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Abstract: Heritability studies represent an important tool to investigate the main sources of variability
for complex diseases, whose etiology involves both genetics and environmental factors. In this paper,
we aimed to estimate multiple sclerosis (MS) narrow-sense heritability (h2), on a liability scale, using
extended families ascertained from affected probands sampled in the Sardinian province of Nuoro,
Italy. We also investigated the sources of MS liability variability among shared environment effects,
sex, and categorized year of birth (<1946, ≥1946). The latter can be considered a proxy for different
early environmental exposures. To this aim, we implemented a Bayesian liability threshold model to
obtain posterior distributions for the parameters of interest adjusting for ascertainment bias. Our
analysis highlighted categorized year of birth as the main explanatory factor, explaining ~70% of MS
liability variability (median value = 0.69, 95% CI: 0.64, 0.73), while h2 resulted near to 0% (median
value = 0.03, 95% CI: 0.00, 0.09). By performing a year of birth-stratified analysis, we found a high
h2 only in individuals born on/after 1946 (median value = 0.82, 95% CI: 0.68, 0.93), meaning that
the genetic variability acquired a high explanatory role only when focusing on this subpopulation.
Overall, the results obtained highlighted early environmental exposures, in the Sardinian population,
as a meaningful factor involved in MS to be further investigated.

Keywords: heritability; liability threshold model; Bayesian; ascertained families; multiple sclerosis; Sardinia

1. Introduction

Heritability measures the proportion of a trait variability that can be explained by
genetic variation [1]. According to the additive model [2,3], the phenotypic variance
can be considered as the sum of genetic and environmental effects, and narrow-sense
heritability (h2) [4] is calculated as the ratio of the additive genetic effects variance on the
phenotypic variance. Heritability studies should be considered as the key for discovering
potential genetic and environmental causal factors for trait variation characterizing a
specific population [1,3,5–7]. The results obtained from heritability analyses need to be
contextualized relative to the genetic and environmental background of the population
under study, highlighting which factor, whether genetic and environmental, has a better
explanatory role for the trait variability [1,3,5,7,8].

Quantifying heritability is a major task for complex diseases with uncertain etiology,
such as multiple sclerosis (MS) (OMIM 126200), as these are influenced by both genetic and
environmental factors [9–11]. MS is a chronic autoimmune disease of the central nervous
system characterized by inflammation, demyelination, gliosis, and neuronal loss [12,13],
and its onset is influenced by both genetic and environmental factors [9–11]. Among these,
low vitamin D levels, high body mass index, previous Epstein–Barr virus (EBV) infection,
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and cigarette smoking have been highlighted as strong causal risk factors [14–16]. Moreover,
several genetic variants were identified as significantly associated with MS susceptibility.
Alleles associated with high MS risk were located in the human leukocyte antigen (HLA)
complex, while more than 200 non-HLA alleles showed lower MS risk [17–19].

MS h2 estimates have mainly relied on monozygotic and dizygotic twin pair de-
sign [20]; so far, no attempts have been made to estimate this measure in the Sardinian
population due to the limited sample size [20,21]. Using extended family-based studies
allows overcoming this problem and has the advantage, compared to twin studies, of
producing h2 estimates less inflated by potential shared environmental effects which could
influence individuals raised in a common environment [22–25].

In this context, different methodologies have been developed to produce unbiased h2

estimates for binary traits [26]. However, ascertainment bias arises when using families
ascertained from a sampled proband [27–29]. To overcome this problem, Kim et al. [29]
developed a liability threshold model for binary traits (LTMH) allowing to estimate h2, on a
liability scale, adjusted from ascertainment bias. However, their expectation–maximization
(EM)-based approach presented some limitations, such as lacking a precision measure for
h2 (i.e., standard error) [30,31], consequent difficulty in calculating confidence intervals [32],
computational inefficiency when handling extended families, and convergence issues
when including additional variance components in the model, e.g., to adjust for shared
environment effects, a feature particularly important when dealing with families and
complex diseases.

