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Abstract: As significant Ca2+ sensors, calmodulin (CaM) and calmodulin-like proteins (CML), have
been associated with a variety of environmental conditions in plants. However, whether CaMs/CMLs
are related to the stress of phytoplasma infection has not been reported in Paulownia fortunei. In the
current study, 5 PfCaMs and 58 PfCMLs were detected through a genome-wide investigation. The
number of EF-hand motifs in all PfCaMs/CMLs varied. Bioinformatics analyses, including protein
characteristics, conserved domain, gene structure, cis-elements, evolutionary relationship, collinearity,
chromosomal location, post-translation modification site, subcellular localization and expression
pattern analyses, represented the conservation and divergence of PfCaMs/CMLs. Furthermore, some
PfCaMs/CMLs might be involved in plants’ reaction to phytoplasma infection and exogenous calcium
therapy, indicating these genes may play a role in abiotic as well as biotic stress responses. In addition,
subcellular localization analysis showed that PfCML10 was located in the cell membrane and nucleus.
In summary, these findings establish a stronger platform for their subsequent functional investigation
in trees and further characterize their roles in Paulownia witches’ broom (PaWB) occurrence.

Keywords: Paulownia fortunei; CaMs/CMLs; gene family; phytoplasma; calcium treatment; Paulownia
witches’ broom

1. Introduction

Calcium (Ca2+), a second messenger, is crucial for the growth as well as development
of plants, and is involved in responses to inner and outer stimuli [1–4]. Evidence shows that
stimulations can rapidly induce an increase in intracellular Ca2+ concentrations, which then
bind to the protein sensors and typically amplify the calcium signals [5,6], changing their
behavior or capacity for interaction with subsequent proteins, and thus the signal by causing
a change in protein structure [7–9]. The majority of Ca2+-binding protein sensors are EF-
hand-domain-containing proteins such as calmodulins (CaMs), CaM-like proteins (CMLs),
calcineurin B-like proteins (CBLs), and Ca2+-dependent protein kinases (CDPKs) [2,10,11].

CaMs are highly preserved in eukaryotes, which typically have four EF-hand motifs,
and each EF-hand domain can bind one Ca2+ ion [12]. Previous studies demonstrated that in
order to control the growth and development of plants and their ability to react to challenges,
CaMs can bind to the target proteins and alter their function [13,14]. Among the various
Ca2+-binding proteins, CMLs are a plant-specific class of Ca2+ sensors that feature one to
six EF-hand motifs and share 16–75% amino acid identity with normal CaMs [12,15–17].
Additionally, they are distinct from CDPK and CBL members, and most CaMs/CMLs do not
have any other known functional domain, with the exception of CaM7, a transcription factor
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that can directly control the expression of HY5 in Arabidopsis [18]. Different CaMs/CMLs
differ in how they bind to and control target proteins, and even minor structural variations
can have a big impact on how well they attach to their targets [19]. There is proof that
CMLs may not be functionally redundant [17].

CaMs/CMLs are notable Ca2+-binding proteins sensors in higher plants, including Vi-
tis vinifera, Lotus japonicas, Solanum lycopersicum, Fragaria vesca, Malus domestica, and Triticum
aestivum, which can mediate flower development, seed germination and biotic stress tol-
erance [14,20–25]. For instance, the reduction function of AtCML24 and AtCML25 has a
significant impact on pollen development, and AtCML24 can work together with ATG4b to
influence autophagy growth, whereas CML25 takes part in the Ca2+-mediated regulation
of K+ influx during pollen development [26–28]. AtCML39 may play a role in controlling
seed germination, growth, and early establishment [29,30]. A rice-calmodulin-like gene,
OsMSR2, can increase resistance to drought and salt [31], while GmCaM4 can strengthen the
binding ability of DNA and MYB2, and overexpression of GmCaM4 in soybean increases its
resistance to pathogens and salt stress [32]. Compared to the wild type, the Arabidopsis cml9
mutant is more sensitive to ABA and exhibits improved salt and drought tolerance [33]. Tol-
erance to drought and ABA-induced stomatal closure are adversely regulated by Arabidopsis
CML20 [34]. Moreover, many previous studies have also indicated that the expression of
CaMs/CMLs strongly affects the plant immune system [13]. Reduced salicylic acid levels
and disease resistance are the outcomes of CaM induced binding and activation of the
calmodulin-binding transcription activator CAMTA3 in Arabidopsis [35]. Overexpression of
AtCML43 can accelerate the hypersensitive response [36]. AtCML9 expression is induced
by pathogens (Pseudomonas syringae) and involved in modulating plant defense [33,37].
AtCML8 has a beneficial effect on plant immunity and is also strongly and transiently
induced by P. syringae [38]. Additionally, recent studies on the CaM/CML gene family
in grapes demonstrated that the expression of CaMs/CMLs was altered under various
abiotic stresses, which suggests the functional diversity in grapevine stress resistance [20].
However, up to now, CaMs/CMLs and their relationship to phytoplasma infection had
yet to be found and defined in Paulownia fortunei. Therefore, it was vital to investigate the
function of Ca2+ as a second messenger in the pathogenesis of PaWB disease.

