1.22.2) was used to investigate gene expression levels of the
two rice lines over the time course [27]. A Python package, HTSeq v.0.6.1p1 [28], indexed
the alignment BAM files and generated raw counts with a minimum quality-score cutoff
of 10. The DESeq2 R-package was used to identify differentially expressed genes. First,
the raw count data was transformed using the variance stabilizing transformation (vst)
method of DESeq2 to filter outliers. The DESeq2 functions, namely estimate size factors
and dispersions, were used to normalize the aligned read counts. The DESeq2 function
followed this to fit a negative binomial general linear model and Wald test statistics to
detect the significance scores (p-value). The final set of statistically significant differentially
expressed transcripts were called using Benjamini–Hochberg adjusted false discovery rates
(FDR) of 10% and cutoff p-value ≤ 0.05. Furthermore, the non-significant events identified
with the DESeq2 software were filtered out.

2.5. SNP Discovery and Variant Prediction

Indexed BAM files were analyzed to identify genetic variations, including single nu-
cleotide changes (SNPs; transitions and transversions) and insertions and deletions (indels).
Alignments from each variety were pooled using the mpileup function of SAMtools [26].
VarScan.v2.3.9 (release 80) [29] was used to identify SNPs and indels with four different
minimum read coverages of categories of 2, 6, 8, and 20 and a default minimum variant
frequency of 0.8 with a p-value of 0.005. A consensus set of SNPs was identified in all
four minimum read coverages. The Variant Effect Predictor (VEP) workflow provided by
the Gramene database [30] was used to infer the putative consequences to the structure,
splicing, and function of the gene product (transcript and peptide) based on synonymous
and nonsynonymous (ns) changes.

To develop genetic markers from significant SNPs overlapping the major SB-resistance
QTL on chromosome 9, we queried the SNP data to find associations with the differentially
expressed candidate genes. Additional data on the 3000 rice genomes provided by the Rice
SNP Seek project [31–33] and genome sequences of the wild species of Oryza available at
the Gramene database [34,35] were mined for the same SNP sites to profile the allelic nature
and distribution in the diverse rice lines. Finally, we mined the peer-reviewed literature to
extract and confirm information on the known leaf sheath blight resistance phenotype for
these rice lines.

2.6. Population Study

The RiceCAP SB2 mapping population was developed as a genetic resource to identify
lines containing molecular markers associated with SB resistance [36]. The SB2 population
consists of 197 doubled-haploid (DH) lines derived from a cross between the susceptible
parent Cocodrie (CCDR, PI 606331) [20] and the resistant parent MCR010277 (MCR, PI
641932) [21]. The population and the two parents were evaluated for response to leaf sheath
blight disease on a scale of 0–9, where 0 = no disease and 9 = dead plant [7,8,37]. Plants were
grown and phenotyped across three years at Crowley, LA, USA, and Stuttgart, AR, USA [37].
The top ten SB-resistant individuals, SB2-03 (GSOR200003), SB2-109 (GSOR200109), SB2-134
(GSOR200134), SB2-158 (GSOR200158), SB2-161 (GSOR200161), SB2-174 (GSOR200174), SB2-
206 (GSOR200206), SB2-225 (GSOR200225), SB2-259 (GSOR200206), and SB2-272(GSOR200272
and the ten most susceptible individuals, SB2-13 (GSOR200013), SB2-48 (GSOR200048), SB2-
88 (GSOR200088), SB2-99 (GSOR200099), SB2-125 (GSOR200125), SB2-144 (GSOR200144), SB-
203 (GSOR200203), SB-255 (GSOR200255), SB-276 (GSOR200276), and SB2-314 (GSOR200314)
from the SB2 DH population, and the two parents were screened with 130 candidate
SNP markers (Supplementary Tables S3 and S5) identified by this work and Silva et al.,
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2012 [21]. One-way ANOVA analysis was performed to calculate the F values, Bonferroni
false discovery rates (FDR), p-values, and adjusted R2 values.