In this paper, by implementing LTMH methodology in a Bayesian framework using
Markov chain Monte Carlo (MCMC) methods to overcome the above described LTMH
limitations, we estimated MS h2 using 24 Sardinian extended families ascertained from
affected probands. Among all, the strength of this sample is represented by the unique
characteristics of the founder homogenous Sardinian population and the temporal depth
of the available families, which also allows investigating the explanatory role of envi-
ronmental factors over time, i.e., shared environmental effects, individual environmental
effects, sex, and year of birth. The latter can be considered as a proxy for different early
environmental exposures due to the post-World War II progressive industrialization and
change in socioeconomic factors, dietary habits, lifestyle, and sanitary conditions (“West-
ernization process”) [33–36], as well as the malaria eradication program conducted from
1946 to 1950 with the use of insecticide DDT (dichloro-diphenyl-trichloroethane) [37].
These aspects could be linked to the constant MS incidence observed since the 1950s in
the Nuoro province [33] and other Sardinian provinces [38]. Different authors have also
underlined how a better diagnostic accuracy cannot fully account for this steady increase
in MS [33,34,38,39], since the magnitude of this trend has not been observed in any other
Italian areas during the same period. Overall, comparing the genetic and environmental
impact on MS liability at the population level could have a meaningful impact on the
research for MS causal determinants in the population under study [3,6].

2. Materials and Methods
2.1. Sardinian Families Ascertainment

Our sample was retrieved from a register of MS cases, diagnosed according to Poser’s
criteria [40], established in Sardinia’s Nuoro province in 1995. Whenever possible, patients
were examined by the neurologists at the Neurology Department of the Nuoro Hospital.
Otherwise, clinical records were obtained and reviewed by the previous neurologists. Dur-
ing the examination, the neurologists filled the clinical record of the patient, comprising the
MS disease course. From this case register, we sampled 89 MS-affected probands, without
any selection in favor of MS patients with a possible family history. Using the genealogical
questionnaires filled in by the affected proband and the municipal registries, we were able
to reconstruct their genealogical tree. In some cases, MS probands resulted distantly related
through a common ancestor, leading to a final sample comprising 24 extended families [19].
Examples of extended families are reported in Figure 1. In our analysis, we included
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probands’ parents, siblings, spouses, uncles/aunts, first-degree cousins, nieces/nephews,
and grandparents, while more distant relatives were excluded to avoid MS misclassifi-
cations. Nonaffected relatives included in the final analysis were at least 20 years old
at the day of the questionnaire compilation. Thus, a total of 790 subjects were analyzed,
comprising 118 MS cases and 672 healthy controls. Descriptive statistics were reported for
each family.
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2.2. Statistical Analysis
2.2.1. Model Specification

To estimate MS h2 making use of our ascertained families from a proband, we relied on
the LTMH method [29]. Given N individuals clustered in F families, the N observed binary
phenotypes (Y) are determined by unobserved continuous liability scores (L) and a fixed
threshold (c), which depends on the trait’s prevalence in the population [41]. In our case,
MS prevalence was fixed following the work by Montomoli et al. [42], which estimated
MS crude prevalence in Nuoro province as 157 per 100,000 inhabitants. We included the
following as covariates in the model, to adjust for potential confounding: (i) sex, as the
female-to-male MS prevalence ratio in the Nuoro province was reported to be 2:1 [43];
(ii) categorized year of birth (<1946 or ≥1946) as a proxy for the individuals’ different early
environmental exposures. L was assumed to be distributed following a multivariate normal
distribution, i.e., L~MVN(Xb, Σ), where X denotes a matrix for standardized covariates,
i.e., sex and categorized year of birth (YR), b represents the respective vector of fixed
effects parameters, i.e., βSEX and βYR, and Σ denotes a covariance matrix. We followed the
standard polygenic additive model [2,44], assuming null epistatic and gene–environment
(G × E) effects, defining Σ as follows (ACE model):