P. fortunei is an important deciduous tree of Paulownia (Paulowniaceae), that is widely
cultivated for its high adaptability and rapid growth [39]. They have high ecological,
economic, and medicinal value, which make them popular among the general public [39].
However, pathogen phytoplasma can easily infect these trees, leading to the occurrence of
Paulownia witches’ broom (PaWB), which has a significant negative impact on the tree’s
productivity and economic benefits. To explore its role in PaWB, here, we identified the
PfCaM/CML gene family in the P. fortunei genome and investigated their phylogenetics,
gene structure, chromosomal locations, protein motifs, subcellular location, syntenic and
promoter cis-acting elements. Moreover, the spatiotemporal expression patterns and expres-
sion profiles of healthy P. fortunei seedlings (PF), PaWB phytoplasma-infected P. fortunei
seedlings (PFI), and PFI treated with rifampin (Rif) and methyl methane sulfonate (MMS)
were also analyzed. Additionally, six PfCMLs with a response to calcium signaling under
calcium treatment were examined. To better understand the Ca2+-mediated signal trans-
ductions in P. fortunei, as well as to aid future gene cloning and functional investigation, it
would be helpful to conduct a systematic examination of the entire set of CaMs/CMLs in
P. fortunei.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

All plant samples utilized in this study were from Henan Agricultural University’s
Laboratory of Forestry Biotechnology in Zhengzhou, Henan Province, China. The tissue-
cultured seedlings were cultured in greenhouse at 25 ± 2 ◦C under a 16 h day/8 h night
cycle with an irradiance of 130 µmol·m−2·s−1. The apical buds, stem, and leaf from PF and
PFI were collected for further study.
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For calcium treatment, PF and PFI which grew approximately 1 cm root were trans-
fered to 10 mM CaCl2 and normal medium (control). The apical buds were collected at 3, 6,
9, and 12 h after transformation. All samples were rapidly frozen in liquid nitrogen and
kept at −80 ◦C for RNA extraction. For each treatment, three biological duplicates were
established. Nicotiana benthamiana was grown in an infant incubator that had a constant
temperature with 16 h/8 h light/dark.

2.2. Identification of the CaM and CML Family in P. fortunei

The protein sequences of Arabidopsis thaliana CaM and CML were used to retrieve the
TAIR website (http://www.Arabidopsis.org/) in order to determine the CaM and CML
proteins in P. fortunei. The detailed Arabidopsis thaliana genes used for identification are
listed in Table S1. These sequences served as search criteria for the P. fortunei genome’s
candidate members using BLASTP (E cut-off value < 1 × 10−5). Coding sequences without
ATG were considered partial and defective, which were eliminated. Then these non-
redundancy sequences were verified using SMART (http://smart.embl-heidelberg.de/)
and NCBI-CDD (http://www.ncbi.nlm.nih.gov/cdd) programs. Sequences possessing
only the EF-hand domains were considered to be CaMs/CMLs, similarity greater than 90
to AtCaM2 was considered to be CaMs.

Protein theoretical isoelectric point (pI) and molecular weight (MW) prediction were
performed in Expasy ProtParam (http://web.expasy.org/protparam/). Subcellular lo-
cation prediction was used five tools (loctree3, https://rostlab.org/services/loctree3/;
Yloc, https://abi-services.cs.uni-tuebingen.de/yloc/webloc.cgi; WoLF PSORT, https://
wolfpsort.hgc.jp/; Plant-PLoc, http://www.csbio.sjtu.edu.cn/bioinf/plant/; ProtComp,
http://linux1.softberry.com/berry.phtml/). Using NetPhos 3.1 (http://www.cbs.dtu.dk/
services/NetPhos/), Phosphorylation site prediction was performed on the serine, thre-
onine, and tyrosine residues, and the score threshold was settled at 0.8. Methylation,
acetylation and ubiquitination site were predicted on website (http://msp.biocuckoo.org/)
with high threshold.

2.3. Chromosomal Locations, Motifs and Gene Structure Analyses

Based on P. fortunei genome databases, chromosomal locations and correspond-
ing sequence of PfCaMs/CMLs were retrieved. “Gene Location Visualize (advanced)”
program of TBtools was used for gene mapping (v.1.09868) [40]. The exon-intron struc-
ture of PfCaM/CML genes was conducted using the GSDS2.0 (Gene structure display
server; http://gsds.gao-lab.org/) program with default settings. The MEME suite (http:
//meme-suite.org/tools/meme) was used to identify preserved domains. Normal search
settings were a maximum of 10 motifs and an ideal motif width between 6 and 50.

2.4. Phylogenetic and Duplication Analyses

The phylogenetic trees, including P. fortunei, Malus domestica (4 CaMs and 58 CMLs),
and Arabidopsis thaliana (7 CaMs and 50 CMLs), were constructed via MEGA with Maxi-
mum Likelihood (ML) approach with the default settings, and bootstrap analysis using
1000 replicates was performed [24,41]. Collinearity analysis of A. thaliana and P. fortunei
was obtained using MCScanX, and they were represented using Circos in TBtools software
(v.1.09868) [41]. The nonsynonymous substitution rate (Ka), the synonymous substitution
rate (Ks), and Ka/Ks ratio of PfCaMs/CMLs were analyzed using TBtools (v.1.09868).