2.7. Sampling DNA from Rice Varieties

Plants from 13 rice lines: CL153, Cypress, Blue Bonnet, CL111, 93-11, IR29, IR64,
Jasmine, TeQing, Pokkali, Nonabokra, and AUS lines Kasalath and Nagina 22 (N22) were
grown in the Oregon State University West greenhouses using the same growth condi-
tions as mentioned earlier. The leaves from 10-day old plants were collected for DNA
extraction and SNP marker genotyping via DNA amplification and sequencing. DNA was
extracted using a DNeasy Plant Mini Kit (Qiagen Inc., San Diego, CA, USA). PCR primers
were bought from Invitrogen Inc., USA, to amplify the region of interest (Supplementary
Table S6). We used Ready PCR Mix, 2× (VWR), for PCR reactions. The C100 Thermocycler
(BioRad) was set for 3 min at 95C temperature for initial denaturation, followed by 40 cycles
of 30 s at 95 ◦C for denaturation, 30 s at 55 ◦C for annealing, 30 s at 72 ◦C for extension,
and 5 min at 72 ◦C for final extension. Amplified DNA fragments were separated on a 1%
agarose gel in 1× TAE buffer. These DNA fragments were extracted from the gel using
QIAGEN Gel Extraction and QIAGEN PCR product cleanup kits. Isolated PCR products
were Sanger sequenced at the CGRB, OSU. The amplified sequences from the PCR products
for each rice line, including the parents MCR and CCDR, were aligned to the chromosomal
region of the reference Nipponbare genome (IRGSP v1.0) using ClustalW to confirm SNPs
and identify the alleles.

2.8. Data Mining and Functional Annotation

The reference genome sequences, gene function, and gene family annotations were
accessed from the Gramene database (www.gramene.org accessed, 2018) [35,38]. The 3000
rice genome project data was mined at Rice SNP-Seek Database (http://snp-seek.irri.org/
accessed on 22 May 2018) [31]. Gramene database was queried to pull out all rice genes
(IRGSP v1.0) annotated to carry the WAK domain and that were part of the WAK gene
family. The protein sequences of the canonical (longest) isoform were downloaded in the
fasta format to run the ClustalW alignment with default parameters. The gene family tree
and the differential gene expression data for the respective rice WAK gene family members
were uploaded on the iTOL web portal [39] to generate the graphics.

3. Results
3.1. Transcriptome Analyses

We prepared twenty-four cDNA libraries from three replicates and four time points
for each rice line. The sampled time points were Day 0 (untreated control) and Days 1, 3,
and 5 after R. solani inoculation. Strand-specific 150 bp paired-end sequencing of the cDNA
libraries yielded 308,482,684 (CCDR) and 357,018,002 (MCR) reads. After filtering the
low-quality raw reads, we obtained 299,687,236 and 346,498,184 (~98.5% of total) sequence
reads from the CCDR and MCR samples, respectively, with an average of 27.7 million
reads per sample. The sequence reads were aligned to the O. sativa japonica cv Nipponbare
(IRGSP v1.0) reference genome. A total of 16,480 CCDR and 17,793 MCR protein-coding
genes showed normalized expression at least at one time point. The expression of known
genes from each line on Days 1, 3, and 5 were compared against the untreated Day 0
sample for the differential gene expression analysis. For CCDR, we identified 79, 281, and
320 differentially expressed genes on Day 1, Day 3, and Day 5, respectively. In the MCR line,
we identified 119 and 443 genes on Day 3 and Day 5, respectively. We did not observe any
statistically significant differences in expressed genes on Day 1 in the MCR line (Figure 1B).
On Day 3, 17 common genes were upregulated in both the CCDR and MCR lines and 1 was
downregulated. Similarly, on Day 5, 63 common genes in the CCDR and MCR lines were
upregulated, while 8 genes were downregulated (Figure 1B). In the susceptible CCDR line,
there were more differentially expressed genes on Days 1–5, unlike the MCR line, which
had more significant numbers of differentially expressed genes on Days 3 and 5 (Figure 1C).

www.gramene.org
http://snp-seek.irri.org/
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In the CCDR line, genes with transcription factor function and those that play a role
in the biotic stress response were upregulated at Day 1. Similarly, upregulated genes
showed enrichment of hydrolase enzyme function at Day 3 in the CCDR line. One gene
(OS02G0129800), which is grass (Poaceae) family-specific, was downregulated in both
the CCDR and MCR lines on Day 3. This gene on chromosome 2 was upregulated in
response to Burkholderia glumae [40], the causal agent of rice bacterial panicle blight disease.
In contrast, it was downregulated in response to Xanthomonas oryzae, the causal agent of
rice bacterial leaf streak disease [41]. Day 5 showed the enrichment of genes associated
with the catabolism of peptidoglycan, an important cell wall component, those associated
with biotic stimulus and defense responses, kinases, and enzymes with chitinase activity
required for degrading the fungal pathogen cell walls.

