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Abstract: Glycosylphosphatidylinositol biosynthesis defect 15 is a rare autosomal recessive disorder
due to biallelic loss of function of GPAA1. At the moment, less than twenty patients have been
reported, usually compound heterozygous for GPAA1 variants. The main clinical features are
intellectual disability, hypotonia, seizures, and cerebellar atrophy. We describe a 4-year-old male
with a novel, homozygous variant. The patient presents with typical features, such as developmental
delay, hypotonia, seizures, and atypical features, such as macrocephaly, preauricular, and cheek
appendages. When he was 15 months, the cerebellum was normal. When he was 33 months old, after
the molecular diagnosis, magnetic resonance imaging was repeated, showing cerebellar atrophy. This
case extends the clinical spectrum of the GPAA1-related disorder and helps to delineate phenotypic
differences with defects of other subunits of the transamidase complex.

Keywords: GPAA1; cerebellar atrophy; hypotonia; transamidase complex

1. Introduction

Congenital disorders of glycosylation (CDG) are a large group including more than
130 inherited metabolic diseases with multi-organ involvement caused by defects in genes
that encode related enzymes in the oligosaccharide biosynthesis pathways [1]. The con-
sequence is a disruption of the process of glycosylation, which is the attachment of sugar
molecules to proteins and lipids. Glycosylation is one of the most significant and abun-
dant post-translational modifications in mammalian cells. It mediates a wide range of
biofunctions, including cell adhesion, cell communication, immune cell trafficking, and
protein stability.

One subgroup of CDG is the disorders of glycosylphosphatidylinositol (GPI) biosyn-
thesis. In disorders of GPI biosynthesis, there is a defect in the biosynthesis pathway of GPI,
resulting in abnormal or insufficient GPI anchors. Individuals with disorders of GPI biosyn-
thesis experience a wide range of symptoms, depending on the specific gene variants and
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the proteins affected. Some common features include neurologic abnormalities, intellectual
disability, developmental delay, seizures, muscle weakness, and abnormal facial features.
Several subtypes of disorders of GPI biosynthesis have been identified, each associated
with variants in different genes involved in GPI anchor synthesis [2].

More than 100 human proteins located on the plasma membrane carry a GPI-anchor,
composed of phosphatidylinositol and glycan chains, which mediate the binding to the cell
membrane [3]. GPI-anchored proteins can be expressed both on the apical or basolateral
surface of the membrane, can work as receptors, adhesion molecules, enzymes, and trans-
porters, and have important roles in several cellular processes, including embryogenesis
and tissue differentiation [4].

GPI-anchored proteins undergo a complex process of post-translational modifications
in the endoplasmic reticulum. They are synthesized as pre-pro-proteins, and then they
lose an N-terminal signal peptide, resulting in a pro-protein. Finally, the GPI transamidase
complex mediates the last step of their processing by removing the C-terminal signal
peptide and attaching, by an amide bond, a GPI-anchor [5]. GPI transamidase complex
consists of five enzymes encoded by PIGK, PIGS, PIGT, PIGU, and GPAA1, respectively [6].

Although other GPI-biosynthesis defects are known, the first ten patients with a disor-
der associated with GPAA1 variants were described only in 2017. This gene is located on
chromosome 8 (8q24.3). The main clinical features of the patients are intellectual disability,
hypotonia, both of them always reported, seizures and cerebellar atrophy, affecting more
than an half of the patients. Microcephaly and osteopenia have been described, with a
lower prevalence, in some of the affected individuals [6].

A significant clinical variability has been observed in several features, including the
degree of intellectual disability (usually moderate to severe, but mild disability has been
reported) and the pattern of the seizures. The facial phenotype is quite aspecific, although
some features seem to be recurrent, such as a prominent forehead, a broad nose, and a
tented upper lip [7].

GPAA1-related GPI biosynthesis defect recognizes an autosomal recessive mode of
inheritance. Heterozygous variants have been supposed to determine a predisposition to
vascular anomalies [8], but this association has not been confirmed by other authors.