2.5. Cis-Acting Element Analysis

As previously reported, the promoter of PfCaMs/CMLs was a 2000 bp stretch up-
stream of the start codon [22,25]. The cis-acting elements of PfCaMs/CMLs were discovered
through PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [42].

http://www.Arabidopsis.org/
http://smart.embl-heidelberg.de/
http://www.ncbi.nlm.nih.gov/cdd
http://web.expasy.org/protparam/
https://rostlab.org/services/loctree3/
https://abi-services.cs.uni-tuebingen.de/yloc/webloc.cgi
https://wolfpsort.hgc.jp/
https://wolfpsort.hgc.jp/
http://www.csbio.sjtu.edu.cn/bioinf/plant/
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http://meme-suite.org/tools/meme
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2.6. Gene Expression Analysis

RNA-seq data of PF, PFI, and PFI under MMS or Rif treatment at different concen-
trations or time points were downloaded from NCBI (access number are SRS6658602,
SRS6658613, SRS6658617, SRS6658616, SRS6658600, SRS6658592, SRS6658601, SRS6658603,
SRS6658608, SRS6658607), as well as the transcriptome data of leaf, trunk phloem and
trunk cambium from 4-year-old P. fortunei (access number are SRS6658596, SRS6658598,
SRS6658597) [39]. Heatmaps constructed using the TBtools based on PfCaMs/CMLs gene
expression levels [41].

For the gene expression verification, total RNA was isolated using the TIANGEN
Simple Total RNA kit (Beijing, China). For each sample, 1 µg of total RNA was reverse-
transcribed into total DNAs using the GeneStar starscript III All-in-one RT, and 2×RealStar
Green Fast Mixture with ROX II (Beijing, China) were used to Real-Time qPCR. PfActin as
an internal control, and relative expression levels were calculated according to the 2−∆∆CT

(cycle threshold) method. The Table S2 lists the primer sequences utilized in the qRT-PCR
analysis.

2.7. Vector Construction and Subcellular Localization Analysis

Utilizing the ClonExpress II One Step Cloning Kit from Vazyme, the entire PfCML10
coding sequence was cloned into the pSAK277-eGFP at EcoRI restriction sites for subcellular
localization study. The recombinant plasmids 35S::PfCML10-eGFP were transferred into
Agrobacterium tumefaciens strain GV3101 for Nicotiana benthamiana leaf transient expression.
Then, these transformed N. benthamiana were cultured at 25 ◦C for 72 h, using confocal laser
scanning microscope (Zeiss LSM 710, Göttingen, Germany), and eGFP signals were seen
and captured using camera. The primer sequences are listed in Table S2.

2.8. Statistical Analysis

The data were analyzed, and all statistical tests were run using SPSS 19.0 (Chicago, IL, USA).
Asterisks denote statistical significance at various levels (* p < 0.05 and ** p < 0.01), and
values mean SD.

3. Results
3.1. Identification Analysis of CaM/CML Family Genes in P. fortunei

Seven AtCaM and fifty AtCML proteins were used as query sequences to find the
CaM and CML genes in the P. fortunei genome. Finally, the P. fortunei genome contained
58 PfCMLs and a total of 5 PfCaMs. Based on the chromosomal positions, the PfCaM/CML
genes were called sequentially consecutively from PfCaM1 to PfCaM5 and PfCML1 to
PfCML58. All PfCaMs had four EF-hands, their protein length (aa), isoelectric points (pI),
theoretical molecular weights (MW) ranged from 149 (PfCaM1/2/5) to 188 (PfCaM4) aa,
4.07 (PfCaM3) to 4.8 (PfCaM4), and 16.85 (PfCaM1/2/5) to 21.78 (PfCaM4) kDa, respectively
(Table 1). With one to four EF-hands, PfCMLs differed more from PfCaMs in terms of
their features. PfCML proteins ranged in length from 84 (PfCML9/30) to 275 (PfCML51)
AA residues, their molecular weights ranged from 9.20 (PfCML30) to 31.07 (PfCML7)
KDa, and pI varied from 3.67 (PfCML27) to 8.94 (PfCML51), respectively (Table 1). The
other information for the PfCaM/CML proteins, including functional feature sites and
methionine percentage, is shown in Table 1.

Table 1. Characteristics of 63 PfCaM/CML genes in the Paulownia fortunei.

Gene Symbol Gene Locus Group PL/(aa) (a) MW/KDa (b) pI (c) C27 (d) L116 (e) M (f)

PfCaM1 Pfo01g009450 V 149 16.85 4.11
√ √

6%
PfCaM2 Pfo01g009460 V 149 16.85 4.11

√ √
6%

PfCaM3 Pfo03g002270 V 150 16.93 4.07
√ √

6%
PfCaM4 Pfo12g004780 V 188 21.77 4.8

√ √
5%

PfCaM5 Pfoxxg016130 V 149 1685 4.11
√ √

6%
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Table 1. Cont.