We identified four differentially expressed candidate genes in the vicinity of the
major SB resistance QTL on chromosome 9: a monocot lineage-specific dormancy auxin-
associated family protein (DRMH, OS09G0437500), an elicitor-inducible cytochrome P450
(CYP450, OS09G0441400), a cysteine peptidase (CysP, OS09G0442300), and a Wall-Associated
receptor kinase 91 (WAK91, OsWAK91, OS09G0561600), with contrasting expression profiles
(Figure 1D). The OsWAK91 transcript showed downregulation up to Day 3, followed by
upregulation at Day 5 in the MCR line compared to being constitutively expressed in the
CCDR line. OS09G0441400, the elicitor-responsive CYP450 gene, showed an expression
profile opposite that of WAK91. OS09G0437500, the dormancy auxin-associated gene,
exhibited a similar expression profile between the two lines. In contrast, OS09G0442300, a
cysteine peptidase, was highly expressed in the MCR on day 5.

3.2. SNP Marker Discovery and Variant Cause Prediction

We used the transcriptome sequence read alignments to identify 65,121 and 82,293
genetic variants in the susceptible CCDR and resistant MCR lines, respectively. These
variants include single nucleotide changes (SNPs) in the form of transitions, transversions,
insertions, and deletions (indels). The SNP sites were distributed across the rice genome
with varying degrees of density when compared between the two lines (Figure 2A). We
found that 32,401 and 49,573 SNPs were unique to CCDR and MCR, respectively, and they
shared 32,720 SNPs present at the same loci. Of the shared loci, 103 SNP sites contained
alleles different from the reference (Nipponbare) and between the two lines (Figure 2B). On
average, we observed that the MCR line carried ~2500 transitions (Ts), ~750 transversions
(Tv), and ~1000 more indel SNP events than the CCDR line (Table 1). TvSNPs have more
significant regulatory effects than TsSNPs [42], and rice is known to carry more of the
transition types of SNPs [43]. The TsSNPs were more significant in number in both lines,
but the transition to transversion ratio (Ts/Tv) in the MCR line was 2.8 compared to
2.68 in CCDR. Within the TsSNPs, there was almost the same number of A←→G and
T←→C transitions in CCDR compared to MCR, whereas there were more G→A and C→T
transitions than A→G and T→C, respectively. The transition type G→C was high in
CCDR compared to MCR, where the opposite type C→G was more abundant. MCR had
significantly fewer C→A TsSNPs (Table 1).

The identified genetic variants mapped to 22,448 and 24,343 rice reference protein-
coding genes in the CCDR and MCR lines, respectively, constituting 55% and 66% of the
genes in the published reference rice genome [24]. Because we used the cDNA sequence
reads for SNP calling and genetic marker development, we used the Variant Effect Predictor
(VEP) tool [30] to predict the causal effect of each SNP on the 5′ and 3′ UTRs, exons, intron,
and intron splicing boundaries of the transcribed gene. If the SNP was in an exon, we also
computed the synonymous (sSNP) and nonsynonymous (nsSNP) variations to predict the
putative consequences on transcript structure, regulation, splicing, and peptide structure
and function (Supplementary Table S1).
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Table 1. Transition and transversion type SNPs and indels identified in the susceptible CCDR and
the resistant MCR rice lines by aligning the RNA-Seq sequence reads against the reference O. sativa
japonica cv Nipponbare reference genome (IRGSP v1.0).

SNP Substitution Type CCDR MCR
A→G Transition 8703 11,102

T→C Transition 8896 11,228

G→A Transition 8735 11,420

C→T Transition 8878 11,622

G→C Transversion 2817 3523

C→G Transversion 2730 3559

T→G Transversion 3274 4108

G→T Transversion 3367 4158

A→C Transversion 3316 3964

C→A Transversion 3339 4175

T→A Transversion 3734 4428

A→T Transversion 3685 4397

Total SNPs 61,474 77,684

Total Indels Insertions and deletions 3647 4609

Total variants 65,121 82,293
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(IRGSP v1.0). (B) Number of unique and shared SNPs identified in the two rice lines. (C) The rice
WAK91 ORF showing the regions of the functional domains (top) and zoom-in view of the CDS and
the ORF from the reference Nipponbare and parents CCDR and MCR rice lines (bottom). * Stop
codon; open reading frame in the kinase domain region (cyan colored); potential phosphorylation
sites (green colored).