Σ = h2K + c2
SibsH1 + c2

Mother−OffspringH2 + c2
Father−OffspringH3 + c2

SpousesH4 + e2I, (1)

where parameters are defined as the proportion of MS liability variability explained by (i) h2,
additive genetic effects, with K being the kinship matrix multiplied by two, (ii) c2

Sibs, effects
due the environment shared between siblings (which also allow to adjust for dominant
genetic effects), with H1 being the correlation matrix with values equal to 1 between siblings,
(iii) c2

Mother–Offspring, effects of environment shared between the mother and the offspring,
which may include maternal effects as highlighted in [45,46], with H2 being the correlation
matrix with values equal to 1 between mother and offspring, (iv) c2

Father–Offspring, effects of
environment shared by the father and the offspring, with H3 being the correlation matrix
with values equal to 1 between father and offspring, (v) c2

Spouses, effects of environment
shared between spouses, with H4 being the correlation matrix with values equal to 1
between spouses, and (vi) e2, individual environmental effects, with I being the respective
identity matrix. To avoid identifiability problems [47], e2 was derived as the complementary
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to 1 considering the sum of the other parameters. The proportion of MS liability variance
explained by total shared environment effects, i.e., c2

Total, was then defined as the sum of
c2

Sibs, c2
Mother–Offspring, c2

Father–Offspring, and c2
Spouses components. Modeling c2

Total allows
avoiding an inflation in h2 due to common environmental influences [23,24,48]. βSEX and
βYR allow quantifying the liability increase/decrease and the proportion of MS liability
variability jointly explained by both covariates, i.e., τ2

βSEX,YR = var(Xb) [49]. This latter
term can be decomposed, following [50], into

τ2
βSEX,YR = τ2

βSEX + τ2
βYR + 2covβSEX,YR , (2)

from which we derived the proportion of MS variability marginally explained by (i) sex
τ2

βSEX, (ii) categorized year of birth τ2
βYR, and (iii) their covariance component, i.e.,

2covβSEX,YR. As described in [49], τ2
βSEX,YR was considered as part of the total phenotypic

variance.
Using the above-specified model, we conducted two separate analyses. In the first,

we focused on the whole sample. The explanatory role of G × E effects, between ad-
ditive genetics and categorized year of birth, was also assessed in a separate model
(see Supplementary Section S1 for mathematical details) [51,52]. In the second, we stratified
our sample on the basis of the categorized year of birth; the rationale was to evaluate the
explanatory influence of genetic and environmental factors on subgroups of individuals
with more similar early environmental exposures linked to the year of birth. To better reflect
the MS prevalence in these two groups, we relied on the work of Montomoli et al. [42] to
set MS prevalence as 103 per 100,000 inhabitants for the individuals born before 1946, and
as 176 per 100,000 inhabitants for the individuals born on/after 1946. Only for the analysis
on individuals born on/after 1946 did we include the exact year of birth as a continuous
covariate in the model to investigate the temporal change in MS liability.

2.2.2. Implementing Bayesian-LTMH

Given the limitations of the EM algorithm implemented in [29], this approach was
inefficient to estimate MS h2 using our sample since we were dealing with extended
families with the aim of including other variance components in the model, e.g., shared
environment effects. Therefore, we implemented a Bayesian framework using simulated-
based methods as MCMC techniques as it represents an alternative and faster process,
compared to maximum likelihood estimation, in the case of complicated statistical models
with many unobserved variables [53–57].