Gene Symbol Gene Locus Group PL/(aa) (a) MW/KDa (b) pI (c) C27 (d) L116 (e) M (f)

PfCML1 Pfo02g003340 VI 205 23.00 5.64 5%
PfCML2 Pfo02g016830 VI 185 21.05 6.17 4%
PfCML3 Pfo03g001430 I 186 20.80 4.55 3%
PfCML4 Pfo03g005560 VII 231 25.50 4.8

√
4%

PfCML5 Pfo05g003830 IV 152 17.17 4.03 7%
PfCML6 Pfo05g008280 VII 154 17.40 4.48 6%
PfCML7 Pfo05g014450 II 274 31.04 5.87 2%
PfCML8 Pfo06g000150 III 169 19.46 4.79

√
7%

PfCML9 Pfo06g009190 VI 84 9.22 4.42 5%
PfCML10 Pfo06g009210 VI 151 16.51 4.64 3%
PfCML11 Pfo06g013840 IX 195 22.35 4.88 3%
PfCML12 Pfo07g003100 IX 191 21.72 4.55 2%
PfCML13 Pfo07g004220 III 161 17.82 4.29 6%
PfCML14 Pfo07g006290 VI 189 20.76 4.49

√
4%

PfCML15 Pfo07g008300 III 164 18.07 4.5 2%
PfCML16 Pfo08g007110 VI 167 18.62 4.59 5%
PfCML17 Pfo08g009080 IV 149 16.95 4.15

√ √
6%

PfCML18 Pfo09g010040 II 229 25.93 4.48 5%
PfCML19 Pfo10g000920 IX 138 15.28 4.42

√
7%

PfCML20 Pfo10g005120 IV 147 16.60 4.8 3%
PfCML21 Pfo11g000490 II 157 17.28 4.36 4%
PfCML22 Pfo11g002860 IV 152 17.02 3.97

√ √
5%

PfCML23 Pfo11g005070 II 246 28.74 5.04
√

3%
PfCML24 Pfo11g011500 IX 196 21.85 5.04 3%
PfCML25 Pfo11g014110 VIII 155 17.58 4.62 5%
PfCML26 Pfo11g014120 VIII 158 18.59 4.48 3%
PfCML27 Pfo11g014730 VI 156 16.76 3.67 6%
PfCML28 Pfo12g001970 IV 152 17.02 4.03 6%
PfCML29 Pfo12g011100 VII 153 17.40 4.56 7%
PfCML30 Pfo13g006910 VI 84 9.19 4.52 4%
PfCML31 Pfo13g006920 VI 153 16.48 4.31 4%
PfCML32 Pfo13g008390 VI 179 20.04 6.31 6%
PfCML33 Pfo13g008930 IX 190 21.50 5.23 3%
PfCML34 Pfo13g010140 IX 200 22.98 4.51 3%
PfCML35 Pfo13g011810 IX 141 15.89 4.48

√
6%

PfCML36 Pfo14g004090 IV 151 16.95 4.15
√ √

7%
PfCML37 Pfo14g008380 IX 195 22.16 4.45 5%
PfCML38 Pfo15g003460 VIII 151 17.60 4.48 2%
PfCML39 Pfo15g003470 VIII 159 18.33 4.53 4%
PfCML40 Pfo15g007850 IX 213 24.27 5.71

√
2%

PfCML41 Pfo16g003140 IV 103 11.87 4.15 8%
PfCML42 Pfo16g008660 II 229 26.30 4.57 4%
PfCML43 Pfo17g000060 VI 190 21.18 4.5 2%
PfCML44 Pfo17g003910 IX 193 22.19 4.62 4%
PfCML45 Pfo18g012180 III 164 17.98 4.65 2%
PfCML46 Pfo19g000740 II 159 17.14 4.53 3%
PfCML47 Pfo19g004470 IV 152 17.18 3.97

√ √
6%

PfCML48 Pfo19g009400 VII 222 25.43 5.42 5%
PfCML49 Pfo20g007420 IV 147 16.57 4.79 3%
PfCML50 Pfoxxg000660 VIII 189 21.17 4.45 4%
PfCML51 Pfoxxg003060 II 275 30.53 8.94 1%
PfCML52 Pfoxxg003290 I 268 29.93 4.69 2%
PfCML53 Pfoxxg004030 II 241 26.49 5.72 1%
PfCML54 Pfoxxg004220 I 265 29.48 4.85 2%
PfCML55 Pfoxxg018040 II 258 28.11 5.92 1%
PfCML56 Pfoxxg018260 I 221 24.50 4.48 3%
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Table 1. Cont.

Gene Symbol Gene Locus Group PL/(aa) (a) MW/KDa (b) pI (c) C27 (d) L116 (e) M (f)

PfCML57 Pfoxxg024780 VIII 189 21.19 4.45 4%
PfCML58 Pfoxxg028190 I 221 24.50 4.48 3%

a Presence of protein length. b Presence of molecular weight. c Isoelectric point prediction by ExpasyProtParam
server. d Presence of a cysteine equivalent to Cys27 of typical plant CaMs at residue 7(-Y) of the first EF-hand.
e Presence of a lysine equivalent to Lys116 of typical plant CaMs. f Percentage of methionine residues in the
deduced amino acid sequence.