Among the eighteen individuals up to now reported, including this patient, seven
of them carry homozygous variants. This can arise from consanguineous marriages, the
presence of genetic isolates, founder effect.

2. Clinical Report

The patient is a 4-year-old male, born from the second pregnancy of parents with
ninth-degree consanguinity (see Figure 1).

The mother had natural childbirth after 40 weeks of a normal pregnancy. Birth weight
was 4060 g (1.71 SDS), length 50 cm (−0.3 SDS), head circumference 36.5 cm (1.62 SDS).
At birth, the newborn presented with congenital muscular torticollis, treated with physio-
therapy, bilateral preauricular appendages, and a left cheek appendage, removed in the
first months of life. At three months, the baby was not able to control his head and showed
hypotonia affecting the trunk and the neck.

At our first dysmorphologic assessment, the patient was 4 months old and presented
with hypotonia, relative macrocephaly, mild frontal bossing, horizontal nystagmus, malar
hypoplasia, left preauricular tag (right preauricular and left cheek tag had been already
removed), depressed nasal root, bulbous nasal tip, anteverted nares, long philtrum. Heart
ultrasound, abdominal ultrasound, spine X-ray, Auditory Brainstem Response, and blood
routine tests, including alkaline phosphatase, were normal. SNP-microarray did not detect
any chromosomal deletions nor duplications.

When the patient was 31 months old, he developed seizures, which were treated
and controlled with levetiracetam. Two MRI scans of the brain, which the patient under-
went when he was 3 months and 3 years old, showed progressive atrophy of the whole
cerebellum, but especially of the vermis, with increased pathological and symmetrical hy-
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perintensity on T2-weighted images of the dentate nuclei. The corpus callosum was normal
except for minimal hypoplasia of the rostrum. The brainstem remained normal in both
MRIs. The second MRI showed the appearance in the deep left temporal white matter of
an oval-shaped area, hyperintense on T2-weighted images, about 1 cm in size, without
peripheral vasogenic edema an enhancement after gadolinium injection, currently under
follow-up (Figure 2).
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Figure 1. (A) Pedigree of the patient. Two great-great-great grandfathers of the child were brothers. One
of them was probably heterozygous for the variant c.424G > A in the gene GPAA1. (B,C) Photographs of
the patient at the age of 4. He shows strabismus, deep-set eyes, thin eyebrows, posteriorly rotated ears
with preauricular tag, depressed nasal root with wide nasal tip, long and deep philtrum, and a thin and
tented upper lip.
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Figure 2. MRI of the brain was performed when the patient was 3 months (A,B) and 3 years old (C,D).
Both midline sagittal T1-weighted and coronal T2-weighted images demonstrate a progressive reduc-
tion in cerebellar volume, especially of the vermis, with diffuse atrophy of the folia and secondary
enlargement of the subtentorial CSF spaces. The corpus callosum is normal except for minimal hy-
poplasia of the rostrum (A,C). Note also the pathological progressive increased hyperintensity on
T2-weighted images of the dentate nuclei (B,D).

At our last evaluation, the patient was 4 years and 3 months old, his length was
97 cm (−1.75 SDS), his weight was 14 Kg (−2 SDS), and his head circumference was 51 cm
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(+0.3 SDS). He showed strabismus, depressed nasal root with wide nasal tip, long and deep
philtrum, and tented upper lip (Figure 1). He was able to sit without support steadily and
to stand for a few seconds, but he could not walk. The verbal language was absent. Eye
contact was present. A bone density scan was performed and found to be normal.

3. Materials and Methods

Patient. The patient examined is of Caucasian origin. He comes from a small town in
the province of Benevento (Campania, Italy) and is the son of consanguineous parents. His
parents come from two small neighboring towns (1800 and 2200 inhabitants, respectively).

Informed consent and DNA samples. Informed consent was appropriately obtained for
genetic investigations through next-generation sequencing (NGS) with an exome platform
in a trio encompassing all the known genes.

DNA samples were obtained from fresh peripheral blood samples using the extraction
kit FlexiGene DNA kit (Qiagen, Hilden, Germany, 2022). The genomic DNA was isolated
from 1 mL of blood following the manufacturer’s recommendations. Genomic DNA was
quantified with NanoDrop (IMPLEN, 2022).