In LTMH, the likelihood for the observed phenotypes Y given the unobserved liabilities
L and the set of parameters θ = (h2, c2

Sibs, c2
Mother–Offspring, c2

Father–Offspring, c2
Spouses, e2,

βSEX, βYR, τ2βSEX,YR, τ2βSEX, τ2
βYR, 2covβSEX,YR) adjusted from ascertainment bias is

defined as follows:

p(YNP, LNP|YP, LP, θ) =
p(Y, L|θ)

p
(

YP, LP
∣∣∣θ) , (3)

where P denotes probands, and NP denotes non-probands. The numerator in Equation (3)
represents the likelihood function for the complete data, defined by a truncated multivariate
normal distribution bounded in the range (a, b) depending on the observed phenotypes Y,
i.e., by (−∞, c) if the individual is a control or by (c, +∞) if the individual is a case:

p(Y, L|θ)= L ∼ MVN(Xb, Σ)I(a < L < b). (4)

The denominator in Equation (3) represents the likelihood that the proband is ran-
domly picked from the population and it is necessary to correct for the ascertainment
bias. According to the “ascertainment assumption-free” approach [58], this likelihood is
defined as

p(YP, LP|θ) =
F

∏
i=1

(exp(YP
i × log(

µi
1− µi

))× 1− µi), (5)
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where µi represents the probability that the liability score for a proband is higher than the
threshold c, i.e., µ = P(YP = 1) = P(LP > c) = 1 − Φ(c − XPb). Since multiple distantly related
probands could be present within a single family, we considered a single fictitious proband
with covariates values equal to the mean of the actual probands’ sex and categorized year
of birth within the family.

The conditional likelihood in Equation (3) then served as our sampling distribution
for θ parameters. The posterior distributions p(θ|Y, L) could then be characterized using
Bayes’ rule as follows:

p(θ|Y, L) ∝ p
(

YNP, LNP
∣∣∣YP, LP, θ

)
p(θ) (6)

where p(θ) represents the prior distribution specified for the parameters in θ. To the best of
our knowledge, there were no previous studies on h2 estimation in Sardinian population;
therefore, we decided to input noninformative prior distributions for all parameters, i.e.,
Beta(1,1) for variance components, and N(0,10) for βSEX and βYR parameters. In our
analysis, to obtain the sampled parameters’ posterior distributions, we ran four chains
with 5000 warmup iterations and 5000 sampling iterations, for a total of 20,000 sampling
iterations, and convergence of the four chains to the same posterior distribution was
assessed visually using trace plots. Analyses were performed using RStudio, Stan [59,60],
and its R interface package CmdStanR [61]. In Supplementary Section S2, we report the
results from simulations studies performed across different scenarios to assess the goodness
of the Bayesian-LTMH framework.

3. Results and Discussion
3.1. Sample Description

The analyzed 24 Sardinian families each comprised 7–93 subjects (median = 26) and
1–16 MS cases (median = 3), for a total of 790 subjects: 118 MS cases (15%; 76 females (64%)
and 42 males (36%)) and 672 healthy controls (85%). A total of 302 individuals (38%) were
born on/after 1946. Descriptive statistics are reported in Table 1.

Table 1. Descriptive statistics for the 24 Sardinian families.

Family Individuals
N (%) 1

Probands
N

Females
N (%) 2

MS Cases
N (%) 2

1 65 (8%) 6 37 (57%) 6 (9%)
2 35 (4%) 4 20 (57%) 5 (14%)
3 70 (9%) 7 45 (64%) 9 (13%)
4 66 (8%) 8 37 (56%) 10 (15%)
5 12 (2%) 2 6 (50%) 3 (25%)
6 16 (2%) 2 7 (44%) 2 (13%)
7 43 (5%) 5 24 (56%) 5 (12%)
8 33 (4%) 5 16 (48%) 6 (18%)
9 17 (2%) 2 10 (59%) 2 (12%)
10 20 (3%) 2 13 (65%) 3 (15%)
11 15 (2%) 1 8 (53%) 3 (20%)
12 33 (4%) 5 17 (52%) 6 (18%)
13 17 (2%) 2 11 (65%) 3 (18%)
14 51 (6%) 6 24 (47%) 12 (24%)
15 25 (3%) 3 16 (64%) 3 (12%)
16 44 (6%) 5 24 (55%) 8 (18%)
17 19 (2%) 2 12 (63%) 2 (11%)
18 16 (2%) 2 8 (50%) 2 (13%)
19 22 (3%) 3 13 (59%) 3 (14%)
20 27 (3%) 2 16 (59%) 2 (7%)
21 28 (4%) 1 13 (46%) 2 (7%)
22 16 (2%) 2 7 (44%) 4 (25%)
23 7 (1%) 1 3 (43%) 1 (14%)
24 93 (12%) 11 48 (52%) 16 (17%)