We constructed a phylogenetic tree using the 63 PfCaMs/CMLs, 62 MdCaMs/CMLs,
and 57 AtCaMs/CMLs to examine the evolutionary relationship. According to the findings,
there are nine groups that can be made up of these 63 PfCaMs/CMLs. (Figure 1), com-
parable to those identified in A. thaliana, Malus domestica, and Hordeum vulgare [24,41,43].
PfCaMs were placed in group V, and PfCMLs were assigned to all of the groups. Group VI
had the most PfCaM/CML members (11), followed by groups IX (10) and II (9), whereas
groups I (5) and III (4) had few genes. Additionally, the dendrogram showed that there was
no clear single homolog CaMs/CMLs among P. fortunei, Malus domestica and A. thaliana,
suggesting that CaMs/CMLs from P. fortunei, A. thaliana, and Malus domestica have obvious
evolutionary differences.
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domestica. Phylogenetic distance calculate by MEGA X program and the Maximum Likelihood (ML)
method, using bootstrap values of 1000. Based on the protein sequence similarities between Paulownia
fortunei, Arabidopsis thaliana, and Malus domestica, the members were divided into 9 groups (I–IX).
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3.2. Conserved Motifs and Gene Structure of PfCaMs/CMLs

Phylogeny, conserved motifs, and gene structures of PfCaMs/CMLs were further
analyzed (Figure 2). Family members with close evolutionary ties have substantial sequence
similarity and similar motifs in general (Figure 2A). A total of 10 domains were identified
and confirmed via the MEME tool. According to the findings, PfCaM/CML motifs were
shown to be diverse among PfCMLs but relatively conserved among PfCaMs (Figure 2B);
more information about conserved motifs is provided in Figure S1. Furthermore, the
existence of the same type of conserved domains may indicate functional similarities in
the PfCaM/CML families. In addition, the gene structures were analyzed to examine the
structural diversity of PfCaM/CML genes (Figure 2C). Members from groups II, IV, and
V were intron-rich, while members from the three groups I, III, and VI were intron-less.
Notedly, groups VII, VIII, and IX contained no intron structure. The phylogenetically
closely related genes in other plant species shared the same or a very comparable exon-
intron structure, although PfCaMs/CMLs in various groups exhibited varied exon-intron
structural characteristics.

3.3. Chromosomal Location and Duplication Analysis

To identify the distribution of PfCaMs/CMLs in P. fortunei chromosomes, we examined
their chromosomal position. Of the 63 PfCaMs/CMLs, 53 genes were distributed throughout
all of the P. fortunei chromosomes, except chromosome 4 (Figure 3), and the distribution
appeared to be uneven. Chromosome 11 contained the most PfCML genes (7 members).
Chromosome 13 comes next, which had six PfCML genes. Chromosomes 7 and 6 contained
four genes. Chromosomes 3, 5, 12, 15, and 19, each had three PfCMLs. In addition, there is
only one PfCML gene that was simultaneously distributed on chromosomes 9, 18, and 20.
To understand the evolution of PfCaMs/CMLs, collinearity diagrams among PfCaMs/CMLs
were analyzed. The findings demonstrated that the P. fortunei genome exhibited gene
duplication in some PfCaMs/CMLs (Figure 3, Table S3). The majority of PfCaMs/CMLs
included 1–3 paralogous genes in P. fortunei, while PfCML11 had four paralogous genes
in P. fortunei. The Ka/Ks ratios of gene pairs were <1.0, indicating that these PfCaM/CML
pairs were subjected to purifying selection following duplication (Table S3). We also
carried out a synteny study of the CaM/CML genes in P. fortunei and A. thaliana. Thus,
50 orthologous pairs were found in P. fortunei and A. thaliana (Figure S2). Eight genes
(PfCML10/16/20/22/31/47/54/56) had two orthologous genes in A. thaliana, while three
genes (PfCML11/12/48) had three orthologous genes in A. thaliana. However, less than 50%
identity existed in around one-third of the orthologous pairs, indicating that the function
of gene pairs may have been differentiated. According to some significant percentages of
identity between PfCaMs/CMLs and AtCaMs/CMLs, PfCaM/CML protein functions and
sequences may be substantially conserved.

3.4. Diversified Expression Patterns of PfCaMs/CMLs

We employed transcriptome sequencing data and thoroughly examined these expres-
sion levels to investigate the expression patterns of PfCaMs/CMLs in sapling trees. In total,
57 PfCaMs/CMLs are expressed in trunk phloem, leaf, and trunk cambium (Figure 4A).
Compared with other genes, five genes (PfCaM4, PfCML8/17/32/36) were highly expressed
in trunk phloem. In terms of the leaf transcriptome, PfCML27 had the greatest expression
level, next to PfCML8/4/46/16. Particularly, the expression level of PfCML27 was almost
2-fold higher than that of PfCML8. Six genes (PfCML48/20/8/17/49/36) appeared to have
a relatively high expression in trunk cambium, which indicated that their function may
relate to secondary growth. Notably, PfCML8 was highly expressed in all three tissues,
which implied that PfCML8 is positively involved in developmental processes of trunk
phloem, leaf, and trunk cambium. The discovery suggested that PfCaMs/CMLs may be
engaged in a variety of biological processes throughout the growth and development of
P. fortunei.
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Figure 2. Phylogenetic groups, motif compositions and gene structures of PfCaMs/CMLs. (A) Phylo-
genetic classification of PfCaM/CML proteins; (B) MEME analysis revealed a schematic representa-
tion of the conserved motifs among the PfCaM/CML proteins. Each color stood for a distinct motif;
(C) Gene structures of PfCaMs/CMLs. The CDS, UTR and Intron were appeared by green boxes,
yellow boxes, and grey line, respectively.
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Figure 3. Chromosomal location and collinearity analysis of PfCaMs/CMLs in the Paulownia fortunei
genome. The relative positions of the 53 PfCaMs/CMLs marked on chromosomes (Chr01–20). Red
line represented the collinearity gene pair in the P. fortunei genome. The coloured boxes represented
gene density, the more orange the colour, and the higher the density.