We developed genetic markers associated with the disease resistance phenotype in
the population study based on these VEP and differential gene expression results. The
set of 130 SNP genetic markers [21], including those identified herein, was short-listed by
selecting chromosomal locations overlapping the major and minor SB QTLs. Previously
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identified sheath blight QTLs are present on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
and 12 [22,37,44–52]. In the major SB QTL region on chromosome 9, we found that the
differentially expressed WAK91 (OS09G0561600) gene carried a nonsynonymous SNP
(T→C) aligned at position 22,318,449 bp of the Nipponbare rice reference genome (IRGSP
v1.0; Figure 2C). The SB-susceptible line CCDR carried the same allele T as the reference,
whereas the resistant MCR line carried the C allele. The T→C transition results in the
loss of a stop codon in the MCR WAK91, resulting in a predicted WAK91 peptide with an
additional 62 amino acids. Sequencing the amplified region of the WAK91 SNP marker
confirmed the presence of the susceptible T allele in the parent CCDR, as well as other US
elite lines with a japonica background, namely CL53, Cypress, Blue Bonnet, and CL111,
whereas in the indica lines, IR29, IR64, Jasmine, TeQing, Pokkali, Nonabokra, 93-11, and
the AUS lines Kasalath and Nagina22 (N22) were confirmed to carry the resistant allele C
(Figure 3A).
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Figure 3. Genotype, sequence and phenotype information on various Oryza species, rice lines and
the SB2 double haploid population. (A) Rice WAK91 SNP allele T/C in 13 rice lines was confirmed
by sequencing the SNP region. Synteny-based sequence data were mined at the publicly available
Gramene database for the reference lines indica 93-11, japonica Nipponbare, the wild species of the
Oryza genus and its outgroup Leersia Perrieri. The leaf sheath blight disease response phenotypes
were mined from previously published literature. (B) Genotyping and phenotyping of the top ten
resistant and ten susceptible individuals of the SB2 double haploid population. The population and
the two parents were evaluated for sheath blight response phenotype on a scale of 0–9, where 0 = no
disease and 9 = dead plant. The WAK91 SNP alleles T/C were scored for presence/absence. (C) The
leaf sheath blight response phenotype of the individuals SB2-276 (susceptible) and SB2-03 (resistant)
from the DH population. (D) Occurrence of the WAK91 SNP allele T/C as reported in the genomes of
3000 rice lines and their grouping.

3.3. Double Haploid Population Study

Evaluation of the ten most resistant individuals of the SB2 double haploid (DH)
population produced disease ratings between 4.7 and 6.0, while the resistant parent MCR
showed a 3.5 rating in the same study. In contrast, the ten most susceptible individuals
of the population scored between 7.5 and 8.0, while the susceptible parent CCDR had a
7.5 rating (Figure 3B,C, Supplementary Table S2). Selective genotyping of the MCR and
CCDR parent lines and 20 selected DH lines was performed with 130 SNP markers in
the SB QTL regions on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 11, and 12. These marker sites
included the nonsynonymous WAK91 SNP (T/C) identified in this study. The ANOVA
analysis identified 11 best-ranked SNP markers. These markers mapped to the bottom of
chromosome 9 overlapping the SB resistance QTL region identified previously in 12 separate
studies using six indica lines (reviewed by Zuo et al. [53,54]). The genotyping data showed
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that the WAK91 SNP allele C contributed by the MCR parent line always cosegregated with
the SB resistance phenotype, except in the SB2-99 line. In contrast, allele T from the CCDR
parent cosegregated with the susceptible phenotype (Figure 3B).