Total 790 89 435 (55%) 118 (15%)
1 Percentages refer to the total number of individuals. 2 Percentages refer to the number of individuals within
the family.
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In Table 2, further details regarding MS cases were reported, including MS course,
sex, and age/year of MS onset. The relapse–remitting course (RRMS) was the most repre-
sented (49%).

Table 2. Descriptive statistics for the 118 multiple sclerosis (MS) cases in the Sardinian families.

MS Course ◦ N (%) Females (%) Age MS Onset
Mean (SD)

Year MS Onset
Mean (SD)

RRMS 58 (49%) 41 (71%) 28.45 (9.49) 1990 (10.09)
SPMS 27 (23%) 14 (52%) 28.89 (8.87) 1983 (9.64)
PPMS 1 (1%) 1 (100%) 45.00 1995

Unknown 32 (27%) 20 (63%) N/A N/A
Total 118 76 (64%) 28.64 (9.06) * 1988 (10.88) *

◦ RRMS = relapse–remitting MS, SPMS = secondary-progressive MS, PPMS = primary-progressive MS,
N/A = not available. * A total of 24 subjects had a missing age of MS onset.

In Table 3, kinship relationships between the MS-related cases within the families
were reported; among all these 238 kinship relationships, the distant relationships over
the fourth degree were the most represented, i.e., 176 times (74%), while the other kinship
relationships (from the first to the fourth) were found in similar proportions.

Table 3. Kinship relationships between the 118 multiple sclerosis cases.

Kinship Relationship N (%) *

First degree 20 (8%)
Parent–offspring 9
Mother 6
Father 3
Sibling 13
Second degree 9 (4%)
Uncle/aunt–nephew/niece 8
Grandparent–grandchild 1
Third degree 16 (7%)
Cousins 15
Grand-grandparent–grand-grandchild 1
Fourth degree 17 (7%)
Over the fourth degree 176 (74%)
Total 238

* Percentages refer to the total number of kinship relationships.

3.2. Bayesian-LTMH Results

We implemented the Bayesian-LTMH, including sex and categorized year of birth as
covariates, and no diagnostic problems were encountered. Table 4 reports the results from
the first analysis on the whole sample, including the median posterior distributions of the
parameters, their standard deviation (SD), and the 95% highest posterior density credibility
intervals (HPD CIs).

Categorized year of birth resulted as the strongest explanatory factor for MS liability
variability, i.e., τ2

βYR = 0.69 [95% CI: 0.64, 0.73], meaning that being born before or on/after
1946 explained ~70% of MS liability variability in our Sardinian population. Moreover,
compared to individuals born before 1946, individuals born on/after 1946 resulted in a
high MS liability increase, i.e., βYR (reference group ≤ 1946) = 3.17 [95% CI: 2.87, 3.48]. This
result highlighted year of birth as the major contributor for MS liability variability at the
population level, suggesting a crucial role for early environmental exposures which could
be related to the so-called “westernization process”, among which different pollution levels,
sanitary conditions, and dietary habits other than the sudden lack of Plasmodium falciparum
immune trigger in the environment consequent to the malaria eradication program. Notably,
the latter has been hypothesized to be associated with the increasing Sardinian MS incidence
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and prevalence observed in the last 50 years [62]. According to this hypothesis, cells of the
innate immune system, selected over the centuries to contrast Plasmodium falciparum malaria,
have kept the tendency to produce abnormal immune responses to new environmental
factors even after the disappearance of malaria, consequently leading to an increased
autoimmune risk.

Table 4. Posterior distributions summary statistics for parameters included in the Bayesian-LTMH
applied to the Sardinian families.