Additionally, expression analysis of PfCaM/CML genes that responded to PaWB phyto-
plasmas infection was performed. Compared with PF, expression of 35 PfCaMs/CMLs was
up-regulated, and 17 PfCaMs/CMLs were down-regulated in PFI. Among them, 15 genes
(PfCML10/13/15/20/22/26/27/28/29/31/33/34/43/44/47) were up-regulated significantly
in the PFI (fold change > 2), while 4 genes (PfCML38/42/49/58) were observably down-
regulated (fold change > 2) (Figure 4B,C). After MMS or Rif treatment, the relative expression
levels of PfCaMs/CMLs were changed, which met the trend of phytoplasma concentration,
and qRT-PCR results further confirmed the expression patterns (Figure 4D). Based on these,
our data suggested that PfCaMs/CMLs may be associated with PaWB occurrence.

3.5. Analysis of the Cis-Elements in the Promoter Region of the PfCaMs/CMLs

The coordinated regulation of stress-induced gene expression in stressful situations
was carried out via transcriptional networks. We assumed that PfCaMs/CMLs would be
targets of stress-regulated transcription factors and may be downstream of the transcrip-
tional network regulating stress resistance. In light of this, we investigated the cis-elements
associated with plant growth, hormones, and stress responses in the promoter region of
the PfCaMs/CMLs. As shown in Figure 5, the mainly cis-acting elements of PfCaMs/CMLs
were grouped into four types. Cis-acting elements are associated with responses to growth,
such as meristem expression (CAT-box) and endosperm expression (GCN4-motif); phyto-
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hormones, such as abscisic acid (ABRE), salicylic acid (TCA-element), gibberellin (p-box),
methyl jasmonate (CGTCA-motif), ethylene (ERE) and auxin (TGA-element and AUXRR-
core); adversity, such as anoxia stress (ARE), low temperature (LTR), drought (MBS);
defense, and stress-related elements (TC-rich repeats/WUN-motif) distributed in the pro-
moter regions of the PfCaMs/CMLs. The fact that PfCaMs/CMLs had the same or distinct
cis-acting areas suggests that these genes can occasionally be regulated simultaneously
in response to stress or a particular external stimulus. Therefore, our data indicated that
PfCaMs/CMLs should respond to P. fortunei stress stimulus.
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Figure 4. Diversified expression patterns of PfCaMs/CMLs genes. (A) Heatmap of PfCaMs/CMLs
genes in 4-year-old Paulownia fortunei. The more red the color the higher the expression. PF-phloem,
PF-leave and PF-cambium represent the phloem, leaf and cambium of Paulownia fortunei, respectively;
(B) Heatmap of PfCaMs/CMLs genes expression in response to MMS in PFI. MMS20-5/30 and
MMS60-5/20 were expressed that PFI was treated with 20 mg·L−1 MMS for 5/30 d, and 60 mg·L−1

for 5/20 d, respectively; PF, Paulownia fortunei seedlings; PFI, Paulownia witches’ broom (PaWB)
phytoplasma-infected Paulownia fortunei seedlings. (C) Heatmap of PfCaMs/CMLs genes expression
in response to Rif in PFI. Rif30-5/30 and Rif100-10/20 were expressed that PFI were treated Rif
with 30 mg·L−1 for 5/30 d and 100 mg·L−1 for 10/20 d, respectively. High expression levels were
shown in orange, and low expression levels were shown in blue; (D) qRT-PCR of PfCaMs/CMLs
genes expression in apical bud, stem and leaf in PF and PFI. Error bars represented SD values from
biological repeats, and significance testing constructed by one-way ANOVA (** p < 0.01, * p < 0.05).
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Figure 5. Representatives of the major cis-regulatory elements identified from PfCaMs/CMLs pro-
motors. PlantCARE was used to determine the cis-acting elements of PfCaMs/CMLs. The cis-acting
elements were presented in four types (Growth, Defense, Stress, and Plant hormones). The num-
bers represented amount of cis-acting elements, and the blank space meant the gene didn’t have
the regulatory element. The different colours also represented the differences with the number
of elements.

3.6. Post-Translation Modification and Subcellular Localization Prediction

To uncover the relative regulatory mechanisms of PfCaMs/CMLs, we predicted post-
translational modification (PTM) sites, such as methylation, acetylation, ubiquitization, and
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phosphorylation (Figure 6). We found up to 22 potential phosphorylation sites in PfCML52,
with at least 1 putative phosphorylation site found in PfCaMs/CMLs (Table S4). Moreover,
seven and six CaMs/CMLs were found putatively at methylation sites and ubiquitization
sites. More than 50% of the family members contained acetylation sites, and three members
had up to six acetylation sites (Figure 6, Table S4). These findings laid the groundwork for
further research into how the PTM affects the structure and roles of PfCaM/CML proteins.
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Figure 6. Schematic representation of four potential post-translation modification of Paulownia
fortunei CaM and CML proteins. Methylation, Acetylation, Ubiquitination, and Phosphorylation
sites were predicted on the CUCKOO Workgruop and NetPhos 3.1, respectively. For each CaM and
CML proteins, the putative Methylation (in blue), Acetylation (in orange), Ubiquitination (in grey),
and Phosphorylation (in yellow) sites were shown. The length of colored bars corresponded to the
number of expected locations.