4. Discussion

In our quest to find candidate genes in rice that can provide a good measure of resis-
tance to the pathogen R. solani and their application for breeding improved disease-resistant
rice, our integrated transcriptomics study identified genetic variation and its causes of
gene function along with association to sheath blight disease resistance. We identified the
rice candidate gene Wall-Associated Kinase 91 (WAK91) carrying a T/C mutation at the stop
codon. The WAK91 SNP site at position 22,318,449 bp on chromosome 9 of the reference
rice genome is part of the stop codon (TAG), and allele T is common to both the CCDR
and the reference japonica line Nipponbare. Due to the presence of allele C in the resistant
line MCR, the stop codon TAG is lost and replaced by the codon CAG in the WAK91 open
reading frame, which codes for glutamine, a polar uncharged side chain amino acid. The
stop codon loss in the MCR line also results in the WAK91 peptide that is 62 amino acids
longer than in the CCDR and Nipponbare (Figure 2C). These results lead to two hypotheses:
(1) the evolutionarily conserved WAK91 SNP allele C is associated with the SB resistance
phenotype, and (2) the longer WAK91 ORF resulting from the loss of the stop codon re-
sults in a peptide with a gain in novel molecular function that may play a role in leaf
sheath blight resistance. Overexpression of the rice gene Broad Spectrum Resistance 2 (BSR2,
Os08g0547300) was known to confer resistance to SB [4], and we found it highly expressed
in the resistant MCR line on Day 1, followed by subsequent reduction in expression on
Days 3 and 5. The CCDR line showed 20% less expression on Day 1 and downregulation on
Days 3 and 5. BSR2 is an uncharacterized cytochrome P450 protein-coding gene belonging
to the CYP78A family

To test the evolutionary conservation of the WAK91 SNP allele C with SB resistance, we
sequenced a PCR-amplified fragment overlapping the WAK91 SNP loci from 13 additional
O. sativa lines: five from subspecies japonica and eight from subspecies indica. All the US
elite rice lines carry the japonica background and are known to be SB-susceptible [22]. We
predicted and confirmed that the US japonica-genetic-background-containing lines CCDR,
CL53, Cypress, Blue Bonnet, and CL111 carry the WAK91 SNP allele T associated with
known susceptibility phenotype [10,55–62]. In contrast, the indica lines IR29, IR64, Jasmin,
TeQing, Pokkali, and Nonabokra, and AUS lines Kasalath and Nagina 22, were confirmed
to carry the resistant C allele (Figure 3A). These indica and AUS lines exhibit some known
SB resistance phenotypes [53,54,59,63,64]. One exception is the rice line 93-11 with the
indica reference genome [65], which is known to be moderately susceptible [53,66]. These
results are consistent with the genotype and phenotype observations of the 20 individuals
of the SB2 DH population, except for sibling SB2-99 (Figure 3B,C, Supplementary Table S2).

To gain insights into the evolutionary significance and trace the origin of the WAK91
SNP in the Oryza genus, we used synteny data provided by the Gramene database [35,38].
We aligned the SNP region between the sequenced genomes of the wild species O. longis-
taminata, O. glaberrima, O. punctata, O. meridionalis, O. barthii, O. glumaepatula, O. rufipogon,
O. brachyantha, and the outgroup Leersia perrieri. These species carry the indica-type allele C,
and most are known to bear the SB resistance phenotype (Figure 3A) [57,67–69]. It suggests
that the indicia-type resistant C allele is of ancestral origin. Conversely, the japonica-type
susceptible T allele is a recent introduction in the Oryza clade, and its origin appears in the
O. sativa subspecies japonica. We confirmed its origin by mining publicly available genetic
variation data from the 3000 Rice Genome Project [33] available from the RiceSNP-seek
database [31]. Most temperate and tropical japonica and aromatic rice lines carry the
japonica T allele, whereas most indica and AUS lines carry the C allele. Only a handful of
the lines carried the heterozygous T/C allele (Figure 3D). We did not have access to the SB
resistance phenotype data for these lines; however, based on our observations, we predict
that the indica and AUS lines carrying the C allele may bear some degree of SB resistance.
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The second hypothesis suggests that the WAK91 gene from the SB-resistant MCR
parent encodes a peptide predicted to be 62 amino acids longer due to stop loss in the
ORF, and this peptide may have gained a function that plays a role in providing the SB
resistance phenotype. The WAK91 gene is a member of the wall-associated receptor kinase
(WAK) gene family (Figure 4) and encodes a plasma membrane protein. The WAK91
protein contains a wall-associated receptor kinase galacturonan-binding domain (WAK
domain), followed by a calcium-binding epidermal growth factor (EGF)-like domain in the
N-terminal half of the protein that is present on the extracellular side. In the middle is a
single transmembrane domain spanning the plasma membrane, followed by the C-terminal
cytosolic half containing a protein kinase domain and additional phosphorylation sites for
serine, threonine, and tyrosine residues (Figure 2C). The WAK domain is known for linking
to the pectin fraction of the plant cell wall [70–72].
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5, Day 3 and Day 1.