Parameter Median SD 1 HPD 95% CI 1

h2 0.033 0.028 0.000, 0.094
c2

Sibs 0.033 0.016 0.007, 0.067
c2

Mother–Sibs 0.012 0.012 0.000, 0.039
c2

Father–Sibs 0.013 0.013 0.000, 0.040
c2

Spouses 0.014 0.017 0.000, 0.051
c2

Total 0.080 0.037 0.021, 0.158
e2 0.168 0.036 0.094, 0.233

τ2
βSEX,YR 0.712 0.020 0.673, 0.749
τ2

βSEX 0.009 0.008 0.000, 0.027
τ2

βYR 0.686 0.024 0.637, 0.731
2cov◦βSEX,YR 0.015 0.007 0.003, 0.028

βSEX(Females vs. Males) 0.355 0.157 0.057, 0.679
βYR(≥1946 vs. <1946) 3.173 0.155 2.869, 3.477

1 SD = standard deviation, HPD 95% CI = highest posterior density 95% credibility interval. Proportion of
MS liability variability explained by (i) h2 = additive genetic effects, (ii) c2

Sibs = siblings’ shared environment
effects, (iii) c2

Mother-Sibs = shared environment effects between mother and the offspring, (iv) c2
Father-Sibs = shared

environment effects between the father and the offspring, (v) c2
Spouses = shared environment effects between

spouses, (vi) c2
Total = total shared environment effects, (vii) e2 = individual environmental effects, (viii) τ2

βSEX,YR

= sex and year of birth, (ix) τ2
βSEX = sex, (x) τ2

βYR = year of birth, and (xi) 2cov◦βSEX,YR = covariance between sex
and year of birth. βSEX = increase in liability for females compared to males; βYR = increase in liability year of
birth on/after 1946 compared to before 1946.

Individual and shared environmental factors, not linked to the year of birth, explained
~17% (e2 = 0.17 [95% CI: 0.09, 0.23]) and ~8% (c2

Total = 0.08 [95% CI: 0.02, 0.16]) of MS
liability variability, respectively. These could depend on MS risk factors shared between
individuals in the same household or specific to the individual, such as past viral infections
(e.g., EBV), smoking habits, exposures to pollutants, low vitamin D levels, dietary habits,
and childhood/adolescence obesity [15,16,63–66].

Genetic variability resulted as a poor explanatory factor, i.e., h2 = 0.03 [95% CI: 0.00,
0.09]. This result does not imply that genetic variability does not have a causal effect on MS,
nor that genetics, in a broader sense, is not involved in determining the disease. Rather, it
implies that genetic variability’s contribution in explaining MS liability variability in this
specific population is extremely low compared to the other environmental factors. Lastly,
sex resulted in a statistically significant increase in MS liability for the “females vs. males”
comparison, i.e., βSEX = 0.36 [95% CI: 0.06, 0.68]; however, its explanatory role for MS
liability variability was very low compared to the other parameters, i.e., τ2

βSEX median
value = 0.01 [95% CI: 0.00, 0.03].

In a separate model, we also included G × E effects variance i.e., h2
G×E, due to

interaction between additive genetics effects and categorized year of birth. The estimated
h2

G×E resulted equal to 0.03 [95% CI: 0.00, 0.10], while categorized year of birth remained
the main explanatory factor, i.e., τ2

βYR = 0.69 [95% CI: 0.64, 0.73]. This result does not
imply that G × E causal effects were null but indicates that the interaction between early
environmental exposures and genetic variants had very little impact on MS variability at a
population level, potentially suggesting that these environmental factors may have exerted
their effect on MS through other biological mechanisms. The posterior distributions for
the parameters are shown in Figure 2, along with median value (in red) and 95% HPD CIs
(in blue).
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Figure 2. Posterior distributions for parameters included in the Bayesian-LTMH applied to the
Sardinian families.