The potential subcellular localization of the PfCaM/CML proteins was predicted, as
shown in Table S5. Except for PfCML23 and PfCML37, which were located outside the cell,
most PfCaMs/CMLs were located at extranuclear sites, such as cytoplasm, vacuole, and
chloroplasts. To further substantiate the subcellular localization of the PfCaM/CML pro-
teins, we produced a temporary expression construct (35S::PfCML10-GFP). The PfCML10-
GFP fluorescence signal was found in the cytoplasm and nucleus, while the GFP-free
control signal was present throughout the entire population of cells (Figure 7).

3.7. Expression Analysis of PfCMLs in Response to Calcium Signaling

To explore the potential regulation of PfCaM/CML genes in response to calcium
signaling, the expression levels of six candidate PfCMLs (PfCML10/15/28/34/38/57) that
were selected according to the RNA-seq result were analyzed under a high concentration
of calcium. Six PfCMLs’ expression levels changed in response to calcium, and there were
differences in the calcium response time between PF and PFI (Figure 8). Among them,
the expression levels of four genes (PfCML10/15/34/38) and PfCML28 increased within
6 h and 9 h after the calcium treatment in PFI, respectively. Nevertheless, three genes
(PfCML15/34/57) increased to the highest expression level at 9 h in PF, and PfCML57
revealed the greatest expression levels, showing 50-times greater expression at 9 h in the
CaCl2 treatment than control. These results suggested that the expression patterns were
modified by increased Ca2+ concentration., and six PfCMLs should be variously involved
in PaWB occurrence.
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Figure 7. Subcellular localization of PfCML10. 35S:PfCML10-GFP and 35S:GFP constructs were
individually injected into the epidermal cells of N. benthamiana. The transient expression of PfCML10-
GFP was observed and captured by a confocal laser scanning microscope. Autofluorescence of the
GFP-free was also observed and photographed. mCherry-PIP2;1 as PM marker. Scale bars were
20 µm.
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Figure 8. Expression patterns of 6 PfCMLs under calcium treatment. Apical buds were collected at
3, 6, 9, and 12 h after treatment. The red and blue lines represented PF and PFI treated with 10 mM
CaCl2, respectively, and black line represented untreated PF as control. Error bars represented SD
values from three biological repeats.

4. Discussion

Ca2+ is a crucial second messenger that performs a key role in plants [6]. A plethora of
Ca2+ binding proteins that act as Ca2+ sensors decipher complicated Ca2+ signals [44]. Ca2+

binding proteins react to the fluctuating intracellular Ca2+ level and boost later signaling,
triggering a physiological reaction to the signal. Among Ca2+ sensors, CaMs and CMLs are
the most universally conserved major calcium sensor proteins in plants. However, no report
on participation of plant CaMs/CMLs in P. fortunei has been found. Additionally, most
CaM/CML investigations have mostly focused on herbaceous plants, particularly A. thaliana
and Oryza sativa [26–31,33,38], and have ignored this family in angiosperm deciduous tree
species. We completely characterized the CaM/CML families in P. fortunei in the current
work, including the phylogeny, gene structures, conserved motifs, gene duplications,
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synteny analysis, expression patterns, cis-acting elements, subcellular localization, and
PTM sites. Additionally, six PfCMLs were proposed to be involved in PaWB occurrence.
These findings offer a whole comprehension of the CaM/CML gene families in deciduous
tree species within the ngiosperm and establish important groundwork for subsequent
research on how they affect tree growth and development.

According to our investigation, we discovered 58 CML genes in P. fortunei (Table 1),
somewhat more than those in A. thaliana (50 CML-encoding genes), even if certain clus-
ters of gene duplication were visible. The total amount of members of the PfCaM/CML
gene families falls short of what we anticipated when we took into account the ratio of
3.0 putative P. fortunei genome size for A. thaliana. At least two substantial genome-wide
duplications were performed on the P. fortunei genome [39], which could lead to numerous
imperfect and incomplete coding sequences. Moreover, prior research has shown that
numerous P. fortunei chromosomal pairs have the same fusion pattern and that substantial
gene loss happened in an asymmetrical and reciprocal manner [39]. As a result, many
fewer PfCaM/CML genes than we anticipated were found in P. fortunei. Nevertheless,
approximately 84% (53 of 63) of the PfCaM/CML genes were linked to duplications, sug-
gesting these genes were functionally redundant. According to our analysis of selective
pressure, purifying selection was the dominant force during the expansion of the CaM/CML
gene families in P. fortunei, implying that these duplicate genes may still maintain their
original functions.