Library preparation and sequencing. For library preparation, we followed the man-
ufacturer’s instructions (SureSelectQXT Automated Target Enrichment for the Illumina
Platform, Protocol Version B0, November 2015, Agilent Technologies, Santa Clara, CA,
USA). The genomic DNA was enriched using the SureSelect Human All Exon v7 (Agilent
Technologies, Santa Clara, CA, USA). The libraries were sequenced using the NovaSeq
6000 system performing paired-end runs covering at least 2 × 150 nt (Illumina Inc., San
Diego, CA, USA). The generated sequences were analyzed using an in-house pipeline
designed to automate the analysis workflow [9]. The average exome coverage of the target
bases of at least 100×, with 90% of the bases covered by at least 40 reads.

Sanger sequencing validation. Following our workflow, the variant detected has also
been validated through Sanger sequencing by adopting forward primer (TTCAGCCCCC-
TACCACAAAG) and reverse (CTTCAAGCCAAGCCTCAGTG).

4. Results

Exome analysis in a trio revealed a homozygous missense variant in the GPAA1
gene (MIM 603048), NM_003801:c.424G > A (exon 4) producing p.Glu142Lys, and then
confirmed by Sanger sequencing (Figure 3). As expected, both parents show the same
heterozygous variant.
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the proband and the heterozygous state of both parents.

This nucleotide change was not present in the GnomAD database (https://gnomad.
broadinstitute.org/) and had a CADD score of 26.8. The variant classification is Variant
of Uncertain Significance, according to the ACMG criteria PP4, PP3, PM2, BP1, in detail:
PP4: Patient’s phenotype or family history is highly specific for a disease with a single
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genetic etiology; PP3: MetaRNN = 0.982 is greater than 0.939⇒ strong pathogenic; PM2:
Variant not found in gnomAD genomes, good gnomAD genomes coverage = 32.2; BP1:
41 out of 56 non-VUS missense variants in gene GPAA1 are benign = 73.2% which is
more than threshold of 33.1%. Even though it was classified as VUS according to the
ACMG criteria, it was inferred to be deleterious according to many predictors, such as
SIFT, Mutation Assessor, and PolyPhen 2.0. If compared with reference genomes of other
species, the wild-type amino acid appears to be highly conserved, advising a key role in the
protein architecture (Figure 4). The variants reside in a segment of amino acids that forms
a repeating pattern in the GPAA1 protein, known as the lumenal repeat. Almost every
ClinVar likely-pathogenic variants (PLPs) missense variant occurs within this domain.
Introducing a different amino acid could potentially disrupt this repeating pattern and
consequently impact any functional role associated with it.
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Figure 4. (A) Glutamic acid is a highly conserved amino acid across species suggesting its crucial
role in the development of the protein. (B) 3D protein structure highlights the Glu to Lys amino acid
change. Negatively-charged wilde-type Glu 142 may interact with positively-charged Lys 178, which
is at a distance of 3.876 Å. Through a simulation, we could speculate that, when mutated, Lysine
142 charge may repel Lys 178 charge at a distance of 4.638 Å, altering the strand structure.

Through interactive software for the visualization and the analysis of molecular
structures (UCSF Chimera), we realized that the mutated Lys 142 electric interaction with
the near Lys 178 residue may reshape the protein structure. The wild-type residue charge is
negative, and the mutant residue charge is positive. Thus, while wild-type Glu 142 possibly
attracts Lys 178, mutated Lys 142 is likely to repel it (Figure 4). Since the GPAA1 gene
is known to cause Glycosylphosphatidylinositol biosynthesis defect 15 (#617810), which
matches with the patient phenotype, we could then consider the variant to be responsible
for the condition.

5. Discussion

GPAA1 defects determine a recessive disorder characterized by a complex neurological
phenotype, including intellectual disability, dysarthria, nystagmus, spasticity, ataxic gait,
hypotonia, seizures, and cerebellar atrophy.
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Cerebellar hypoplasia and atrophy are features shared with other GPI-anchored pro-
tein defects, emphasizing the role of these proteins during cerebellar development. The
genes coding for transamidase complex subunits follow a restricted pattern of expression in
the early postnatal brain. Reduced activity of the complex does not grossly affect the struc-
ture of the brain, but it impairs cerebellum micro-organization and Purkinje cell dendritic
arborization [10].