The WAK gene family members are known to express and function in response to
biotic and abiotic stress conditions. Expression of Arabidopsis thaliana AtWAK1 is known
to be induced by pathogen response simulated by exogenous salicylate or by its analog
2,2-dichloroisonicotinic acid and requires a positive regulator NPR1/NIM1. The expression
of complete AtWAK1 or its cytoplasmic kinase domain alone can resist lethal salicylic
acid levels [73,74]. Maize wall-associated receptor-like kinase Htn1, a plasma membrane
protein, is known for conferring resistance to northern corn leaf blight disease caused by
the fungal pathogen Setosphaeria turcica (anamorph Exserohilum turcicum, previously known
as Helminthosporium turcicum) by restricting pathogen entry into host cells [75,76]. Similarly,
the wheat WAK gene Stb6 confers fungal pathogen resistance without a hypersensitive
response [77]. Barley, HvWAK1 is known to play a role in root development; however,
compared to other cereals and Arabidopsis, sequence divergence in the extracellular domain
further verifies the multifunctionality of WAK genes [78]. WAKs also play roles in plant
cell expansion during seedling development and MAP kinase signaling; they bind to pectin
polymers in the plant cell wall and have a higher affinity to bind smaller pectin fibers in
response to pathogen attack [70].
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In the reference rice genome, the WAK gene family members are distributed in
23 subfamilies (Figure 4) and are reported to play roles in development [79], abiotic
responses [80,81], and fungal disease responses [82]. Our study did not find expres-
sion of genes from five WAK subfamilies, C, F, L, and Q (Figure 4). The gene OsWAK1
(OS01G0136400) is known to provide resistance against the rice blast disease pathogen
Magnaporthe grisea, and its salicylic acid and methyl jasmonate induce its expression. Os-
WAK1 phosphorylates itself and OsRFP1, a putative transcription regulator that binds to
the OsWAK1 kinase domain [83]. We observed downregulation of OsWAK1 at all time
points except in the CCDR line on Day 5. The candidate gene WAK91 gene is also known
as DEFECT IN EARLY EMBRYO SAC1 (OsDEES1) [84]. WAK91 and the OsWAK1 play
roles in rice sexual reproduction by regulating the development of the female gametophyte
(the embryo sac) and playing a role in anther dehiscence, respectively [79,84,85]. Over-
expression of OsWAK25 (OS03G0225700) is known to increase susceptibility to R. solani
and Cochliobolus miyabeanus and resistance to X. oryzae pv. oryzae (Xoo) and Magnaporthe
oryzae [86], whereas its loss of function compromises Xa21-mediated resistance [87,88]. We
observed upregulation of OsWAK25 at all time points except for downregulation on Day 3
in the CCDR line. Other gene family members, such as OsWAK11, regulate copper detoxifi-
cation [80,81], and OsWAK112 negatively regulates the salinity response by suppressing
ethylene production [67].

Overexpression of WAK91 is known to increase rice blast resistance and reduce fungal
hyphal growth. In contrast, overexpression of OsWAK112 (OS10G0180800) suppressed resis-
tance [84,85]. The genes OsWAK14 (OS02G0632800), WAK91, and OsWAK92 (OS09G0562600)
are part of the heterotrimeric WAK protein complex located on the plasma membrane in
rice cells [89,90] (Figure 5). A mutant screening by Delteil et al. [82] reported that the loss
of function of OsWAK14, OsWAK91, and OsWAK92 resulted in reduced basal resistance,
although it did not affect growth and fertility [90]. Conversely, we found that the CCDR and
Nipponbare rice reference lines carry the susceptible T allele with a shorter OsWAK91 ORF
and are known for SB susceptibility. We hypothesize an increased pathogen susceptibility
if the WAK91 function is curtailed or when the longer C-terminal is absent (such as in the
CCDR and Nipponbare). Therefore, we can expect that the Nipponbare WAK91 knockout
line would be highly susceptible. Although not tested for response to R. solani, Deltiel
et al. [82] confirmed that wild-type Nipponbare (a susceptible line) and the WAK91 Tos-17
mutant plants always showed increased disease lesions in response to the pathogen M.
grisea, the causal agent of rice blight disease. The WAK91 mutant plant showed a 2.5-fold
increase in lesions.