A secondary analysis was conducted stratifying the sample on the basis of the catego-
rized year of birth, thus focusing on individuals with more similar early environmental
exposures. The first group, i.e., “<1946”, was composed of 488 subjects: 238 males (49%)
and 250 females (51%); 16 MS cases (3%) and 472 healthy controls (97%). The second group,
i.e., “≥1946”, was instead composed of 302 subjects: 117 males (39%) and 185 females
(61%); 102 MS cases (34%) and 200 healthy controls (66%). Table 5 reports the results from
the Bayesian-LTMH model on both groups.

Table 5. Posterior distributions summary statistics for parameters included in the Bayesian-LTMH
applied to the Sardinian families stratified by year of birth on different environment conditions.

Year of Birth < 1946 Year of Birth ≥ 1946

Parameter Median SD 1 95% HPD CI 1 Median SD 1 95% HPD CI 1

h2 0.090 0.100 0.000, 0.312 0.818 0.068 0.679, 0.937
c2

Sibs 0.223 0.100 0.055, 0.433 0.045 0.030 0.004, 0.109
c2

Mother–Sibs 0.061 0.058 0.000, 0.185 0.013 0.016 0.000, 0.050
c2

Father–Sibs 0.049 0.051 0.000, 0.163 0.014 0.017 0.000, 0.054
c2

Spouses 0.085 0.083 0.000, 0.297 0.019 0.026 0.000, 0.078
c2

Total 0.477 0.142 0.199, 0.750 0.105 0.056 0.019, 0.222
e2 0.086 0.083 0.000, 0.265 0.021 0.025 0.000, 0.078

τ2
βSEX,YR N/A 1 N/A 1 N/A 1 0.042 0.032 0.000, 0.109
τ2

βSEX 0.304 0.112 0.079, 0.506 0.005 0.013 0.000, 0.035
τ2

βYR N/A 1 N/A 1 N/A 1 0.032 0.030 0.001, 0.095
2cov◦βSEX,YR N/A 1 N/A 1 N/A 1 0.000 0.001 −0.001, 0.001

βSEX(Females vs. Males) 1.322 0.368 0.586, 2.023 0.104 0.177 −0.246, 0.448
βYR(10 years increase) N/A 1 N/A 1 N/A 1 0.186 0.089 0.012, 0.362

1 SD = standard deviation, HPD = highest posterior density credibility interval, N/A = not available. Proportion
of MS liability variability explained by (i) h2 = additive genetic effects, (ii) c2

Sibs = siblings’ shared environment
effects, (iii) c2

Mother–Sibs = shared environment effects between mother and the offspring, (iv) c2
Father–Sibs = shared

environment effects between the father and the offspring, (v) c2
Spouses = shared environment effects between

spouses, (vi) c2
Total = total shared environment effects, (vii) e2 = individual environmental effects, (viii) τ2

βSEX,YR

= sex and year of birth, (ix) τ2
βSEX = sex, (x) τ2

βYR = year of birth, and (xi) 2cov◦βSEX,YR = covariance between
sex and year of birth. βSEX = increase in liability for females compared to males; βYR = increase in liability for
10 years increase in year of birth.

The h2 posterior distribution greatly differed between the two groups, i.e., 0.09 [95% CI:
0.00, 0.31] for the “<1946” group and 0.82 [95% CI: 0.68, 0.93] for the “≥1946” group, indicat-
ing that genetic variability acquired a high explanatory role for MS liability variability only
considering individuals born on/after 1946. For an MS-affected individual born on/after
1946, the high h2 value provides a strong likelihood that the genetic variability made a
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greater contribution compared to environmental factors (specific to “≥1946” group) in
producing a deviation from the population MS liability mean [8]. Potential hypotheses to
explain the higher value of h2 in the second group compared to the first, i.e., (~82% vs. ~9%),
could be the following: (i) a decrease in the influence of environmental factors, implying
that the genetic variability acquired a higher explanatory role only because the relative
explanatory importance was reversed; (ii) an increase in additive genetic effects, implying
that the change in environmental factors caused genetic variants to operate differently;
(iii) both cases together.