The neurological phenotype differs from other, more common, conditions, such as
spinocerebellar ataxias, because of the very early onset and the absence of involvement of
the brainstem.

Consistently with the organization of the glycophosphatidylinositol (GPI) transami-
dase complex into five subunits, variants in their respective five genes are associated with
a common phenotype. The intellectual disability is usually severe, with poor or absent
speech. Spastic tetraparesis, optic atrophy, cortical atrophy, and cortical blindness are fre-
quent. Other neurological findings are recurrent, including cerebellar ataxia or dysmetria,
hypotonia, strabismus, and nystagmus.

Nevertheless, peculiar phenotypical features have been related to specific genes. Patients
with PIGS variants show a coarse facial appearance, with arched eyebrows, long noses, deep
philtrums, broad tongues, and gingival hypertrophy [11]. Scoliosis and other skeletal findings
are more frequent in patients with PIGT and PIGU variants [12,13]. Nephrocalcinosis and
tooth abnormalities are distinctive features of PIGT loss of function [12]. Microcephaly has its
highest prevalence in patients with PIGK and PIGS involvement, while PIGT mutated can be
macrocephalic [11,12,14]. Seizures are very common in all the forms described, but they are
more frequently controlled by medication in PIGK, GPAA1 and PIGU patients; seizures are
often in-tractable, on the other hand, in the case of PIGS or PIGT variants [6,11–14]. A thin
corpus callosum has been reported in association with PIGU variants [13]; pontine hypoplasia
is typical of PIGS variants [15].

Transamidase complex disorders related to GPAA1 defects are very rare. To our
knowledge, seventeen patients have been reported at the moment [6,7]. Our patient shares
with them the main clinical features, including a severe developmental delay, hypotonia,
epilepsy, and nystagmus (Table 1). On the other hand, he does not show osteopenia, as
reported in 100% of the patients described by Nguyen [6], and despite what was assessed
in other cases, he has a relative macrocephaly. A distinctive feature is the presence of
preauricular and cheek skin tags, recalling those observed in Goldenhar syndrome [16].

Table 1. Variants and clinical phenotypes of the reported glycosylphosphatidylinositol biosynthesis
defect 15 patients, including this case.

Variants Inheritance Age
Years

Height
%

Weight
%

OFC
%

DD
ID Hypotonia Cerebellar

Atrophy Epilepsy Nystagmus Ataxia Osteo-
Penia

This
Case c.424G > A homoz 4 10 5 55 + + + + + + -

N.
1a

c.872T > C
c.981_993del

compound
heteroz 15 8 58 14 + + + + + + +

N.
1b

c.872T > C
c.981_993del

compound
heteroz 10 4 16 27 + + + + + + +

N.
2

c.152C > T
c.1164 + 5C > T

compound
heteroz 6 59 30 87 + + - + - NA +

N.
3a

c.920delG
c.1165G > C

compound
heteroz 10 1 49 1 + + + + + NA +

N.
3b

c.920delG
c.1165G > C

compound
heteroz 3 15 19 19 + + + + + NA +

N.
4a c.527G > C homoz 8 1 27 31 + + + - + + +

N.
4b c.527G > C homoz 5 1 23 4 + + + - - + +

N.
4c c.527G > C homoz 4 1 31 18 + + + - + + +

N.
5a

c.160_161delinsAA
c.869T > C

compound
heteroz 30 −2 SD 48 50 + + + + + + NA
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Table 1. Cont.