The ability of host plants to detect and fight pathogenic microbes is a complex process.
The pattern-recognition receptors (PRRs) localized on the surface of plant cells are well-
known gene family members of receptor-like kinase (RLK) proteins that assist in recognition
of pathogen-associated molecular patterns (PAMPs), conserved motifs from pathogens, and
damage-associated molecular patterns (DAMPs) derived from damage caused by microbial
development [90–92]. Additionally, in the case of the M. grisea blast disease response
in rice, the chitin elicitor binding protein OsCEBiP and a chitin elicitor receptor kinase,
OsCERK, are known to form a heterodimer complex. Upon chitin binding, the CEBiP-
CERK receptor complex may induce transphosphorylation and activation of downstream
signaling [93] (Figure 5). In our transcriptome data, most of the OsCEBiP and OsCERK gene
family members showed positive upregulation in the resistant MCR line (Supplementary
Figure S1).

Similarly, OsWAKs show early transcriptional regulation induced in response to
chitin, a process controlled by its receptor CEBiP [92,93] A query of publicly available
SNP datasets [31,33,35,94,95] suggests that WAK91 is known to carry ~400 unique genetic
variations present in the 5′ and 3′ UTRs, introns, exons, and splice junctions. It includes the
stop loss SNP identified by us, an indel at 22,315,774–22,315,791 bp leading to start loss and
5′UTR variant, and stops gained at positions 22,316,748 bp, 22,317,724 bp, and 22,318,006 bp
on chromosome 9, respectively (Supplementary Table S4). These genetic differences did
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not appear in our transcriptome-based SNP dataset and are potential genetic markers
for further study. Therefore, based upon the supporting evidence from the genotyping,
phenotyping, evolutionary ancestry of SB tolerance, and the favorably segregating SNP in
the SB2 DH population, we propose a working model (Figure 5) in which the candidate
gene WAK91 may provide broad tolerance to leaf sheath blight disease similar to when
infected with pathogens R. solani and M. grisea. The longer ORF of OsWAK91 in the indica
lines and the MCR genotype provides a potentially complete kinase domain and additional
active sites for phosphorylation (Figure 2C). OsWAK91 forms a heterotrimeric protein
complex with the OsWAK14 and OsWAK92 proteins and is an essential member of the
WAK protein complex [90]. The OsWAK91 in the japonica background with a truncated
C-terminus kinase domain is not completely dysfunctional. It still functions in normal
embryo sac development since the japonica line Nipponbare and others mentioned in this
work are fertile lines.
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Figure 5. A hypothetical model of the host. Pathogen interaction showing the response to fungal
chitin binding by the chitin binding receptor complex and po-tential interactions and functions by
the heterotrimeric wall-associated kinase (WAK) receptor protein complex. The WAK complex is
functional in both the MCR and the CCDR rice lines; however, the MCR WAK91 C-terminus carrying
the longer protein kinase domain and the additional serine, threonine and tyrosine phosphorylation
sites is expected to play a role in successfully initiating the downstream signaling response to provide
leaf sheath blight resistance.

5. Conclusions

The genotyping and phenotyping study of the ten most resistant and ten most sus-
ceptible individuals from the double haploid rice population derived from the CCDR and
MCR parents inferred a strong association between the rice WAK91 SNP marker and the
leaf sheath blight resistance. We also mined the publicly available sequenced genomes of
reference and ancestral Oryza species and the 3000 Rice Genome Project to confirm the evo-
lutionary source of the mutant WAK91 SNP. The resistant allele appears ancestral, whereas
the susceptible allele is a more recent acquisition in the O. sativa japonica clade. All US
elite rice varieties with japonica genetic backgrounds are known to carry the susceptibility
trait. We tested a few of them and confirmed the presence of the susceptible SNP allele,
similar to the CCDR line. Our results and inferences, supported by sequencing, genotyping,
and phenotyping experiments, are well complemented by mutant/knockout screening
by earlier studies [82,90]. WAK91 knockout mutations make rice susceptible to disease.
Therefore, the WAK91 gene with the resistance allele identified by us is a candidate for
integration into existing and newly cultivated rice varieties for leaf sheath blight resistance,
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which may help improve global rice production by rescuing crops affected by the pathogen
R. solani [23,96].
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