The majority of PfCaMs/CMLs from the same group shared comparable gene struc-
tures and conserved domains (Figure 2), as well as the subcellular localization prediction
(Table S5). PfCaMs/CMLs were classified into nine groups, consistent with A. thaliana [41].
Moreover, the intron-exon structural analysis revealed that the majority of PfCML genes
lack an intron (Figure 2). This intron-exon structure may have already existed in common
ancestor genes [43,45]. Despite not contributing to protein sequences, introns’ relative place-
ments provide some hints for forecasting how genes and the proteins they encode change,
which helps the gene family become more diverse [46,47]. Therefore, our data revealed that
CaM/CML families shared a conserved gene structure, supporting the classification and
evolutionary relationships in P. fortunei. This evidence also suggested plant CaMs/CMLs
belonging to the same subgroup might play roles that are comparatively preserved. How-
ever, the protein composition and quantity of EF-hand domains in CaM/CML members,
which are associated with PTM sites and Ca2+-binding characteristics, determine how
well they operate. In actuality, different plant species have different numbers of EF-hand
patterns. Two to six EF-hand motifs are generally present in A. thaliana CML proteins [41],
but PfCMLs contained one to four preserved EF-hand motifs. In addition, most PTM sites
were also different in the same group. Combined with collinearity analysis, these data
suggested that the function of partial gene pairs may have been differentiated.

The patterns of gene expression and function were closely connected. According to
RNA-seq and qRT-PCR analyses, the genes in the PfCaM/CML families have a variety
of expression patterns (Figure 4). Previous studies indicated that MMS and Rif were con-
firmed to significantly inhibit PaWB in two different ways, and PFI treated with certain
concentrations of MMS or Rif could transform healthy morphology; PaWB phytoplasma
was undetectable in apical buds after 20 days of treatment [39]. Based on RNA-Seq of
PfCaMs/CMLs, almost all PfCaMs/CMLs displayed higher transcript levels in buds of PFI,
except for PfCML38, for which the expression level was down-regulated in PFI. Even so,
these gene expression patterns were also positively correlated with detectable levels of
PaWB phytoplasma. These findings suggest that PfCaM/CML genes should interact with
or function in the PaWB. For this purpose, the stress-related regulatory elements in the
promoter regions were examined. Numerous cis-elements related to hormones and stress
reaction were present in almost all members (Figure 5), which have been associated with
biotic stress. Furthermore, the PfCML10 was located in the cell membrane and nucleus
within N. benthamiana cells, similar to that in Arabidopsis AtCML24, modulating the actin cy-
toskeleton; then, it regulates pollen tube growth and affects autophagic progression [27,28].
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The involvement of PfCML10 in the autophagic process during phytoplasma infection is
assumed, such as degradation of chlorophyll and chlorophyll–protein complexes. Presum-
ably, these proteins may be signaling proteins, which possibly contribute to the occurrence
of PaWB. Co-immunoprecipitation, yeast two-hybrid, and proteomics techniques could be
used to identify the target proteins of PfCML10.

The variation in the expression of PfCaMs/CMLs in response to calcium treatment
may be relevant in examining its functional significance in plant growth and development,
considering that Ca2+ plays a significant part in plant stress response. We analyzed the
expression of six PfCMLs in apical buds via qRT-PCR. In PFI, these six selected PfCMLs were
up-regulated after CaCl2 treatment in comparison with PF, indicating that Ca2+-permeable
channels may be activated by high concentrations of exogenous calcium ion, increasing the
intracellular Ca2+ concentration, thus generating signal transduction.

By reducing BRI1-mediated reactions, AtCML8 could positively control defense sys-
tems, enabling full PTI establishment [48]. The expression level of PfCML15/28, which is
closely related to AtCML8 in evolution and high homology (43.7% and 64.5%), were signifi-
cantly up-regulated in PFI. In this scenario, the significant up-regulation of PfCML15/28
might be connected to the efficient suppression of BRI1 in P. fortunei. Ma et al. [49] found
AtCML24 favorably regulates defense resistance to the bacterial pathogen P. syringae. As a
collinear gene of AtCML24, PfCML10 shares more than 50% identity with AtCML24 and, in
response to phytoplasma infection, these indicated that it might be involved in regulating
resistance to pathogens. However, in view of the short treatment time of calcium ions,
we did not notice a change in the growth and development of PFI. Whether the PaWB
occurrence is mediated by these PfCaMs/CMLs needs to be further investigated in the
transgenic P. fortunei. It will be possible to learn more about the genetic functions and
underlying molecular mechanisms of these P. fortunei transgenic plants through subsequent
efforts to obtain mutants and overexpression lines.

5. Conclusions

We found and described 5 PfCaM and 58 PfCML proteins with functional EF-hand
domains in the P. fortunei genome. According to expression studies, PfCaM/CML mem-
bers exhibit a variety of expression patterns in various tissues and stress responses, and
their expression levels follow the trend of phytoplasma concentration. Meanwhile, partial
PfCaM/CML members’ response to calcium stimulus, and six PfCMLs were selected that
were suggested to be possibly differently involved in PaWB occurrence. To date, it is yet
unknown how PfCaMs and CMLs work in P. fortunei. Thus, in order to clearly identify the
functions of these PfCaM/CML genes in the occurrence of PaWB, we next examined the
phenotypes of the CRISPR/Cas9-targeted PfCaMs/CMLs knockout P. fortunei trees. These
results pave the way for further investigations into the role of PfCaMs/CMLs in calcium
signaling and stress responses during PaWB phytoplasma infection.
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tion analysis of 63 PfCaM/CMLs; Table S5: Prediction analysis of subcellular localization of the
63 PfCaM/CMLs.
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