Variants Inheritance Age
Years

Height
%

Weight
%

OFC
%

DD
ID Hypotonia Cerebellar

Atrophy Epilepsy Nystagmus Ataxia Osteo-
Penia

N.
5b

c.160_161delinsAA
c.869T > C

compound
heteroz 25 −1.8 SD 31 50 + + + + + + NA

C.
I c.164T > C homoz 38 17 72 93 + + + + - + +

C.
II c.1049T > G homoz 1 <1 23 13 + - - - - - NA

C.
III

c.917A > G
c.1559T > G

compound
heteroz 3 <1 3 1 + + + + - - NA

C.
IV c.947C > T homoz 5 33 96 <1 + + - + + + NA

C.
V

c.947C > T
c.1233_1239del

compound
heteroz 3 1 <1 2 + + + + + - NA

C.
VI

c.1477_1478del
c.1831T > C

compound
heteroz 5 7 31 69 + + NA + - - NA

C.
VII

c.619delA
c.149T > A

compound
heteroz 3 59 72 34 + + - + - + -

Abbreviations. % = percentile, + = present, − = absent, N. = Nguyen and coll. [1], C. = Castle and coll. [5],
OFC = occipitofrontal circumference, DD = developmental delay, ID = intellectual disability, NA = not available,
SD = standard deviations, homoz. = homozygous, compound eteroz. = compound heterozygous.

Among the patients previously described, eleven of them are compound heterozygous
for GPAA1 variants, and six of them are homozygous. Up to now, nineteen variants
have been reported: thirteen missenses, five frameshifts, and one located in a splicing site
(Table 1). All the individuals carry two missense variants, or one missense and one nonsense.
No subject with a double-nonsense variant has been observed. We can hypothesize that a
residual activity of the protein is necessary to complete embryonic development, consistent
with the lack of animal models with GPI biosynthesis genes null mutants [10].

Our patient carries the homozygous c.424G > A (p.Glu142Lys), a novel missense
variant. The homozygosity for very rare variants was favored by consanguinity, albeit
of a low degree, between the patient’s parents (two great-great-great grandfathers of the
child were brothers). Marriage between consanguineous persons, in turn, may have been
favored by a situation of “genetic isolation”, as the two parents come from two very small,
neighboring towns in the province of Benevento (Campania, Italy). These two small villages
were originally populated by the inhabitants of a castle and are located in an internal, rural
area whose history is characterized by poor connections to the region’s larger towns and
low migration to them.

The concept of a genetic isolate refers to a population or group of individuals that is
relatively isolated from other populations, leading to limited gene flow between them. This
isolation can occur due to various factors, such as geographic barriers, cultural practices, or
social dynamics. In a genetic isolate, individuals within the population tend to mate and
reproduce predominantly within their own group rather than with individuals from other
populations. This restricted gene flow can have significant implications for the genetic
makeup of the isolated population over time, ultimately favoring the chance of a carrier of
rare recessive variants of mating with another carrier of the same variants.

The diagnosis of other affected individuals will allow us to expand the phenotypic
and genotypic characterization of this syndrome and assess the long-term prognosis and
management of these patients.
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Abbreviations

ACMG, American College of Medical Genetics; BP1, Supporting Benign criterion number 1;
CADD score, Combined Annotation Dependent Depletion score (a tool for scoring the deleteriousness
of single nucleotide variants); GnomAD, The Genome Aggregation Database; GPAA1, glycosylphos-
fatidilinosti anchor attachment protein 1; GPI, glycophosphatidylinositol; MRI, Magnetic resonance
imaging; NGS, next-generation sequencing; PIGK, phosphatidylinositol-glycan anchor biosynthe-
sis class K protein; PIGS, phosphatidylinositol-glycan anchor biosynthesis class S protein; PIGT,
phosphatidylinositol-glycan anchor biosynthesis class T protein; PIGU, phosphatidylinositol-glycan
anchor biosynthesis class U protein; PLPs, likely-pathogenic variants; PM2, Moderate Pathogenic
criterion number 2; PP4, Supporting Pathogenic criterion number 4; PP3, Supporting Pathogenic
criterion number 3; SDS, standard deviations; SIFT score, Sorting Intolerant from Tolerant score; SNP-
microarray, Single Nucleotide Polymorphism microarray; T2, T2 weighted image (one of the basic
pulse sequences on MRI); VUS, Variant of Uncertain Significance; WES, whole exome sequencing.
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