Shared environmental effects and sex resulted as the main explanatory components
for the “<1946” group, i.e., c2

Total = 0.48 [95% CI: 0.21, 0.75] and τ2
βSEX = 0.31 [95% CI:

0.08, 0.51]; sex resulted in a statistically significant increase in MS liability for “females vs.
males” comparison, i.e., βSEX = 1.33 [95% CI: 0.61, 2.03]. Therefore, in this group, specific
shared environmental factors (as suggested above), as well as being female, were linked to
a higher MS expression at the population level compared to the genetic variability.

Lastly, for the “≥1946” group, we were also able to include the exact year of birth as
a covariate, finding a significantly increasing trend in MS liability, i.e., 0.19 [95% CI: 0.01,
0.36] for an increase of 10 years; however, year of birth explained only ~3% of MS liability
variability, i.e., τ2

βYR = 0.03 [95% CI: 0.00, 0.10].
In conclusion, the explanatory sources of MS variability largely differed within the

two groups given their different early environmental background. The marginal posterior
distributions for the parameters are shown in Figure 3 for both groups, along with median
values (in red) and 95% HPD CIs (in blue).
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Comparing h2 estimates between populations, in Sardinian individuals born on or
after 1946, it resulted higher (~80%) compared to that obtained using twins from mainland
Italy (~50%), Canada (~55%), and the United States (~40%), as well as Finland and France
(~25%), while it resulted more similar to h2 estimates obtained using twins from the
United Kingdom (~75%), as well as Denmark and Sweden (~65%) [20]. These results
imply that the genetic variability in the Sardinian population, born on or after 1946, has
a better explanatory role for MS liability compared to other populations. This could be
due to greater additive genetic effects (e.g., specific genetic variants have a higher risk in
the Sardinian environmental background), lower environmental effects (e.g., some of the
environmental risk factors present in other population may not be part of the Sardinian
environmental background), or both.

It is worth mentioning that our analysis suffered from some limitations. Firstly,
available data did not include other potential confounders, even if their effect could have
been partially captured in the shared environmental effects. Moreover, the assumed MVN
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distribution for the underlying liabilities could not be easily checked and, if not respected,
could lead to biased estimates [47]. Nevertheless, our Bayesian-LTMH allowed a great
advantage to obtain a reasonably precise posterior distribution for MS h2 in the Sardinian
population using extended families ascertained from a proband [28].

4. Conclusions

In line with the latest literature [67], our results pinpoint environmental factors linked
to having been born before or on/after 1946 as the leading factors in explaining ~70%
of MS liability variability across the 20th century in the Sardinian population. Therefore,
further investigations would be crucial to identify these specific early environmental factors
involved in the increased MS liability in the Sardinian population. These factors could be
researched in the so-called “Westernization process” that took place after World War II, such
as different pollution levels, lifestyle, healthcare, and socioeconomic conditions, other than
malaria eradication [62]. The remaining variability in MS liability (~30%) resulted mainly
explained by environmental factors shared among individuals in the same household or
specific to the individual (e.g., low vitamin D levels, obesity, past EBV virus infection, diet,
and exposure to pollutants).

Despite the almost null h2 obtained analyzing the whole sample, genetic variability
remains a highly relevant matter as it acquired the main explanatory role for MS liability
variability (~82%) in the individuals born on/after 1946 when performing the stratified
analysis based on year of birth. This finding suggests that changes in early environmental
factors after 1946 have led to an increased impact of genetic variability on MS at the
population level. This could be attributed to either a decline in the impact of environmental
effects or a rise in the impact of genetic variant effects on MS risk over time. Therefore,
further studies on the Sardinian genetic background could highlight causal biological
pathways useful for MS prevention in the current population and for a better understanding
of MS etiology.
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tary Section S1. Mathematical details for the inclusion of G× E effects variance in the Bayesian-LTMH;
Supplementary Section S2. Description of the simulation studies conducted to assess the ability of
the proposed Bayesian-LTMH to recover the true parameters, along with results reported in a table
and in box plots.
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